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Abstract
Background and purpose  Alice in Wonderland syndrome (AIWS) is a neurological disorder characterized by erroneous 
perception of the body schema or surrounding space. Migraine is the primary cause of AIWS in adults. The pathophysiol-
ogy of AIWS is largely unknown, especially regarding functional abnormalities. In this study, we compared resting-state 
functional connectivity (FC) of migraine patients experiencing AIWS, migraine patients with typical aura (MA) and healthy 
controls (HCs).
Methods  Twelve AIWS, 12 MA, and 24 HCs were enrolled and underwent 3 T MRI scanning. Independent component analy-
sis was used to identify RSNs thought to be relevant for AIWS: visual, salience, basal ganglia, default mode, and executive 
control networks. Dual regression technique was used to detect between-group differences in RSNs. Finally, AIWS-specific 
FC alterations were correlated with clinical measures.
Results  With respect to HCs, AIWS and MA patients both showed significantly lower (p < 0.05, FDR corrected) FC in lateral 
and medial visual networks and higher FC in salience and default mode networks. AIWS patients alone showed higher FC 
in basal ganglia and executive control networks than HCs. When directly compared, AIWS patients showed lower FC in 
visual networks and higher FC in all other investigated RSNs than MA patients. Lastly, AIWS-specific FC alterations in the 
executive control network positively correlated with migraine frequency.
Conclusions  AIWS and MA patients showed similar FC alterations in several RSNs, although to a different extent, suggest-
ing common pathophysiological underpinnings. However, AIWS patients showed additional FC alterations, likely due to 
the complexity of AIWS symptoms involving high-order associative cortical areas.

Keywords  Alice in Wonderland syndrome (AIWS) · Migraine with aura (MA) · Resting-state functional MRI · Functional 
connectivity (FC)

Introduction

Alice in Wonderland syndrome (AIWS) is a neurological 
disorder characterized by erroneous perception of the body 
schema or surrounding space. Described for the first time by 
the psychiatrist John Todd in 1955 [1], the syndrome takes 
its name from Lewis Carroll’s book Alice’s Adventures in 
Wonderland, in which the protagonist experiences several 
perception disorders [2].

Core symptoms of AIWS include somesthetic (i.e., 
macro/microsomatognosia) and visual distortions (such 
as macro/micropsia or pelopsia/telopsia) [1, 3–5]. Other 
facultative symptoms include derealization, depersonali-
zation, and perception of time slowing [5–7]. Patients are 
generally classified according to their symptoms as type A 
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(somesthetic), type B (visual), or type C (somesthetic and 
visual) [7–9].

In children, AIWS is most frequently due to Epstein-Barr 
virus infections, while in adults the most common cause is 
migraine [3, 4, 9]. A recent prospective study showed that 
the prevalence of AIWS in adult migraineurs referred to a 
tertiary headache center may be as high as 19%, and that the 
vast majority of patients with AIWS (95%) received a con-
comitant diagnosis of migraine with aura (MA), with AIWS 
symptoms tending to occur within 1 of migraine onset [10]. 
It is still unclear why some migraineurs experience AIWS, 
though a common pathophysiological mechanism possibly 
related to aura has been hypothesized since AIWS symptoms 
tend to occur close to migraine onset [10]. Indeed, although 
visual and somatosensory disturbances are the most frequent 
MA symptoms, MA can also include other symptoms char-
acterized by dysfunctions of associative cortical areas that 
integrate polymodal sensory information [11].

There is no current agreement on the neural correlates of 
AIWS. In our previous study, we searched medical literature 
for AIWS cases following cerebral damage (a less common 
AIWS etiology). In order to find the anatomical substrate of 
AIWS, we applied a lesion-mapping approach and found that 
type B patients showed brain lesions located preferentially, 
but not exclusively, in the right extrastriate visual cortex 
and surrounding white matter tracts, while type A and C 
patients showed lesions located in different areas of the right 
hemisphere, such as the insula, thalamus, and frontal lobe, 
possibly suggesting underlying structural/functional discon-
nections [12]. Single-case functional imaging studies that 
tried to identify functional abnormalities in AIWS patients 
showed heterogeneous results [13–15].

