## **REVIEW ARTICLE**



# [18F]FDG brain PET and clinical symptoms in different autoantibodies of autoimmune encephalitis: a systematic review

Fardin Nabizadeh<sup>1,2,3</sup> · Elham Ramezannezhad<sup>4</sup> · Alireza Sardaripour<sup>5,3</sup> · Seyed Ali Seyedi<sup>6</sup> · Negin Salehi<sup>7</sup> · Nasim Rezaeimanesh<sup>3</sup> · Abdorreza Naser Moghadasi<sup>3</sup>

Received: 1 January 2022 / Accepted: 21 April 2022 / Published online: 29 April 2022 © Fondazione Società Italiana di Neurologia 2022

## Abstract

**Introduction** Autoimmune encephalitis (AE) is caused by the antibodies that target receptors and intracellular or surface proteins. To achieve the appropriate therapeutic results, early and proper diagnosis is still the most important issue. In this review, we provide an overview of FDG-PET imaging findings in AE patients and possible relation to different subtypes and clinical features.

Methods PubMed, Web of Science, and Scopus were searched in August 2021 using a predefined search strategy.

**Results** After two-step reviewing, 22 studies with a total of 332 participants were entered into our qualitative synthesis. In anti-NMDAR encephalitis, decreased activity in the occipital lobe was present, in addition, to an increase in frontal, parietal, and specifically medial temporal activity. Anti-VGKC patients showed altered metabolism in cortical and subcortical regions such as striata and cerebellum. Abnormal metabolism in patients with anti-LGI1 has been reported in diverse areas of the brain including medial temporal, hippocampus, cerebellum, and basal ganglia all of which had hypermetabolism. Hypometabolism in parietal, frontal, occipital lobes, temporal, frontal, and hippocampus was observed in AE patients with anti-GAD antibodies.

**Conclusion** Our results indicate huge diversity in metabolic patterns among different AE subtypes and it is hard to draw a firm conclusion. Moreover, the timing of imaging, seizures, and acute treatments can alter the PET patterns strongly. Further prospective investigations with specific inclusion and exclusion criteria should be carried out to identify the metabolic defect in different AE subtypes.

Keywords Autoimmune encephalitis · FDG-PET · Anti-NMDAR encephalitis · Anti-LGI1 · Anti-VGKC

Abdorreza Naser Moghadasi abdorrezamoghadasi@gmail.com

<sup>1</sup> Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran

- <sup>2</sup> School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- <sup>3</sup> Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- <sup>4</sup> School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- <sup>5</sup> Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
- <sup>6</sup> School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- <sup>7</sup> School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

## Introduction

Encephalitis is defined as inflammation of the brain and although there are many causes, the main etiologies can be categorized into two main categories: autoimmune and infectious [1]. Autoimmune encephalitis (AE) is caused by the antibodies that target receptors and intracellular or surface proteins [1]. AE commonly refers to a group of similarly related disease processes which share overlapping neuroimaging findings and clinical features but are differentiated by specific antibody subtypes that initiate the underlying immune attack on different structures of the central nervous system [2, 3].

AE associated antibodies can be subclassified into two groups: antibodies against synaptic proteins and neuronal cell-surface, like the leucine-rich, glioma-inactivated glycoprotein (LGI1), the gamma-aminobutyric acid (GABA) receptor, and the N-methyl-D-aspartate (NMDA) receptor and antibodies against intracellular antigens, like antiglutamic acid decarboxylase 65 (GAD65), CV2/collapsin response mediator protein 5 (CRMP5), Ma2/Ta, and Hu/ antineuronal nuclear antigen type 1 (ANNA-1) [4, 5].

Some clinical symptoms pointing to AE are sleep disturbance, psychiatric symptoms, and subacute memory loss [6]. AE is a challenging clinical diagnosis because of the similarities of the clinical, laboratory, and imaging findings with other types of central nervous system infections [7]. Neuroimaging findings play an important role in the evaluation of cases with suspected encephalitis [8]. It can confirm the diagnosis of encephalitis, indicate specific etiologies, or identify other conditions that mimic encephalitis [8]. Positron emission tomography (PET) is a noninvasive imaging technique that has a wide range of clinical and research applications in the pathophysiology of a variety of brain disorders, including brain tumors, psychiatric disorders, seizures, epilepsy, infection, and neurodegenerative disorders, as well as the study of the normal brain [9]. 18F-fluorodeoxyglucose [18F](FDG) was developed in 1976 to study the glucose metabolism of the brain [10]. Currently, FDG-PET is frequently utilized in nuclear medicine with the growing indication in neurology, cardiology, and oncology [9]. Based on the literature review, in all encephalitis cases, magnetic resonance imaging (MRI) is preferred over computed tomography (CT) because of more sensitiveness and specificity. Advanced brain imaging with SPECT or PET has shown promising results in detecting specific metabolism patterns in patients with Caspr2, LGI1, NMDAR, or other autoantibodies encephalitis [8, 11, 12].

To achieve the appropriate therapeutic results, early and proper diagnosis is still the most important issue [13]. In this review, we provide an overview of FDG-PET imaging findings in AE patients and possible relation to different types and clinical features. Furthermore, our results may help clinicians to better diagnose and also predict future clinical symptoms of subjects with AE.

## Methods and materials

The present systematic review study was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [14].

## Search strategy

The PubMed, Web of Science, and Scopus were searched in August 2021 using search strategy consisting of (autoimmune encephalitis OR Limbic encephalitis OR anti-NMDAR encephalitis OR anti-AMPAR encephalitis OR anti-GABA-AR encephalitis OR anti-GABA-BR encephalitis OR anti-LGI1 encephalitis OR anti-CASPR2 encephalitis OR anti-GAD encephalitis OR anti-GlyR encephalitis OR anti-DPPX encephalitis OR anti-mGluR encephalitis OR Hashimoto's encephalitis OR and steroid-responsive encephalopathy associated with autoimmune thyroiditis) AND (positron emission tomography OR PET scan).

## **Eligibility criteria**

We included publications that reported PET features and clinical status of AE patients. We excluded studies with other types of encephalitis, unconfirmed cases of AE, and case report studies.

## **Study selection**

Two reviewers (A.S and A.S) independently screened the title and abstracts according to our eligibility criteria. Next, the same reviewers retrieved and screened the full text of the remaining studies for final selection. Any disagreements were resolved by the third investigator (F.N) at the end of each step.

## **Data extraction**

The following data were extracted from entered studies by the two reviewers (A.S and A.S): author, year of publication, region, study design, sample size, mean age, number of males, type of AE, PET imaging findings, clinical symptoms, and treatments.

## **Quality assessments**

The quality of included studies was assessed using the Newcastle–Ottawa scale (NOS). Risk of bias of case–control studies assessed in the several domains such as selection, comparability, and exposure, while in cohort studies risk of bias in selection, comparability, and outcome which the highest possible score was 8.

## Data synthesis and analysis

The data of entered studies were qualitatively compared and summarized.

# Results

## Study screen

Our literature search and manual addition yielded 630 papers after duplicate removal. At the first step of screening, 489 studies were excluded and the remaining papers

were further reviewed accurately and finally, 22 studies with a total of 332 participants were entered into our qualitative synthesis (Fig. 1).

#### Study characteristics and a qualitative summary

Included studies were conducted in China (n=7), USA (n=4), Germany (n=4), South Korea (n=2), India (n=1), Spain (n=1), France (n=1), Mexico (n=1), and Denmark (n=1). Among included cases, there were anti-LGI1 (n=144), anti-NMDAR (n=103), anti-GAD (n=22), anti-GABA (n=14), anti-VKGC (n=23), anti-Hu (n=9), anti-CASPR2 (n=4), and anti-Ma2 (n=2) (Table 1). There was no study of acute disseminated encephalomyelitis (ADEM) which met our eligibility criteria. The included studies were published between 2005 and 2021.

Moreover, all included studies were identified as high quality with a mean score of 7.36 according to NOS criteria (Table 2).