Resting-state functional magnetic resonance imaging (rs-
fMRI), which examines the pattern of synchronous spon-
taneous fluctuations of the blood oxygen level-dependent 
(BOLD) signal [16], provides an indirect measurement of 
brain connectivity. Application of this non-invasive tech-
nique has allowed the identification of various resting-state 
networks (RSNs), or spatially distinct areas of the brain that 
demonstrate synchronous BOLD fluctuations at rest. Several 
RSNs showed atypical connectivity in MA patients (mainly 
visual) [17], some of which involved regions that were fre-
quently associated with AIWS in individual brain-damaged 
patients and in task-evoked functional MRI (fMRI) and sin-
gle-photon emission computerized tomography (SPECT) 
studies, including visual [9, 12, 15, 18], salience and basal 
ganglia [19–21], and default and executive control networks 
[22, 23].

Studying the neural correlates of the wide array of AIWS 
symptoms associated with migraine in comparison to more 
common forms of MA may contribute to a better understand-
ing of whether AIWS phenomena and more common forms 
of auras share common pathophysiological mechanisms.

The current study aimed to investigate resting-state func-
tional connectivity (FC) in migraine patients with AIWS, 
in migraine patients with typical visual and somatosensory 
aura (MA), and in age- and sex-matched healthy controls 
(HCs) using an automated hypothesis-free approach, i.e., 
independent component analysis (ICA). This approach has 
the potential to provide new insights into the pathophysi-
ology of AIWS by clarifying (i) whether AIWS and MA 
patients are characterized by overlapping or independent FC 
changes when compared to HCs; (ii) whether AIWS and 
MA patients differ in terms of FC in specific RSNs, and (iii) 
whether AIWS-specific FC changes correlate with clinical 
measures.

Our approach might provide clinicians and researchers 
with relevant information. Defining the precise relationship 
between AIWS and migraine might inform an appropriate 
therapeutic approach, especially in the presence of frequent 
or particularly distressing AIWS misperceptions. If AIWS 
and migraine attacks share, at least in part, some pathophysi-
ological mechanisms, an appropriate migraine preventive 
therapy might have an effect on AIWS symptoms, as previ-
ously suggested in patients with AIWS and vestibular and 
non-vestibular migraine [10, 24].

Materials and methods

Participants

A consecutive series of 12 right-handed patients with 
migraine with aura experiencing AIWS (AIWS), 12 patients 
with migraine with typical visual and somatosensory aura 
(MA), and 24 age- and sex-matched HCs were included 
in this study. All subjects were recruited and underwent 
an MRI scan and clinical testing at Policlinico Umberto I, 
Sapienza University of Rome, Italy. Patients had to meet 
the following inclusion criteria to be enrolled in the study: 
18–65 years of age with a diagnosis of migraine according to 
the International Classification of Headache Disorders, 3rd 
edition (ICHD-3). Patients were screened for AIWS symp-
toms via an ad hoc questionnaire [25]. After the visit, ques-
tionnaire responses were double-checked by two trained phy-
sicians (VM, GM) who directly interviewed participants and 
collected information about AIWS and migraine character-
istics (for clinical evaluation details, see [25]). MA patients 
had an aura characterized by visual symptoms (including 
phosphenes, photopsia, and visual blurring) or visual and 
somatosensory symptoms (paresthesia). No patient received 
a diagnosis of familial or sporadic hemiplegic migraine or 
vestibular migraine. Due to the high within-subject aura 
variability [26], we included patients without a preferred 
side of aura symptoms. All enrolled patients experienced 
both migraine attacks with and without aura, and none of 
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them took preventive medications. All patients were in the 
interictal state; they were migraine-free at least 48 h before 
and after the MRI scan.

The following exclusion criteria were applied to all sub-
jects: medically unstable or with hematological, renal, or 
hepatic dysfunction; current or past Diagnostic and Statisti-
cal Manual of Mental Disorders, fourth edition (DSM-IV) 
diagnosis of major depression, bipolar disorder, or psychotic 
disorders; history of moderate-to-severe head injury, stroke, 
or seizures; alcoholism or drug dependency; for healthy con-
trols specifically, no history of migraine or other types of 
primary headaches.

Ethics statement

This study was performed in accordance with the ethi-
cal code of the ethics committee of Azienda Policlinico 
Umberto I, Sapienza University of Rome and the Declara-
tion of Helsinki. After approval from the ethics committee, 
written informed consent was obtained from all subjects.

MRI acquisition

Images were acquired with a 3 Tesla (3 T) scanner (Siemens 
Magnetom Verio) and a 12-channel head coil designed for 
parallel imaging (GRAPPA). Participants were advised to 
avoid consuming psychoactive substances, such as tea or 
coffee, within 2 h prior to MRI scans.

The following sequences were acquired:

•	 BOLD single-shot echo-planar imaging (repetition time 
(TR) = 3000 ms, echo time (TE) = 30 ms, flip angle = 89°, 
field of view (FOV) = 192 mm, 64 × 64 matrix, 50 con-
tiguous axial slices 3-mm thick, 140 volumes, voxel 
size = 3 mm3, acquisition time = 7 min 11 s), with all 
patients instructed to close their eyes and stay awake 
during resting-state fMRI acquisitions;

•	 High-resolution three-dimensional T1-weighted (T1-
3D) magnetization-prepared rapid gradient echo (MP-
RAGE) sequence (TR = 1900 ms, TE = 2.93 ms, inver-
sion time (TI) = 900 ms, flip angle = 9°, FOV = 260 mm, 
matrix = 256 × 256, 176 sagittal slices 1-mm thick, no gap);

•	 Dual turbo spin-echo, proton density (PD) and 
T2-weighted images (TR = 3320  ms, TE1 = 10  ms, 
TE2 = 103 ms, FOV = 220 mm, matrix = 384 × 384, 25 
axial slices 4-mm thick, 30% gap);

•	 High-resolution 3D fluid-attenuated inversion recov-
ery (FLAIR) sequence (TR = 6000 ms, TE = 395 ms, 
TI = 2100 ms, FOV = 256 mm, matrix = 256 × 256, 176 
sagittal slices 1-mm thick, no gap).

MRI analysis

Anatomical and functional preprocessing was performed 
using fMRIPrep 20.2.3 [27, 28], RRID:SCR_016216, 
which  i s  based  on  Nipype  1 .5 .0  [29 ,  30] , 
RRID:SCR_002502. For a description of anatomical and 
functional preprocessing, please see the Supplementary 
information.

Independent component analysis (ICA) of preprocessed 
functional data was performed using the MELODIC tool 
(Multivariate Exploratory Linear Optimized Decomposi-
tion into Independent Components) [31]. For group-wise 
ICA, a single four-dimensional (4D) dataset was created 
by temporally concatenating preprocessed functional data 
containing 140 timepoints for each subject. The dimension-
ality of group ICA was performed using different numbers 
of components (i.e., 20, 25, 30, 35, 40) [32–34]. Finally, a 
dimensionality of 30 was chosen since the explained data 
variance was sufficient to obtain good estimates of the 
signals and well-known RSNs were identified [32]. Sev-
eral RSNs showed atypical connectivity in patients with 
migraine with aura [17]; of these, we selected those whose 
regions showed structural (single-case lesion studies) or 
functional (i.e., task fMRI, SPECT) alterations in patients 
with AIWS: visual (lateral and medial) [9, 12, 15, 18], sali-
ence and basal ganglia [19–21], and default and executive 
control networks [22, 23]. RSNs of interest were identi-
fied via spatial correlation coefficients (fslcc tool) using 
RSNs generated by Smith et al. [32] and Yeo et al. [35] 
as templates, and then verified by expert visual inspection 
(CP, NP, PP).

The set of spatial maps from the group average analysis 
was used to generate subject-specific versions of the spa-
tial maps and associated time series using a dual regres-
sion technique [36, 37]. For each subject, the group average 
set of spatial maps was first regressed (as spatial regressors 
in a multiple regression) into the subject’s 4D space–time 
dataset, resulting in a set of subject-specific time series, one 
per group-level spatial map. These time series were then 
regressed (as temporal regressors in a multiple regression) 
into the same 4D dataset, resulting in a set of subject-specific 
spatial maps, one per group-level spatial map.

Statistical analyses

Statistical analyses were performed using SPSS statistics 
software (version 22.0). Between-group differences in demo-
graphic, clinical, and radiological parameters were tested 
using Mann–Whitney U test and Chi-square test for continu-
ous and dichotomous variables, respectively (p < 0.05 for 
null hypothesis rejection).
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Resting‑state functional connectivity

Subject-specific spatial maps obtained from dual regres-
sion analysis were entered into group-level voxel-wise 
analyses. To investigate FC differences between groups, we 
compared each patient group with the control group and 
the two patient groups to each other by applying unpaired 
t-test. Age and sex were entered as nuisance variables in 
all analyses. Voxel-wise statistical analyses were performed 
with permutation-based non-parametric statistics using FSL 
Randomise permutation-based program with 5000 permuta-
tions [38]. Results were corrected using false discovery rate 
(FDR) correction [39] for multiple comparisons (p < 0.05). 
The Randomise tool (5000 permutations) was also used to 
examine possible correlations between FC and clinical fea-
tures, i.e., disease duration and migraine frequency. Correla-
tion analyses were performed inside the masks of significant 
FC differences between AIWS patients and HCs and result-
ing statistical maps were thresholded at p < 0.05, FDR cor-
rected. Anatomical localization of significant clusters was 
established according to the Harvard–Oxford cortical and 
subcortical structural atlases included in FMRIB’s Software 
Library (http://​www.​fmrib.​ox.​ac.​uk/​fsl/​data/​atlas descrip-
tions.html).