#### PET findings in anti-LGI1 encephalitis

The four of 22 studies that examined PET imaging in anti-LGI1 encephalitis patients found hypermetabolism in the hippocampus which was along with memory deficits, pyramidal signs, mood disorders, and seizures [15–18]. Furthermore, six investigations reported hypermetabolism in basal ganglia in patients with psychiatric symptoms [15, 19], hyponatremia [15, 20], cognitive deficits [20, 21], and focal seizures [19, 22, 23]. The metabolic alteration was also observed in cortical regions such as the temporal lobe. In four studies, there was affected glucose uptake in the medial temporal lobe in AE patients with clinical symptoms including behavioral changes [24, 25], memory deficits [22], confusion [24, 25], sleep disorders [24], hyponatremia [20], psychiatric symptoms [19], and seizures [23, 26]. Also, other cortical regions such as frontal, parietal, occipital, cingulate gyrus, and paracentral lobule were described with abnormal metabolism [19–21, 23, 26]. These patients mainly displayed memory loss, cognitive impairment, seizure, and psychiatric symptoms. Moreover, two studies found hypermetabolism in the cerebellum in patients with loss of consciousness [19, 27]. Also, there were other reports of amygdala and



| Author                | Year | Region      | Study design              | Sample size | Mean age      | Males | AE subtype                                                 |
|-----------------------|------|-------------|---------------------------|-------------|---------------|-------|------------------------------------------------------------|
| Li et al              | 2021 | China       | Case-control              | 33          | 60.5 (median) | 22    | Anti-LGI1                                                  |
| Liu et al             | 2020 | China       | Case-control              | 34          | 61 (median)   | 24    | Anti-LGI1                                                  |
| Masangkay et al       | 2014 | USA         | Case-control              | 10          | 50.9          | 4     | Anti-Hu $(n=2)$<br>Anti-VGKC $(n=2)$<br>Anti-NMDAR $(n=1)$ |
| Moreno-Ajona et al    | 2020 | Spain       | Observational             | 6           | 63.5          | 3     | Anti-NMDAR<br>Anti-LGI1<br>Anti-CASPR2                     |
| Newey et al           | 2016 | USA         | Observational case series | 6           | 62.5          | 3     | Anti-VGKC (6/7)                                            |
| -                     |      |             |                           | 1           | 22            | 1     | Anti-NMDAR                                                 |
| Shin et al            | 2013 | South Korea | Observational case series | 14          | 58.85         | 8     | Anti-LGI1                                                  |
| Solnes et al          | 2018 | USA         |                           | 5           | 27.6          | 1     | Anti-NMDAR                                                 |
|                       |      |             |                           | 6           | 62.8          | 5     | Anti-VGKC                                                  |
|                       |      |             |                           | 2           | 41.5          | 1     | Anti-Ma2                                                   |
|                       |      |             |                           | 3           | 78            | 2     | Anti-Hu                                                    |
|                       |      |             |                           | 2           | 64            | 2     | Anti-LGI1                                                  |
|                       |      |             |                           | 3           | 67            | 1     | Anti-GAD65                                                 |
|                       |      |             |                           | 2           | 27.5          | 2     | Anti-alpha 3ACHR                                           |
| Tripathi et al        | 2017 | India       | Observational case series | 16          | 18.5          | 6     | Anti-NMDAR                                                 |
|                       |      |             |                           | 5           | 59            | 3     | Anti-LGI1                                                  |
|                       |      |             |                           | 3           | 53.3          | 1     | Anti-GAD65                                                 |
| Wegner et al          | 2014 | Germany     | Observational case series | 4           | 36.4 (median) | 4     | Anti-LGI1                                                  |
|                       |      |             |                           | 6           | 68 (median)   | 0     | Anti-NMDAR                                                 |
| Zhu el al             | 2019 | China       | Observational case series | 7           | 41            | 1     | Anti-GAD65                                                 |
| Zhu el al             | 2020 | China       | Observational case series | 14          | 52            | 9     | Anti-GABA-B                                                |
| Baumgartner et al     | 2013 | Germany     | Case series               | 18          | 47.5          | 8     | Anti-VGKC<br>Anti-NMDAR<br>Anti-Hu<br>Anti-GAD65           |
| Celicanin et al       | 2017 | Denmark     | Cohort study              | 16          | 62            | 9     | Anti-LGI1                                                  |
| Chen et al            | 2017 | China       | Case series               | 18          | 47            | 8     | Anti-LGI1                                                  |
| Chen et al            | 2016 | China       | Case-control              | 8           | 54.1          | 6     | Anti-LGI1 (6/8)<br>Anti-CASPR2 (2/8)                       |
| Deusch et al          | 2020 | Germany     | Case series               | 20          | 38            | 5     | Anti-GAD65 (8/20)<br>Anti-LGI1 (2/20)                      |
| Fisher et al          | 2012 | USA         | Case series               | 9           | 48.22         | 2     | Anti-NMDAR (2/9)                                           |
| Ge et al              | 2021 | China       | Observational             | 24          | 29            | 17    | Anti-NMDAR                                                 |
| Kerik-Rotenberg et al | 2019 | Mexico      | Case series               | 33          | 26.7          | 18    | Anti-NMDAR                                                 |
| Lagarde et al         | 2015 | France      | Case-control              | 6           | 10            | 2     | Anti-NMDAR                                                 |
| Leypoldt et al        | 2012 | Germany     | Case-control              | 6           | 21            | 2     | Anti-NMDAR                                                 |
| Jang et al            | 2018 | South Korea | Observational             | 13          | 60            | 10    | Anti-LGI1                                                  |

Table 1 Demographic and clinical characteristics of included studies

LGI1, anti-leucine-rich glioma-inactivated 1; GAD 65, glutamate decarboxylase 65; VKGC, voltage-gated potassium channel antibody; NR, not reported

thalamus which were observed in patients with memory deficits and cognitive decline [21, 24] (Tables 3 and 4).

## PET findings in anti-NMDAR encephalitis

All studies which described PET findings in anti-NMDAR encephalitis revealed identified metabolic alteration in the

temporal lobe. Other cortical regions were also detected with abnormal glucose uptake including such as frontal lobe in subjects with psychiatric symptoms, seizures, memory deficits, and behavioral disorders [19, 20, 25–30]. In addition, parietal, occipital, cingulate gyrus is altered to be altered in anti-NMDAR encephalitis patients [19–21, 26, 27, 29, 30]. A study by Tripathi et al. reported increased metabolism

 Table 2
 Results of quality assessments

| Author, year                 | Selection | Com-<br>para-<br>bility | Outcome<br>or expo-<br>sure | Total score |
|------------------------------|-----------|-------------------------|-----------------------------|-------------|
| Zhu et al., 2019             | 3         | 1                       | 3                           | 7           |
| Ge et al., 2011              | 4         | 1                       | 3                           | 8           |
| Deuschet al., 2020           | 4         | 1                       | 3                           | 8           |
| Zhu et al., 2020             | 4         | 1                       | 2                           | 7           |
| Liu et al., 1989             | 4         | 1                       | 2                           | 7           |
| Baumgartner et al., 2013     | 4         | 1                       | 3                           | 8           |
| Celicanin et al., 2017       | 4         | 1                       | 3                           | 8           |
| Chen et al., 2016            | 3         | 1                       | 3                           | 7           |
| Chen et al., 2017            | 4         | 1                       | 3                           | 8           |
| Fisher et al., 2012          | 3         | 1                       | 3                           | 7           |
| Kerik-Rotenberg et al., 2019 | 4         | 1                       | 3                           | 8           |
| Lagarde et al., 2015         | 3         | 1                       | 3                           | 7           |
| Leypoldt et al., 2012        | 3         | 1                       | 3                           | 7           |
| Masangkay et al., 2014       | 4         | 1                       | 3                           | 8           |
| Moreno-Ajona et al.,<br>2020 | 3         | 1                       | 3                           | 7           |
| Newey et al., 2016           | 3         | 1                       | 3                           | 7           |
| Shin et al., 2013            | 4         | 1                       | 2                           | 7           |
| Solnes et al., 2018          | 4         | 1                       | 2                           | 7           |
| Tripathi et al., 2017        | 4         | 1                       | 3                           | 8           |
| Wegner et al., 2014          | 4         | 1                       | 3                           | 8           |
| Li et al., 2021              | 4         | 1                       | 2                           | 7           |
| Jang et al., 2018            | 4         | 1                       | 3                           | 8           |

NOS, Newcastle–Ottawa scale

in basal ganglia, thalamus, caudate, and hippocampus, and hypometabolism in the cerebellum in patients with clinical symptoms consisting of seizures, behavioral changes, and cognitive decline [21]. On the other hand, another study found hypermetabolism in the cerebellum [19]. Baumgartner et al. reported AE patients with anti-NMDAR positive which had hypometabolism in temporal lobes, hemispheric cortex, thalamus, and crossed cerebellar diaschisis and hypermetabolism in striata which experienced brainstem syndrome and ataxia (Tables 3 and 4).