Results

Clinical and conventional MRI findings

Descriptive statistics for demographic and clinical param-
eters in the two patient groups and in HCs are reported in 
Table 1. Symptoms characterizing AIWS patients included 
in the present study are reported in the Supplementary 
Table 1. AIWS, MA, and HC participants did not statisti-
cally differ in terms of age or gender distribution. There were 

no significant differences in disease duration or migraine 
frequency between AIWS and MA patients. Patients were 
also comparable according to clinical manifestation: in the 
AIWS group, 7 patients were classified as type B AIWS 
(only visual distortions) and 5 as type C (somesthetic and 
visual distortions), while in the MA group, 9 patients pre-
sented with pure visual aura and 3 with visual and soma-
tosensory aura.

Fifteen out of 24 migraine patients (63%) showed at least 
one millimetric aspecific area of hyperintense T2 and T2 
FLAIR signal, and only two patients (1 AIWS and 1 MA) 
showed more than 10 areas. No difference in the number of 
hyperintense white matter lesions was detected between MA 
and AIWS patients (p < 0.05). These findings are consistent 
with white matter lesions reported in patients with migraine 
with aura [40, 41], where they did not seem to impact FC 
[42, 43].

Resting‑state functional connectivity

The six selected RSNs of interest were identified as those 
showing the highest spatial correlation coefficients with 
RSN templates: the default mode (r = 0.58), executive 
control (r = 0.63), basal ganglia (r = 0.46), lateral visual 
(r = 0.49), and medial visual (r = 0.66) networks (Fig. 1). 
The salience network was instead identified according to 
previous literature [44, 45].

With respect to HCs, AIWS and MA patients showed 
significantly lower (p < 0.05 FDR corrected) FC in the lateral 
and medial visual networks and significantly higher FC in 
the salience and default mode networks (Fig. 2, Tables 2 and 
3). Only AIWS patients showed higher FC than HCs in the 
basal ganglia and executive control networks. When directly 
compared, AIWS patients showed lower FC in visual net-
works and higher FC in all other investigated RSNs than MA 
patients (Fig. 2, Table 4).

Table 1   Demographic and 
clinical characteristics of 
healthy controls (HCs) 
and patients with Alice in 
Wonderland syndrome (AIWS) 
and migraine with aura (MA)

Values are reported as mean ± standard deviation
Acronyms: n, number; y, years; ns, not statistically significant
Between-group differences were tested using Chi-square test (sex, dichotomous variables) and Mann–
Whitney U test (all other continuous variables) (p < 0.05 for null hypothesis rejection)
†  Type of AIWS (B/C)—Type of aura (pure visual/visual and somatosensory)
* Differences between HCs and AIWS patients
** Differences between HCs and MA patients
***  Differences between AIWS and MA patients

HC (n = 24) AIWS (n = 12) MA (n = 12) p* p** p***

Age 38.6 ± 13.1 42.9 ± 13.4 34.2 ± 13.2 ns ns ns
Female/male, n 17/7 9/3 8/4 ns ns ns
Disease duration, y - 20.5 ± 11.1 20.8 ± 13.8 - - ns
Days of migraine/month - 8.2 ± 7.3 4.5 ± 3.7 - - ns
Type of AIWS—Type of aura † - 7/5 9/3 - - ns
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Correlation analysis showed a significant positive cor-
relation (p < 0.05, FDR corrected) between AIWS-specific 
FC alterations in the executive control network and migraine 
frequency (Fig. 3, Table 5): the higher the FC, the higher the 
number of migraine days per month.

Discussion

In the present study, we compared patterns of FC in 
selected RSNs of interest in migraine patients with AIWS, 
migraine patients with typical aura (MA), and age- and 
sex-matched HCs. With respect to HCs, AIWS and MA 
patients both showed FC alterations in lateral and medial 
visual, salience, and default mode networks, suggesting 
a similar rearrangement of functional brain connections. 
However, AIWS patients showed greater and more wide-
spread FC alterations in those RSNs than MA patients, and 
additional FC alterations in basal ganglia and executive 
control networks. These findings may reflect the involve-
ment of high-order associative cortical areas related to the 
complexity of AIWS symptoms [9].