#### PET findings in anti-GAD encephalitis

A study that examined PET imaging as a diagnostic factor for AE found hypometabolism in parietal, frontal, and occipital lobes [26]. Another investigation found the same result in temporal, frontal, and left hippocampus in patients with epilepsy, stiff-person syndrome, cerebellar ataxia, and cognitive impairment [31]. Furthermore, increased activity in medial temporal and basal ganglia, and also decreased metabolism in the parietal lobe were reported in anti-GAD encephalitis patients suffering from behavioral disturbance, cognitive decline, and gait ataxia [21]. Another investigation reported medial temporal metabolic alterations along with nausea and hallucinations [32] (Tables 3 and 4).

#### PET findings in anti-VGKC encephalitis

Four studies reported PET findings in anti-VGKC encephalitis patients. Medial temporal lobe hypermetabolism and mild diffuse cortical dysfunction were observed in a study that enrolled patients with paraneoplastic anti-VGKC encephalitis who experienced a seizure, memory disturbances, and hypersomnia [33]. The anti-VGKC encephalitis patients in this study experienced memory disturbances, confusion, hyponatremia, and hypersomnia. Another study found bilateral temporal lobe hypermetabolism in these patients along with altered mental status, hyponatremia, and seizures [34]. Also, medial temporal metabolic alterations, hypometabolism in temporoparietooccipital, and hypermetabolism in striata and cerebellum were reported in anti-VGKC encephalitis patients who suffered from gait disturbance, hypomania, somnolence, hallucinations, cognitive deficits, disorientation, attention, and mania [32] (Tables 3 and 4).

#### Other types of AE

A study reported affected activity in temporal, frontal, occipital, and parietal lobes in patients with anti-CASPR2 encephalitis diagnosed with cognitive impairment and autonomic seizures [20]. Another PET study also described cases with hallucinations and hypometabolism in temporal and occipital cortices [17].

There were few cases of anti-Hu encephalitis. Based on included studies, patients with anti-Hu encephalitis had both hypo- and hypermetabolism in the medial temporal lobe and hypometabolism in cortical regions such as frontal, occipital, and parietal lobes while suffering from motor weakness, distal paresthesia, ataxia, cognitive deficits, memory deficits, altered mental status, seizure, and brainstem syndrome [26, 32, 33].

There were only two cases with anti-Ma2 encephalitis which had hypometabolism in temporal, frontal, occipital, and parietal lobes with cognitive impairment, seizure, and neurological deficits [26] (Tables 3 and 4).

## Discussion

This study systematically reviewed the literature on PET studies in patients with AE. We aimed to find possible associations between clinical symptoms and metabolic patterns presented in PET imaging of patients. Our results indicate that there is huge diversity in metabolic patterns among

| Author    | Year | AE subtype | PET imaging findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clinical symptoms                                                                                                                                                                                                                                                                                                                                                              | Treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Li et al  | 2021 | Anti-LGI1  | HAS group displayed extensive hyperme-<br>tabolism in the bilateral basal ganglia,<br>paracentral lobule, precentral gyrus<br>(frontal), postcentral gyrus (parietal),<br>MTL (medial temporal lobe), insula, right superior parietal lobule,<br>right cuneus (occipital), and left supe-<br>rior frontal gyrus<br>and precuneus (occipital), and left supe-<br>rior frontal gyrus,<br>and precuneus (parietal)<br>FBDS-only group, limited hypermetabo-<br>lism of the bilateral cortex, cingulate gyrus,<br>and precuneus (parietal)<br>FBDS-only group, limited hypermetabo-<br>lism of the bilateral cerebellum and left<br>medial globus pallidus<br>"fleft middle frontal gyrus, bilateral<br>inferior frontal gyrus, and precuneus<br>(parietal) showed hypometabolism<br>FBDS-plus group also presented a wide<br>the brain areas of bilateral basal ganglia,<br>MTL, precuneus and cerebellum, left<br>postcentral gyrus, insula and superior<br>parietal lobule, right substantia nigra,<br>middle occipital gyrus, and cuneus<br>shypometabolism regions mainly in the<br>bilateral precuneus and right frontal<br>cortex, small areas of the left middle<br>frontal gyrus and posterior cingulate,<br>right inferior parietal lobule and insula<br>were also affected | Cognitive impairment (27/33)<br>Focal impaired awareness seizures (FIAS)<br>(25/33)<br>Faciobrachial dystonic seizures (FBDS)-<br>only (14/33)<br>Focal aware motor seizures (FAMS)<br>(2/33)<br>Generalized tonic-clonic seizures (GTCS)<br>(6/33)<br>Generalized tonic-clonic seizures (GTCS)<br>(5/33)<br>Sleep disorders (19/33) = increased<br>(15/33) + decreased (3/33) | Immunotherapy (GC, IVIG, both) (33 (11,<br>7, 15))                                                                                                                                                                                                                                                                                                                                                                                                                |
| Liu et al | 2020 | Anti-LGI1  | Patients with faciobrachial dystonic sei-<br>zure (FBDS) ( $n = 17$ ), basal ganglia-only<br>hypermetabolism (7/17)<br>BG + medial temporal lobe (MTL) hyper-<br>metabolism ( $8/17$ )<br>MTL-only hypermetabolism ( $1/17$ )<br>Normal ( $1/17$ )<br>Patients with non-FBDS ( $n = 17$ ):<br>BG + MTL hypermetabolism ( $12/17$ )<br>MTL only ( $2/17$ )<br>BG only ( $1/17$ )<br>Normal ( $2/17$ )<br>Normal ( $2/17$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FBDS 17 (50)<br>Seizures (except FBDS) 33 (97)<br>Memory loss 30 (88)<br>Psychiatric symptoms 20 (59)<br>Depression 3 (9)<br>Hallucinations 9 (26)<br>Disorder of behavior 8 (24)<br>Disorder of behavior 8 (24)<br>Somnipathy 17 (50)<br>Hyponatremia, $n$ (%) a 22 (65)<br>Tumors, $n$ (%) 1 (3)                                                                             | All 34 patients (100%): first-line immuno-<br>therapy, including IV immunoglobulin<br>(IVIG), IV methylprednisolone (IVMP),<br>and oral steroids (for at least 6 months):<br>26 patients (76%) were administered IVIG<br>in combination with IVMP—3 patients<br>(9%) used isolated IVIG and 5 patients<br>(15%) received IVMP alone<br>Only 1 patient was administered azathio-<br>prine and mycophenolate mofetil (MMF)<br>due to the progression of the disease |

Table 3 Clinical characteristics and findings of included studies

| Table 3 (continued) |                 |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |
|---------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Author              | Year AE subtype | PET imaging findings                                                                                                                                 | Clinical symptoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Treatments |
| Masangkay et al     | 2014 Anti-Hu    | Mesial (medial) temporal lobe hyperme-<br>tabolism, L > R; generalized decreased<br>cortical uptake, preservation of primary<br>motor/sensory cortex | Memory and cognitive difficulties (con-<br>fabulation, confusion, disinhibition)<br>motor weakness, distal paresthesias,<br>weakness, ataxia                                                                                                                                                                                                                                                                                                                                                                             |            |
|                     | Anti-NMDAR      | Hyperintensity of b/l anterior temporal lobes                                                                                                        | Decreased appetite, anxiety and insom-<br>nia (3 weeks); progressive confusion,<br>altered cognition and inappropriate<br>laughing and crying<br>Baseline + 1 month (admitted to psychia-<br>try at outside hospital): agitated, labile,<br>anxious and depressed, illogical and<br>disorganized thought processes. During<br>admission, she had poor intake and rapid<br>decline of cognitive status and became<br>stuporous. Four days after admission,<br>generalized tonic-clonic seizures requir-<br>ing intubation |            |
|                     | Anti-VGKC       | b/l mesial temporal lobe hypermetabo-<br>lism; mild diffuse cortical dysfunction,<br>including visual cortex                                         | Four-week history of difficulty writing<br>checks, confusion, short-term memory<br>loss, but no delirium. Temporal lobe<br>seizures (odd smell, episodes of<br>diaphoresis, flushing, bending knees,<br>palinopsia). Five weeks between symp-<br>toms and diagnosis; hyperexcitability,<br>muscle twitching (fasciculations without<br>undulating myokymia or neuromyoto-<br>nia), myoclonus, memory disturbances,<br>hypersonnia                                                                                        |            |