AIWS and MA patients showed common FC 
abnormalities

In the present study, we demonstrated that AIWS and MA 
patients were characterized by similar FC alterations in four 
RSNs when compared to HCs, suggesting common patho-
physiological underpinnings. Although this is the first study 
that investigated FC alterations in migraine patients with 
AIWS, several studies have looked at FC abnormalities in 
the interictal phase of migraine patients with typical aura, 
suggesting the existence of FC alterations in MA patients 
affecting the visual cortex [43, 46, 47], regions involved in 
visual processing (including middle frontal regions and the 
anterior cingulate) [42, 47], and default mode [46, 48] and 
salience networks [47, 49].

In the present study, both AIWS and MA patients showed 
lower FC in lateral and medial visual network regions, such 
as the superior lateral occipital cortices and the lingual 
gyrus, widely considered the cortical “aura generator” [50]. 
In patients with MA, Tedeschi and colleagues found higher 
FC in the right lingual gyrus during the interictal phase [43]; 
this result was confirmed by the same research group, who 

Fig. 1   Resting-state networks (RSNs) identified and used for dual 
regression analysis. This figure shows sagittal, coronal, and axial 
slices for the RSNs detected, overlaid onto the MNI152 standard 

brain. RSNs are shown in FMRIB’s Software Library’s red-yellow 
color encoding using a 3 < z-score < 10 threshold window
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also demonstrated that MA patients with complex auras had 
higher FC of the left lingual gyrus compared to both sim-
ple visual MA patients and migraine without aura patients 
[50]. Increased FC in the visual network was interpreted as 
due to “a brain lack of habituation or to a hyper-responsive-
ness”[43]. However, both hyper- and hypo-connectivity can 
be detected in the same neurological disease, e.g., multiple 
sclerosis, epilepsy and mild cognitive impairment [51–53], 
likely reflecting different pathophysiological mechanisms 
related to neural resources [54]. In migraine, FC abnor-
malities are at least in part related to disease severity [55]. 
Migraineurs included in the present study had longer dis-
ease duration (20 years on average) and a higher number 
of migraine attacks (more than 4 per month) than those 
included in the studies of Tedeschi and colleagues (mean 
disease duration of 10 years and 1–2 attacks per month). 
Reduced FC within regions of the visual network may reflect 

habituation or exhaustion of plasticity mechanisms second-
ary to long-standing migraine aura experience. Finally, it 
should also be noted that other two studies failed to find 
significant FC difference between MA patients and con-
trols in visual networks, using respectively a larger sam-
ple of patients [56] and a different post-processing method 
(frequency-spectrum ICA) [46]. Since different results may 
be due to differences in clinical characteristics of enrolled 
patients and/or in MRI data acquisition/analysis, future stud-
ies are needed to draw definitive conclusions on resting-state 
FC abnormalities of visual networks in migraineurs with 
aura.

AIWS and MA patients also showed higher FC in sali-
ence and default mode network regions. Only two studies 
reported FC changes in the salience network, but the authors 
used different data analysis approaches (seed-based analysis 
and dynamic FC) [47, 49], so that their findings cannot be 

Fig. 2   RSNs showing significant functional connectivity differences 
between healthy controls (HCs) and Alice in Wonderland syndrome 
(AIWS) and migraine with aura (MA) patients (p < 0.05, false discov-

ery rate corrected). Results for each RSN are overlaid onto the corre-
sponding network (green) in the MNI152 standard brain. Red-yellow 
and blue-light blue color bars represent level of significance
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directly compared to those of the present work. Our results 
point to differences located in key nodes of the salience net-
work, such as the insula, which acts as a cortical multisen-
sory hub by receiving, processing, and conveying pain and 
other sensory inputs to cognitive and emotional control areas 
[57], thus playing a crucial role in migraines [17, 58]. Since 
pain is inherently salient, it is highly likely that the intrinsic 
connectivity in this network may be altered in chronic pain 

patients such as migraineurs, and may also affect network 
interactions, as demonstrated by Veréb and colleagues [49].

Concerning the default mode network, between-group 
differences were found both in anterior and posterior regions 
of the network, consistent with a previous study showing 
higher FC of the default mode network in MA patients com-
pared to HCs [48]. The default mode network is highly rele-
vant for self-referential cognitive and affective processing of 

Table 2   Resting-state networks 
showing significant functional 
connectivity differences 
between patients with Alice in 
Wonderland syndrome (AIWS) 
and healthy controls (HCs) 
(p < 0.05, false discovery rate 
corrected, minimum cluster 
extent set at 150 voxels). 
Peak Montreal Neurological 
Institute (MNI) coordinates 
(mm) within clusters were 
identified using the minimum 
peak distance between the local 
maxima of 20 mm. Anatomical 
localizations of peak MNI 
coordinates were established 
according to Harvard–Oxford 
cortical and subcortical 
structural atlases and the 
cerebellar atlas included in 
FMRIB’s Software Library

MNI coordinates

Cluster size (voxels) p x y z Cluster location (local maxima)

AIWS > HCs
Basal Ganglia Network
  275  < 0.001 16 -16 6 Right Thalamus

0.001 -16 -18 14 Left Thalamus
Salience Network
  846  < 0.001 -42 10 -8 Left Insular Cortex

 < 0.001 -50 20 8 Left Inferior Frontal Gyrus, pars opercularis
0.01 -28 28 -2 Left Frontal Orbital Cortex

  551  < 0.001 30 16 -8 Right Insular Cortex
 < 0.001 54 10 -2 Right Temporal Pole

0.002 50 20 24 Right Inferior Frontal Gyrus, pars opercularis
0.002 56 34 8 Right Inferior Frontal Gyrus, pars triangularis

  318  < 0.001 0 8 64 Juxtapositional Cortex (formerly Supplementary 
Motor Cortex)

  204  < 0.001 -54 -56 26 Left Angular Gyrus
Default Mode Network
  920  < 0.001 -4 -32 40 Left Cingulate Gyrus, posterior division

 < 0.001 -10 -52 24 Left Precuneous Cortex
0.003 2 -58 50 Right Precuneous Cortex

  388  < 0.001 8 56 24 Right Superior Frontal Gyrus
0.001 -14 58 32 Left Frontal Pole

  228  < 0.001 -48 -68 24 Left Lateral Occipital Cortex, superior division
  163  < 0.001 2 66 0 Right Frontal Pole
Executive Control Network
  655  < 0.001 24 58 -6 Right Frontal Pole

 < 0.001 32 34 36 Right Middle Frontal Gyrus
  348  < 0.001 -8 52 -4 Left Paracingulate Gyrus

 < 0.001 -6 68 12 Left Frontal Pole
  250  < 0.001 0 38 8 Cingulate Gyrus, anterior division
AIWS < HCs
Lateral Visual Network
  290  < 0.001 -36 -84 16 Left Lateral Occipital Cortex, superior division
150  < 0.001 40 -76 22 Right Lateral Occipital Cortex, superior division
Medial Visual Network
  230  < 0.001 -16 -62 2 Left Lingual Gyrus
201  < 0.001 -6 -86 22 Left Cuneal Cortex

0.006 0 -72 6 Lingual Gyrus
  192 0.003 -6 -88 36 Left Cuneal Cortex

0.004 14 -88 34 Right Occipital Pole
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Table 3   Resting-state networks 
showing significant functional 
connectivity differences 
between patients with migraine 
with aura (MA) and healthy 
controls (HCs) (p < 0.05, false 
discovery rate corrected). 
Refer to Table 2 for a detailed 
explanation of the table layout

MNI coordinates

Cluster size (voxels) p x y z Cluster location (local maxima)

MA > HCs
Salience Network
  227  < 0.001  − 52 20 4 Left Inferior Frontal Gyrus, pars opercularis

0.008  − 34 30 6 Left Frontal Operculum Cortex
  157  < 0.001 4 24 32 Right Cingulate Gyrus, anterior division
Default Mode Network
  180  < 0.001 4  − 46 44 Right Precuneous Cortex
MA < HCs
Lateral Visual Network
  151  < 0.001  − 34  − 64  − 22 Left Temporal Occipital Fusiform Cortex

0.004  − 22  − 50  − 10 Left Lingual Gyrus
Medial Visual Network
  169  < 0.001  − 10  − 50 2 Left Cingulate Gyrus, posterior division

Table 4   Resting-state networks 
showing significant functional 
connectivity differences 
between patients with Alice in 
Wonderland syndrome (AIWS) 
and patients with migraine 
with aura (MA) (p < 0.05, 
false discovery rate corrected). 
Refer to Table 2 for a detailed 
explanation of the table layout

MNI coordinates

Cluster size (voxels) p x y Z Cluster location (local maxima)

AIWS > MA
Basal Ganglia Network
  313  < 0.001  − 36 12 8 Left Frontal Operculum Cortex

0.002  − 14 6 20 Left Caudate
0.007  − 28  − 16 8 Left Putamen

Salience Network
  340  < 0.001  − 58 8  − 6 Left Temporal Pole

0.003  − 42 30  − 8 Left Frontal Orbital Cortex
  207 0.002 -4 10 50 Left Paracingulate Gyrus