 $\underline{\textcircled{O}} Springer$ 

| Table 3 (continued) |      |                                                             |                                                                                                                                                                          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |
|---------------------|------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author              | Year | AE subtype                                                  | PET imaging findings                                                                                                                                                     | Clinical symptoms                                                                                                                                                                                                                                       | Treatments                                                                                                                                                                                                                                                                                                               |
| Moreno-Ajona et al  | 2020 | Anti-NMDAR                                                  | Hypermetabolism of L temporal, medial<br>frontal, insula, PC, L&R parietal,<br>cerebellum<br>Hypometabolism of L&R frontal, R tem-<br>poral, occipital, L&R motor cortex | Cognitive impairment<br>Acute episodes of behavioral disorders<br>and hallucinations (behavioral disorder)<br>followed by status epilepticus (seizure)                                                                                                  | Immunoglobulins 0.4 g/kg/day and methyl-<br>prednisolone 1 g/day for 5 days                                                                                                                                                                                                                                              |
|                     |      | Anti-LGI1                                                   | Hyper: L&R basal ganglia, cerebellar<br>vermis, L&R MTL<br>Hypo: L&R lateral frontal, lateral tempo-<br>ral, parietal, posterior cingulate                               | Facio-brachial seizures—cognitive<br>impairment—hyponatremia                                                                                                                                                                                            | Immunoglobulins 0.4 g/kg/day and methyl-<br>prednisolone 1 g/day for 5 days + rituxi-<br>mab                                                                                                                                                                                                                             |
|                     |      |                                                             | Hyper: L&R MTL, cerebellar vermis,<br>motor cortex, L&R<br>Hypo: L&R frontal, R parietal, L&R<br>posterior cingulate                                                     | Facio-brachial seizures—COGNITIVE<br>impairment—hyponatremia                                                                                                                                                                                            | Immunoglobulins 0.4 g/kg/day and methyl-<br>prednisolone 1 g/day for 5 days                                                                                                                                                                                                                                              |
|                     |      | Anti-CASPR2                                                 | L&R medial temporal lobe<br>R frontal                                                                                                                                    | Cognitive impairment—autonomic seizures                                                                                                                                                                                                                 | Immunoglobulins 0.4 g/kg/day and methyl-<br>prednisolone 1 g/day for 5 days + rituxi-<br>mab                                                                                                                                                                                                                             |
|                     |      |                                                             | Hyper: L MTL, parieto-occipital<br>Hypo: L&R fronto-temporal                                                                                                             | Cognitive impairment—autonomic seizures                                                                                                                                                                                                                 | immunoglobulins 0.4 g/kg/day and methyl-<br>prednisolone 1 g/day for 5 days                                                                                                                                                                                                                                              |
| Newey et al         | 2016 | Anti-VGKC (voltage-<br>gated potassium channel<br>antibody) | Left or right or bilateral temporal lobe<br>hypermetabolism                                                                                                              | Altered mental status (4/6)<br>Hyponatremia (3/6)<br>Autonomic seizure (1/6)<br>Complex partial seizure (1/6)<br>Gelastic seizure (1/6)<br>Tonic seizure (1/6)<br>Elevated microsomal and thyroglobulin<br>antibodies (1/6)<br>Flu-like symptoms (1/6)  | IVMP, 1 g of intravenous methylpredniso-<br>lone<br>PLEX, plasma exchange<br>IVIG=0.4 g/kg/d of intravenous immuno-<br>globulin<br>IVIG                                                                                                                                                                                  |
|                     |      | Anti-NMDAR                                                  | Bilateral temporal lobe hypermetabolism                                                                                                                                  | Psychosis                                                                                                                                                                                                                                               | IVMP×5, PLEX×10 d, IVIG×5, cyclo-<br>phosphamide, prednisone 5 qd                                                                                                                                                                                                                                                        |
| Shin et al          | 2013 | Anti-LGI1                                                   | Hypermetabolism: bilateral mT (3/14),<br>left mT (4/14), bilateral BG (7/14)<br>mT = medial temporal lobe; BG = basal<br>ganglia<br>Diffuse hypometabolism (1/14)        | FBDS (faciobrachial dystonic seizure)<br>(10/14), seizure (10/14), memory<br>impairment (9/14), confusion (7/14),<br>abnormal behavior (4/14), decreased<br>mentality (2/14), insomnia (3/14), con-<br>stipation (2/14), urinary incontinence<br>(2/14) | MPd (11/14), IVIg (8/14), plasmapheresis<br>(1/14), rituximab (3/14), tacrolimus<br>(2/14), oral prednisolone (2/14), azathio-<br>prine (2/14), cyclophosphamide (1/14)<br>MPd = intravenous methylprednisolone<br>pulse therapy 500 mg or 1 g for 5 days;<br>IVIg = intravenous immunoglobulin,<br>400 mg/kg for 5 days |

| Table 3 (continued) |      |            |                                                                                                                                                                                                                                                                 |                                                                                                         |                                                                                                                                                                                                             |
|---------------------|------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author              | Year | AE subtype | PET imaging findings                                                                                                                                                                                                                                            | Clinical symptoms                                                                                       | Treatments                                                                                                                                                                                                  |
| Solnes et al        | 2018 | Anti-NMDAR | Hypometabolism in parietal, temporal,<br>frontal, occipital                                                                                                                                                                                                     | Altered mentation or impaired working<br>memory (23/23), focal neurologic defi-                         | Steroid therapy (8 patients), intravenous immunoglobulins, and steroid therapy (2                                                                                                                           |
|                     |      | Anti-VGKC  | Hypometabolism: parietal (5/6)—frontal<br>(4/6)—temporal (3)—occipital (3)<br>Hypermetabolism: temporal (R), frontal<br>(R), occipital (R)                                                                                                                      | cits (21), seizures (13)                                                                                | patients); antibiotic and steroid therapy<br>(1 patient); benzodiazepine therapy (3<br>patients); plasmapheresis (1 patient);<br>plasmapheresis and steroid therapy (1<br>patient); or cellcept (1 patient) |
|                     |      | Anti-Ma2   | Hypometabolism: parietal (2/2), temporal (2/2), frontal (R, L) (2/2), occipital (2/2)                                                                                                                                                                           |                                                                                                         | •                                                                                                                                                                                                           |
|                     |      | Anti-Hu    | Hypometabolism: parietal (1/3), frontal<br>(R, L) (2/3), occipital (2/3)<br>Hypermetabolic: PAR (R, L), TMP (R,<br>L), FRT (R, L), OCC (R, L)                                                                                                                   |                                                                                                         |                                                                                                                                                                                                             |
|                     |      | Anti-LGI1  | Hypometabolism in parietal, temporal,<br>frontal, occipital                                                                                                                                                                                                     |                                                                                                         |                                                                                                                                                                                                             |
|                     |      | Anti-GAD65 | Hypometabolism in parietal, frontal, and occipital                                                                                                                                                                                                              |                                                                                                         |                                                                                                                                                                                                             |
| Tripathi et al      | 2017 | Anti-NMDAR | Hypermetabolism: basal ganglia (6/16),<br>superior temporal gyrus (1), thalamus<br>(1), posterior cingulate cortex (1),<br>caudate (1), hippocampus (1), occipital<br>(1), Hypometabolism: parieto-occipital<br>(5/16), cerebellum (5/16), basal ganglia<br>(1) | Seizures (11/16), behavioral changes (4),<br>cognitive decline (1)                                      |                                                                                                                                                                                                             |
|                     |      | Anti-LGI1  | Hypermetabolism: basal ganglia (4),<br>medial temporal (3), thalamus, anterior<br>cingulate cortex<br>Hypo: parietal (1)+ frontal (1) + temporal<br>(1) + posterior cingulate cortex (1)                                                                        | Rapidly progressive dementia FBDS<br>seizure recent onset memory loss cogni-<br>tive decline            |                                                                                                                                                                                                             |
|                     |      | Anti-GAD65 | Hyper: MT + BG<br>Hypo: parietal, temporal                                                                                                                                                                                                                      | Acute onset behavioral disturbance,<br>cognitive complaints + gait ataxia, sym-<br>metrical gait ataxia |                                                                                                                                                                                                             |