0.006 14 8 62 Right Superior Frontal Gyrus
  190  < 0.001 58 10 2 Right Precentral Gyrus

0.013 50 20 24 Right Inferior Frontal Gyrus, pars opercularis
  153  < 0.001 34 18  − 4 Right Insular Cortex
Default Mode Network
  321  < 0.001 6 56 26 Right Superior Frontal Gyrus

0.005  − 8 54 42 Left Frontal Pole
  159 0.003 8  − 32 34 Right Cingulate Gyrus, posterior division
Executive Control Network
  854  < 0.001 8 54 0 Right Paracingulate Gyrus

 < 0.001 6 56 22 Right Superior Frontal Gyrus
 < 0.001 28 52 28 Right Frontal Pole

  389  < 0.001  − 26 52 14 Left Frontal Pole
AIWS < MA
Lateral Visual Network
  203  < 0.001  − 38  − 88 18 Left Lateral Occipital Cortex, superior division
Medial Visual Network
  316  < 0.001  − 10  − 82 14 Left Intracalcarine Cortex

 < 0.001 4  − 78 34 Right Cuneal Cortex
  174 0.003  − 18  − 102 8 Left Occipital Pole

0.034  − 10  − 84  − 2 Left Lingual Gyrus
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pain experiences [59]. Increased FC in the default mode net-
work, particularly in the posterior nodes of the network (e.g., 
precuneus and posterior cingulate cortex) that are engaged 
in both pain sensitivity and the integration of inputs from 
different sensory modalities, may suggest a compensatory 
adaptive mechanism in migraineurs [60].

Distinctive FC alterations in AIWS and MA patients

Although AIWS and MA patients both showed significant 
FC alterations with respect to HCs in visual, salience, and 
default networks, a direct comparison of the two patient 
groups showed that AIWS patients were characterized by 
significantly greater FC alterations (higher or lower) with 
respect to MA patients. AIWS patients also showed peculiar 
FC alterations with respect to HCs, which were not observed 
in MA patients, including higher FC in basal ganglia and 
executive control network regions.

Regarding lateral and medial visual networks, AIWS 
patients showed lower FC than MA patients in occipital 
regions almost exclusively located in the left hemisphere 
(i.e., superior division of the lateral occipital cortex, lin-
gual gyrus, intracalcarine cortex, and occipital pole). In our 
previous study, we found that brain lesions causing visual 
AIWS symptoms were mainly located in the right occipital 
hemisphere, though AIWS cases due to left-sided lesions 
were also found [61, 62], as well as cases due to bilateral 
lesions or posterior transcallosal fiber interruption [63–65].

AIWS patients also showed higher FC than MA patients 
in salience network regions such as the right insula, which 

Fig. 3   Voxel-wise positive 
correlation in AIWS patients 
between executive control 
network functional connectiv-
ity (z score at cluster local 
maxima x = 14 y = 60 z = 26) 
and migraine frequency (days 
of migraine/month) (p < 0.05, 
false discovery rate corrected). 
Results are overlaid onto the 
executive control network 
(green) in the MNI152 standard 
brain. The red-yellow color bar 
represents level of significance

Table 5   Significant positive correlation between executive control 
network functional connectivity and migraine frequency in Alice in 
Wonderland syndrome (AIWS) patients (days of migraine/month) 
(p < 0.05, false discovery rate corrected, minimum cluster extent set 
at 50 voxels). Refer to Table 2 for a detailed explanation of the table 
layout

MNI coor-
dinates

Cluster 
size (vox-
els)

p x y z Cluster location (local maxima)

FC—migraine frequency ↑
  65  < 0.001 14 60 26 Right Frontal Pole
  53 0.003 42 38 34 Right Frontal Pole/Middle Frontal 

Gyrus
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was previously related to the syndrome in two single-case 
AIWS studies showing extensive right insular damage [19]. 
The distortion of the body schema and space experienced by 
these patients may result from an interruption of the influ-
ence of the vestibular system on the spatial representation of 
the body and space mediated by this region [66].

AIWS patients were also characterized by higher FC in 
a core region of the default mode network, i.e., the poste-
rior cingulate cortex. FC abnormalities in posterior regions 
of the default mode network were previously reported in a 
single-case SPECT study performed in a migraine patient 
with aura during an AIWS episode caused by acute aripipra-
zole intake [23].