| Table 3 (continued | 1)   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------|------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author             | Year | AE subtype | PET imaging findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clinical symptoms                                                                                                                                                                                                                                                                                                                                              | Treatments                                                                                                                                                                                                                                                                                                                                                                                               |
| Wegner et al       | 2014 | Anti-LGI1  | Hypermetabolism: cerebellum, bilat. puta-<br>men, pallidum right, precentral, frontal<br>mid., sup. right, putamen, pallidum left,<br>occipital inf., mid., calcarine right, pari-<br>etal supramarginal, angular, temporal<br>sup. right, calcarine, occipital mid., sup.<br>left, paracentral lobule, precuneus left,<br>temporal inf. left<br>Hypometabolism: cingulum ant. bilat.,<br>mid. frontal sup. med., med. orbital right                                                                                                                                                                                                                                                                                                                                                                                    | Psychiatric symptoms (1), cognitive deficits (6), focal seizures (4)                                                                                                                                                                                                                                                                                           | Methylprednisolone (4), plasmapheresis<br>(3), immunoglobulins (2), cyclophospha-<br>mide (1)                                                                                                                                                                                                                                                                                                            |
|                    |      | Anti-NMDAR | Hypermetabolism: hippocampus, parahip-<br>pocampal, temporal sup., fusiform gyrus<br>left, frontal inf., operculum, insula right,<br>gyrus rectus, frontal supra-orbital, left,<br>cerebellum left<br>Hypometabolism: precuneus bilat.,<br>post. + mid. cingulum bilat., cuneus,<br>calcarine left, parietal superiot,<br>precuneus bilat, parietal superiot,<br>precuneus bilat, parietal superiot,<br>irght, pre-, postcentral, frontal mid.,<br>inf. lingual, left parietal supramarginal,<br>inf. lingual, left parietal supramarginal,<br>inf. lingual, left parietal supramarginal,<br>inf. lingual, left parietal supramarginal,<br>inf. lingual, left vocels in BA 1, 2, 3,<br>4)<br>Frontal sup. left, suppl. mot. area bilat.<br>(60 voxels in BA 6)<br>Temporal inf., mid. right (48 voxels in BA<br>20, 37) | Psychiatric symptoms (6), generalized seizures (6)                                                                                                                                                                                                                                                                                                             | Methylprednisolone (6), plasmapheresis<br>(4), immunoglobulins (3), azathioprine<br>(1), cyclophosphamide (4), rituximab (3)                                                                                                                                                                                                                                                                             |
| Zhu el al          | 2019 | Anti-GAD65 | Hypometabolism: bilateral temporal lobe<br>(4/7)<br>R temporal lobe (1/7)<br>Frontal lobe (3/7)<br>Left hippocampus (1/7)<br>L temporal lobe (1/7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chronic epilepsy (5/7)<br>Limbic encephalitis (cognitive impair-<br>ment, especially impaired memory)<br>(3/7)<br>Stiff person syndrome (waist stiffness,<br>difficulty walking, difficulty lifting the<br>lower limbs, unstable walking, paroxys-<br>mal falls) (3/7)<br>cerebellar ataxia (speech disorders, dysar-<br>thria, and walking instability) (2/7) | 0.4 g/kg/day of gamma globulin for 5 days (5/7)<br>(5/7)<br>Methylprednisolone sodium succinate<br>(1000 mg 3 d, 500 mg 3 d, 250 mg 3<br>d, 120 mg 3 d), then changed to oral<br>prednisone acetate 48 mg, 1 tablet every<br>2 weeks decreased in the first month, and<br>1 tablet every week decreased thereafter.<br>2 rounds (6/7)<br>Levetiracetam: 250 mg bid. (3/7)<br>Mycophenolate mofetil (2/7) |

| Table 3 (continued) |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |            |
|---------------------|------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Author              | Year | AE subtype        | PET imaging findings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Clinical symptoms                                                                                                                                                                                                                                                                                                                                                    | Treatments |
| Zhu el al           | 2020 | Anti-GABA-B       | Metabolism of cerebral cortex (except<br>deep occipital cortex) was decreased<br>(1/14)<br>The metabolism of left hippocampus, left<br>temporal lobe, bilateral basal ganglia<br>were increased (1/14)<br>Bilateral lenticular nucleus and bilateral<br>hippocampal metabolism increased<br>(1/14)<br>The metabolism of the left posterior cen-<br>tral gyrus was decreased (1/14)<br>The metabolism of the left angular gyrus,<br>the left temporal lobe was decreased, the<br>metabolism of the left hippocampus was<br>increased (1/14)<br>Metabolism of the medial and basal<br>ganglia of both temporal lobes was<br>increased (1/14)<br>The metabolism of the medial tempo-<br>ral lobe, amygdala and hippocampus<br>increased (1/14)<br>The metabolism of the medial tempo-<br>ral lobe, amygdala and hippocampus<br>increased (1/14)<br>The metabolism of the medial tempo-<br>ral lobe, amygdala and hippocampus<br>increased (1/14) | Epilepsy (grcs (12/14), cps (7/14)) (14/14)<br>Cognitive function impairments (poor<br>memory, especially related to decreased<br>recent memory abilities and slow<br>responses) (11/14)<br>Mental behavioral abnormalities (nonsen-<br>sical and forced behaviors. Four patients<br>sical and forced behaviors. Four patients<br>and did not sleep at night) (9/14) |            |
| Baumgartner et al   | 2013 | Anti-VGKC (7/18)  | Mesial temporal metabolic alterations,<br>hypometabolism temporoparietooc-<br>cipital, hypermetabolism in striata and<br>cerebellum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Gait disturbance, hypomania, somnolence,<br>hallucinations, cognitive deficits, disori-<br>entation, attention, mania                                                                                                                                                                                                                                                | NR         |
|                     |      | Anti-NMDAR (3/18) | Hypometabolism: temporal lobes<br>Hypometabolism left hemispheric cortex<br>and thalamus and (less pronounced)<br>right temporal lobe; crossed cerebellar<br>diaschisis (right); hypermetabolism in<br>striata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Brainstem syndrome, ataxia                                                                                                                                                                                                                                                                                                                                           |            |
|                     |      | Anti-Hu (2/18)    | Mesial temporal metabolic alterations<br>Hypometabolism: association cortices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Brainstem syndrome                                                                                                                                                                                                                                                                                                                                                   |            |
|                     |      | Anti-GAD65 (1/18) | Mesial temporal metabolic alterations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Nausea, hallucinations                                                                                                                                                                                                                                                                                                                                               |            |
|                     |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |            |

4711

| Table 3 (continued) |                        |                                                                                                                      |                                                                                                                    |                             |
|---------------------|------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Author              | Year AE subtype        | PET imaging findings                                                                                                 | Clinical symptoms                                                                                                  | Treatments                  |
| Celicanin et al     | 2017 Anti-LGI1         | Hypermetabolism: bilateral hippocampal (4/9)                                                                         | Memory deficits (7/16)                                                                                             | Corticosteroids             |
|                     |                        | Hypermetabolism: unilateral hippocampal (3/9)                                                                        | Seizure (6/16)                                                                                                     | IVIg                        |
|                     |                        | Hypometabolism: focal                                                                                                | Hyponatremia (9/16)                                                                                                | Plasma exchange             |
|                     |                        | Hypometabolism: unilateral hippocampal                                                                               | FBDS (4/16)                                                                                                        | Azathioprine                |
|                     |                        | (6/1)                                                                                                                | Personality changes (4/16)                                                                                         |                             |
|                     |                        |                                                                                                                      | Mood disorder (4/16)                                                                                               |                             |
|                     |                        |                                                                                                                      | Hallucinations (4/16)                                                                                              |                             |
|                     |                        |                                                                                                                      | Autonomic dysfunction (4/16)                                                                                       |                             |
| Chen et al          | 2017 Anti-LGI1         | Hypermetabolism: left amygdala                                                                                       | Memory deficits (18/18)                                                                                            | Corticosteroids             |
|                     |                        | Mesial temporal metabolic alterations                                                                                | Confusion (17/18)                                                                                                  | IVIG                        |
|                     |                        |                                                                                                                      | Hyponatremia (8/18)                                                                                                |                             |
| Chen et al          | 2016 Anti-LGI1 (6/8)   | Hypermetabolism: hippocampus                                                                                         | Memory deficits (4/8)                                                                                              | Corticosteroids             |
|                     |                        |                                                                                                                      | Pyramidal signs (6/8)<br>Seizures (6/8)                                                                            | Antiepileptic drugs<br>IVIº |
|                     | Anti-CASPR2 (2/8)      | Hypometabolism: left temporal and                                                                                    | Hallucination (4/8)                                                                                                | ٩                           |
|                     |                        |                                                                                                                      | -                                                                                                                  |                             |
| Deusch et al        | 2020 Anti-GAD65 (8/20) | Hypometabolism: right amygdala (1/20)<br>GAD                                                                         | seizures                                                                                                           |                             |
|                     | Anti-LGI1 (2/20)       | Hypermetabolism: right amygdala (3/20)<br>2GAD + 1LGII                                                               | Memory deficits                                                                                                    |                             |
|                     |                        | Hypermetabolism: hippocampus (2/20)<br>IGAD +(1) LGI1                                                                | Behavioral changes                                                                                                 |                             |
|                     |                        | Hypermetabolism: bitemporal (3/20<br>2GAD) + (1)LGI                                                                  |                                                                                                                    |                             |
|                     |                        | Hypermetabolism: biparietal (3/20)<br>2GAD + (1)LGII                                                                 |                                                                                                                    |                             |
|                     |                        | Mesial temporal metabolic alterations (2/20)                                                                         |                                                                                                                    |                             |
| Fisher et al        | 2012 Anti-NMDAR (2/9)  | Temporal hypermetabolism, s hypotha-<br>lamic hypermetabolism, hypometabo-<br>lism in occipital cortex, hypermetabo- | Several days memory loss, probable<br>seizures, progression to nearly unre-<br>sponsive state; dysautonomia, acute | Corticosteroids             |
|                     |                        | lism in orbitofrontal cortex                                                                                         | psychosis (paranoia, delusion, hyper<br>religiosity), agitation, then reduced<br>responsiveness                    |                             |

| Table 3 (continued)     |          |                               |                                                                           |                                                    |                                      |
|-------------------------|----------|-------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------|
| Author                  | Year     | AE subtype                    | PET imaging findings                                                      | Clinical symptoms                                  | Treatments                           |
| Ge et al                | 2021     | Anti-NMDAR                    | Hypometabolism: occipital lobes (17/24)                                   | Psychiatric symptoms                               | Antiepileptic drug                   |
|                         |          |                               | Hypermetabolism: basal ganglia (16/24)                                    | Seizures                                           | Anti-viral drugs                     |
|                         |          |                               | Hypermetabolism: frontal lobe (9/24)                                      | Cognitive impairment                               |                                      |
|                         |          |                               | Alternation metabolism in temporal lobe (21/24)                           | Confusion                                          |                                      |
| Kerik-Rotenberg et al   | 2019     | Anti-NMDAR                    | Hypermetabolism: frontal lobe                                             | Seizures                                           | Corticosteroids                      |
|                         |          |                               | Hypermetabolism: temporal lobe                                            | Mutism                                             | IVIG                                 |
|                         |          |                               | Hypermetabolism: striatum                                                 | Athetosis                                          | Rituximab                            |
|                         |          |                               | Hypometabolism: occipital (33/33)                                         | Unconsciousness                                    |                                      |
|                         |          |                               | Hypometabolism: parietal lobes (29/33)                                    | Catatonia (23/33)                                  |                                      |
| Lagarde et al           | 2015     | Anti-NMDAR                    | Hypometabolism: temporal lobes (5/6)                                      | Seizures (6/6)                                     | Corticosteroids                      |
|                         |          |                               | Hypometabolism: occipital lobes (6/6)                                     | Loss of Consciousness (5/6)                        | IVIG                                 |
|                         |          |                               | Hypometabolism: frontal lobes (5/6)                                       | Behavioral changes (6/6)                           | Intra-thecal methotrexate injections |
|                         |          |                               | Hypermetabolism: basal ganglia (3/6)                                      | Movement disorder (6/6)                            | Plasma exchange                      |
|                         |          |                               | Normal metabolism in parietal lobes (5/6)                                 | Speech disorder (6/6)                              | Rituximab                            |
|                         |          |                               |                                                                           | Loss of consciousness                              |                                      |
| Leypoldt et al          | 2012     | Anti-NMDAR                    | Hypermetabolism: temporal lobes (6/6), (4/6) unilateral + (2/6) bilateral | Memory deficits                                    | IVIG                                 |
|                         |          |                               | Hypermetabolism: frontal lobes (6/6), (3/6) basal + (3/6) lateral         | Psychiatric symptoms                               | Plasma exchange                      |
|                         |          |                               | Hypometabolism: bioccipital lobes (3/6)                                   | Seizures                                           | Rituximab                            |
|                         |          |                               |                                                                           | Loss of consciousness                              | Cyclophosphamide                     |
|                         |          |                               | Hypermetabolism: cerebellum (3/6)                                         | Movement disorder                                  |                                      |
| Jang et al              | 2018     | Anti-LG11                     | Hypermetabolism: hippocampus (13/13), (2) bilateral + (11) unilateral     | Memory deficits (13/13)                            |                                      |
|                         |          |                               | hypermetabolism: basal ganglia (13/13),<br>(6) bilateral+(7) unilateral   | Psychiatric symptoms (9/13)<br>Hyponatremia (5/13) |                                      |
| LGII, anti-leucine-ricl | h gliom: | a-inactivated 1; GAD 65, glut | tamate decarboxylase 65; NR, not reported                                 |                                                    |                                      |