Lastly, AIWS patients showed higher FC in basal gan-
glia and executive control networks as compared to both 
MA patients and HCs. Regarding the basal ganglia network, 
AIWS patients showed higher FC in the thalamus bilaterally 
with respect to HCs. Despite the recent evidence of thalamic 
white matter microstructural alterations [67], no study has 
investigated intrinsic FC alterations of basal ganglia network 
(or thalamic FC) in migraineurs with aura in the interictal 
state. It has previously been reported that thalamic lesions 
can cause AIWS [20, 21]. In particular, FC alterations in 
this structure may explain the somesthetic distortions experi-
enced by AIWS patients due to its role in controlling sensory 
information flow to the cerebral cortices. AIWS patients also 
showed higher FC in the left putamen and caudate nucleus 
with respect to MA patients, possibly suggesting a role of 
these subcortical structures, along with the thalamus, in the 
pathophysiology of AIWS.

Regarding the executive control network, AIWS patients 
showed higher FC in several regions, including the bilateral 
frontal pole, anterior cingulate and paracingulate gyri, and 
right middle frontal gyrus, compared to both MA patients 
and HCs. Although the role of the frontal lobe is debated 
in AIWS, literature regarding this syndrome (case reports) 
provides some evidence of frontal region involvement in 
causing AIWS symptoms [14, 22, 68, 69]. It is possible that 
the intrinsic FC alterations in visual networks observed in 
both patient groups could predispose these patients to AIWS 
symptoms when altered FC coexists in basal ganglia and 
executive networks. A similar mechanism was recently pro-
posed by Silvestro and colleagues, who showed that patients 
with complex migraine aura were characterized by higher 
extrastriatal FC and concomitant higher right insular FC 
with respect to pure visual aura migraineurs [50].

Finally, we found that FC changes in the executive control 
network correlated with migraine frequency: the higher the 
FC in the right frontal pole and middle frontal gyrus, the 
higher the number of headache days per month. This finding 
is quite interesting since an AIWS-specific alteration was 
correlated with a marker of headache disability. However, 
since AIWS symptoms tend to occur close to migraine onset, 

it is possible that FC rearrangement in this network may be 
induced by repetitive AIWS episodes, thus representing a 
secondary effect of AIWS on brain FC related to episode 
frequency. Since frontal lobes likely play a role in the top-
down modulation of the visual pathway [70], we can alter-
natively speculate that impairment in the inferential process 
of visual information in the frontal lobe, which seems to be 
particularly affected by repeat migraine attacks over time 
[71], may contribute to visual AIWS symptoms [9].

Overall, since AIWS is a distressing condition that aggra-
vates the disability burden of migraine, these results could 
point towards the possible beneficial use of migraine inter-
ventions in controlling also AIWS symptoms.

Study limitations

The first limitation of the present study is the relatively small 
sample size of AIWS patients due to the rarity of this neu-
rological condition. However, our distribution of the dif-
ferent AIWS types is consistent with previous studies [7, 
12, 25], especially with respect to the most common type B 
form. Another limitation is that we used a group of migraine 
patients with pure visual and visual-somatosensory aura in 
order to improve the match with the group of migraineurs 
with AIWS, that included patients with pure visual symp-
toms (type B, the most common form) and patients with 
somesthetic and visual symptoms (type C). However, it has 
recently been demonstrated that migraine patients with vis-
ual-somatosensory aura showed FC differences in visual and 
somatosensory networks with respect to migraineurs with 
pure visual aura [50]. Despite this potential methodological 
limitation, the inclusion of a heterogeneous group of MA 
patients in the present study has been a trade-off in order 
to prevent unbalanced group comparison. Future studies 
with larger sample sizes should include homogenous AIWS 
and MA populations in order to provide definitive imaging 
biomarkers for AIWS. Lastly, since migraine attacks with 
aura are sometimes associated with underlying hereditary or 
acquired cerebrovascular disorders and might be triggered 
by hypoperfusion [72], a further limitation is the lack of 
more direct measures of perfusion (e.g., arterial spin labe-
ling), vascular reactivity (e.g., breath-holding task), and 
physiological data recording (e.g., pulse oximeter, respira-
tory bellows, expired gas analyzer).

Conclusion

AIWS and MA patients are characterized by similar intrinsic 
FC alterations with respect to HCs in visual, default mode, 
and salience networks, suggesting common pathophysi-
ological underpinnings. However, AIWS patients showed 
greater and more widespread FC alterations with respect to 
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MA patients, likely due to the complexity of AIWS symp-
toms involving high-order associative cortical areas. Finally, 
AIWS-specific FC alterations were found in the thalamus 
of the basal ganglia network and in several frontal cortical 
areas of the executive control network, suggesting a role of 
these regions in the pathophysiology of AIWS.
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