 $\underline{\textcircled{O}}$  Springer

| Table 4 Main I        | <sup>3</sup> DG-PET findings in AE subtypes                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AE subtype            | Main PET findings                                                                                                                                                                                                                                                                             | Clinical symptoms                                                                                                                                                                                                                   |
| Anti-NMDAR            | Metabolic alteration (both hypo- and hypermetabolism) in the temporal lobe, frontal<br>lobe, parietal, occipital, thalamus, and cingulate gyrus. Hypermetabolism in basal<br>ganglia, caudate, and hippocampus, and striata hypometabolism in the cerebellum                                  | Anxiety, insomnia, cognitive deficits, seizure, behavioral disorders, hallucinations, psychosis, neurologic deficits, brainstem syndrome, ataxia, loss of consciousness, movement disorder, speech disorders, and memory deficits   |
| Anti-LGI1             | Hypermetabolism in the hippocampus and basal ganglia. Affected glucose uptake<br>in cortical regions such as the temporal lobe, frontal, parietal, occipital, cingulate<br>gyrus, and paracentral lobule. Metabolic alteration (both hypo- and hypermetabo-<br>lism) in amygdala and thalamus | Cognitive deficits, seizure, behavioral disorders, sleep disorders, hallucinations, depres-<br>sion, memory deficits, psychiatric symptoms, hyponatremia, confusion, and auto-<br>nomic dysfunction                                 |
| Anti-GAD              | Hypometabolism in parietal, frontal, occipital lobes, temporal, frontal, and left<br>hippocampus. Metabolic alteration (both hypo- and hypermetabolism) in medial<br>temporal and basal ganglia                                                                                               | Altered mental status, seizure, neurologic deficits, memory deficits, cognitive deficits, behavioral disorders, ataxia, gait impairment, nausea, and hallucinations                                                                 |
| Anti-VGKC             | Hypermetabolism in striata and cerebellum, mild diffuse cortical dysfunction, hypo-<br>metabolism in frontal, parietal, occipital, and metabolic alteration (both hypo- and<br>hypermetabolism) in temporal                                                                                   | Memory deficits, confusion, seizure, hypersonnia, muscle twitching, hyponatremia, altered mental status, gait disturbance, hypomania, sonnolence, hallucinations, cognitive deficits, disorientation, attention deficits, and mania |
| Anti-CASPR2           | Metabolic alteration (both hypo- and hypermetabolism) in temporal, frontal, occipital, and parietal lobes                                                                                                                                                                                     | Cognitive deficits, seizure, and hallucination                                                                                                                                                                                      |
| Anti-Hu               | Hypermetabolism in temporal, frontal, occipital, and parietal lobes, and metabolic alteration (both hypo- and hypermetabolism) in mesial temporal                                                                                                                                             | Motor weakness, distal paresthesia, ataxia, cognitive deficits, memory deficits, altered mental status, seizure, and brainstem syndrome                                                                                             |
| Anti-Ma2<br>Anti-GABA | Hypermetabolism in temporal, frontal, occipital, and parietal lobes<br>Hypermetabolism in temporal lobes                                                                                                                                                                                      | Altered mental status and seizure<br>Cognitive deficits, memory deficits, altered mental status, behavioral disorders, and<br>sleep disorders                                                                                       |
| LGI1, anti-leuc       | ine-rich glioma-inactivated 1; GAD, glutamate decarboxylase; VKGC, voltage-gated pota                                                                                                                                                                                                         | ssium channel antibody                                                                                                                                                                                                              |

🖄 Springer

different AE subtypes. Altered glucose uptake in cortical regions was observed in all most subtypes. However, there were some unspecific metabolic changes such as hypometabolism in the cerebellum in anti-NMDAR and metabolic alteration of the amygdala and thalamus in anti-LGI1. A reason for these findings may be the larger sample size and higher number of studies that investigated the FDG-PET in anti-NMDAR and anti-LGI1. Our findings also showed a similar metabolic pattern for anti-CASPR2, anti-Hu, anti-Ma2, and anti-alpha 3ACHR. These results should be interpreted carefully due to the small sample size and the low number of studies.

## Anti-NMDAR

In almost all of the studies on anti-NMDAR encephalitis, decreased activity in the occipital lobe was present, in addition, to an increase in frontal and temporal (specifically medial temporal) activity. Some studies reported this pattern as an increased frontal to the occipital gradient in glucose metabolism [29]. Decreased occipital metabolism seems like a reliable result being reported recurrently and its correlation with patients' visual acuity has been proved [35]. Ge et al. found that this pattern could differ in patients with distant triggers; in anti-NMDAR encephalitis patients with cryptogenic etiology, an asymmetric increase in frontotemporal metabolism was found [28]. It contrasts the paraneoplastic encephalitis with symmetric increased metabolism in these regions. In patients whose viral infection triggered their encephalitis, hypermetabolism in temporal areas correlated with abnormalities in MRI while no specific MRI pattern has been found in anti-NMDAR encephalitis patients and 70% of patients come up with normal MRI results [28]. The reported correlation can be explained by inflammatory reactions and T-cell mediated necrosis in these areas following the viral infection.

In children with anti-NMDAR encephalitis, the same pattern was observed besides that increased activity in basal ganglia was also reported which was correlated with movement disorders in this group [30]. On the other hand, in older patients in this AE subgroup, diffuse cortical hypometabolism was observed, a pattern that resembles what is seen in neurodegenerative diseases. These patients had cognitive problems that cannot be only due to encephalitis [21].

Patients usually suffered from cognitive disorders such as memory dysfunction, psychiatric symptoms, behavioral disorders, and seizure. Given the important role of frontal and temporal lobe networks in cognitive processes and regulation of behavior, these symptoms can be partially explained [36]. Studies have reported reduced functional connectivity between medial frontal and hippocampus and within medial temporal lobe networks. In addition, NMDAR has its highest expression in the frontal lobe and hippocampus and its specific role in learning has been fully investigated [37, 38]. Internalization of NMDAR followed by the increased amount of extra-cellular antibodies and T-cell mediated responses against intra-cellular antibodies were proposed as pathophysiologic reasons of dysfunctions in these regions [37]. Regarding epilepsy, the temporal lobe is the most common origin of epilepsy and the epileptogenic characteristics of patients can be justified by temporal lobe dysfunctions.

#### Anti-LGI1

LGI1 is a glycoprotein secreted from presynaptic neurons and is related to VGKCs. One in seven patients with anti-VGKC encephalitis has LGI1 antibodies [19]. Abnormal metabolism in patients with LGI1 has been reported in diverse regions of the brain including medial temporal, hippocampus, cerebellum, and basal ganglia all of which had hypermetabolism. However, hypermetabolism in the basal ganglia was the most prominent in patients with faciobrachial dystonic seizures (FBDS). As FBDS is characteristic of encephalitis with VGKC/LGI antibodies [39], movement features of FBDS may be attributed to basal ganglia dysfunction. However, this claim needs robust investigations [40]. Overall, anti-LGI1 induced metabolic changes depend on disease course, diagnosis time point, treatment regimen, and initiation time [19]. The diverse results may be due to a higher number of investigations with different methodologies and heterogenous participants which make it hard to find an association between clinical symptoms and patterns of metabolism changes. Previous studies demonstrated that anti-LGI1 patients commonly have FBDS, hyponatremia, and epileptic seizures [41, 42].

## Anti-GAD

Glutamic acid decarboxylase (GAD) is an intracellular synaptic antigen that is exposed to antibodies during vesicle fusion and reuptake [43]. A high level of anti-GAD antibodies is associated with limbic encephalitis and cerebellar ataxia [44]. Based on our review, these patients generally had hypometabolism in cortical regions including parietal, frontal, occipital lobes, temporal, frontal, and hippocampus [16, 21, 32]. Also, they experienced cognitive impairment and behavioral disorders which is logical due to widespread cortical hypometabolism. Furthermore, the metabolic alteration existed in several patients at basal ganglia and cerebellum which resulted in gait impairment and ataxia [21].

Nowadays, PET scans are considered more than before due to several advantages. First, PET scan metabolic patterns are more correlated with clinical symptoms of patients rather than MRI abnormalities [45]. Second, there is an association between the place of the antigens and PET findings, intracellular antigens are more frequent in mesiotemporal regions and show hypermetabolic patterns while surface antigens are found outside of the limbic lobe and cause diminished activity in those regions [20]. Third, although the volume of literature on the diagnostic accuracy of PET in AE is limited, PET can increase the sensitivity of MRI for the diagnosis of AE. As some subgroups such as anti-NMDAR encephalitis appear normal in MRI or do not present with exclusive findings. Fourth, the activity of NMDAR can be measured and quantified with PET studies, which may give rise to a better understanding of the pathophysiology of this disease and serve as a diagnostic marker [46].

PET is a relatively new imaging technology; therefore, it is not promptly available in clinical practice for all patients. Along with multiple advantages, we have to consider the cost-effectiveness of PET scans which are expensive [47]. Arterial spin labeling (ASL) MR perfusion recently attracted attention as a non-invasive technique that does not require intravenous contrasts. ASL-MRI given results consistent with FDG-PET and it is easily available in clinical practice to early detection of AE [3].

However, there are some challenges in using PET scan in AE. PET results do not have good specificity and altered metabolism can be related to any other condition [46]. More expertise and quantitative measures need to be considered in the analysis of PET results. Using automatic approaches for analysis may be biased based on the normalization site of the brain. In addition, all the results of PET studies should be used with caution, as most of the patients with AE were under treatment and some of these medications such as those used to induce narcosis before PET can decrease the brain metabolism. This effect is based on how long before PET scan the medications have been administered and their pharmacokinetics in the body [19]. Some of the studies had a retrospective design and the delay between symptoms onset and PET scan results differed between patients. A consensus was not reached on the diagnosis of all patients [45]. Small sample size was a drawback of all the studies and given diversity in encephalitis subgroups, conducting larger studies is advisable to substantiate present findings. Moreover, measuring the association of PET findings and clinical symptoms and also the type of AE was not the aim of the included studies.

The use of a wide range of imaging protocols with different resolutions may be one of the reasons for the diverse results of MRI and PET imaging of AE patients [12]. Also, the use of advanced imaging methods is currently limited only to common subtypes of AE which makes it difficult to reach an exact conclusion. Future extension of the imaging methods to all AE variants will pave the way for finding discriminative patterns of different AE subtypes.

#### Conclusion

In general, as clinical diagnosis of patients with AE may be challenging in some cases, rapid diagnosis and treatment initiation can significantly improve patients' prognoses. Our results indicate huge diversity in metabolic patterns among different AE subtypes and it is hard to draw a firm conclusion. However, the limited use of such imaging techniques in all AE variants and different settings makes it difficult to find discriminative patterns. Moreover, the timing of imaging, epileptic seizures, and acute treatments can alter the PET patterns strongly which were not addressed in our study due to the lack of sufficient demographical information of included studies. Also, neuroimaging features of each AE subtype can lead to more pathophysiological understanding. Further prospective investigations with specific inclusion and exclusion criteria should be carried out to identify the metabolic defect in different AE subtypes.

#### Declarations

**Ethical approval** This systematic review has been done in accordance with the rules of the ethical committee of Tehran University of medical sciences.

Conflict of interest The authors declare no competing interests.

## References

- Armangue T, Petit-Pedrol M, Dalmau J (2012) Autoimmune encephalitis in children. J Child Neurol 27(11):1460–1469. https://doi.org/10.1177/0883073812448838
- Kelley BP, Patel SC, Marin HL, Corrigan JJ, Mitsias PD, Griffith B (2017) Autoimmune encephalitis: pathophysiology and imaging review of an overlooked diagnosis. AJNR Am J Neuroradiol 38(6):1070–1078. https://doi.org/10.3174/ajnr.A5086
- Dinoto A, Cheli M, Ajčević M, Dore F, Crisafulli C, Ukmar M, Sartori A, Manganotti P (2021) ASL MRI and 18F-FDG-PET in autoimmune limbic encephalitis: clues from two paradigmatic cases. Neurol Sci 42(8):3423–3425. https://doi.org/10.1007/ s10072-021-05207-0
- Dalmau J (2016) NMDA receptor encephalitis and other antibody-mediated disorders of the synapse: the 2016 Cotzias lecture. Neurology 87(23):2471–2482. https://doi.org/10.1212/wnl. 000000000003414
- Daif A, Lukas RV, Issa NP, Javed A, VanHaerents S, Reder AT, Tao JX, Warnke P, Rose S, Towle VL, Wu S (2018) Antiglutamic acid decarboxylase 65 (GAD65) antibody-associated epilepsy. Epilepsy & behavior : E&B 80:331–336. https://doi. org/10.1016/j.yebeh.2018.01.021
- Vallabhaneni D, Naveed MA, Mangla R, Zidan A, Mehta RI (2018) Perfusion imaging in autoimmune encephalitis. Case reports in radiology 2018:3538645. https://doi.org/10.1155/ 2018/3538645

- Lancaster E (2016) The diagnosis and treatment of autoimmune encephalitis. J Clin Neurol 12(1):1–13. https://doi.org/10.3988/ jcn.2016.12.1.1
- Venkatesan A, Jagdish B (2019) Imaging in encephalitis. Semin neurol 39(3):312–321. https://doi.org/10.1055/s-0039-1687838
- Lameka K, Farwell MD, Ichise M (2016) Positron emission tomography. Handb Clin Neurol 135:209–227. https://doi.org/ 10.1016/b978-0-444-53485-9.00011-8
- Wei YC, Tseng JR, Wu CL, Su FC, Weng WC, Hsu CC, Chang KH, Wu CF, Hsiao IT, Lin CP (2020) Different FDG-PET metabolic patterns of anti-AMPAR and anti-NMDAR encephalitis: case report and literature review. Brain and behavior 10(3):e01540. https://doi.org/10.1002/brb3.1540
- Steiner I, Budka H, Chaudhuri A, Koskiniemi M, Sainio K, Salonen O, Kennedy PG (2005) Viral encephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol 12(5):331–343. https://doi.org/10.1111/j.1468-1331. 2005.01126.x
- Heine J, Prüss H, Bartsch T, Ploner CJ, Paul F, Finke C (2015) Imaging of autoimmune encephalitis—relevance for clinical practice and hippocampal function. Neuroscience 309:68–83. https:// doi.org/10.1016/j.neuroscience.2015.05.037
- Tobin WO, Pittock SJ (2017) Autoimmune neurology of the central nervous system. Continuum (Minneapolis, Minn) 23 (3, Neurology of Systemic Disease):627–653. https://doi.org/10.1212/ con.00000000000487
- Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10. 1136/bmj.b2700
- Jang Y, Lee S-T, Bae J-Y, Kim T-J, Jun J-S, Moon J, Jung K-H, Park K-I, Irani SR, Chu K, Lee SK (2018) LGI1 expression and human brain asymmetry: insights from patients with LGI1-antibody encephalitis. J Neuroinflammation 15(1):279. https://doi.org/ 10.1186/s12974-018-1314-2
- Deuschl C, Rüber T, Ernst L, Fendler WP, Kirchner J, Mönninghoff C, Herrmann K, Quesada CM, Forsting M, Elger CE, Umutlu L (2020) 18F-FDG-PET/MRI in the diagnostic work-up of limbic encephalitis. PLoS ONE 15(1):e0227906–e0227906. https://doi. org/10.1371/journal.pone.0227906
- Chen Y, Xing XW, Zhang JT, Wang RX, Zhao W, Tan QC, Liu RZ, Wang XQ, Huang XS, Yu SY (2016) Autoimmune encephalitis mimicking sporadic Creutzfeldt-Jakob disease: a retrospective study. J Neuroimmunol 295–296:1–8. https://doi.org/10.1016/j. jneuroim.2016.03.012
- Celicanin M, Blaabjerg M, Maersk-Moller C, Beniczky S, Marner L, Thomsen C, Bach FW, Kondziella D, Andersen H, Somnier F, Illes Z, Pinborg LH (2017) Autoimmune encephalitis associated with voltage-gated potassium channels-complex and leucine-rich glioma-inactivated 1 antibodies - a national cohort study. Eur J Neurol 24(8):999–1005. https://doi.org/10.1111/ene.13324
- Wegner F, Wilke F, Raab P, Tayeb SB, Boeck AL, Haense C, Trebst C, Voss E, Schrader C, Logemann F, Ahrens J, Leffler A, Rodriguez-Raecke R, Dengler R, Geworski L, Bengel FM, Berding G, Stangel M, Nabavi E (2014) Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography. BMC Neurol 14:136. https://doi.org/10.1186/1471-2377-14-136
- Moreno-Ajona D, Prieto E, Grisanti F, Esparragosa I, Sánchez Orduz L, Gállego Pérez-Larraya J, Arbizu J, Riverol M (2020) (18)F-FDG-PET imaging patterns in autoimmune encephalitis: impact of image analysis on the results. Diagnostics (Basel, Switzerland) 10 (6). https://doi.org/10.3390/diagnostics10060356

- Tripathi M, Tripathi M, Roy SG, Parida GK, Ihtisham K, Dash D, Damle N, Shamim SA, Bal C (2018) Metabolic topography of autoimmune non-paraneoplastic encephalitis. Neuroradiology 60(2):189–198. https://doi.org/10.1007/s00234-017-1956-2
- Liu X, Shan W, Zhao X, Ren J, Ren G, Chen C, Shi W, Lv R, Li Z, Liu Y, Ai L, Wang Q (2020) The clinical value of (18) F-FDG-PET in autoimmune encephalitis associated with LGI1 antibody. Front Neurol 11:418–418. https://doi.org/10.3389/fneur.2020. 00418
- Li T-R, Zhang Y-D, Wang Q, Shao X-Q, Lv R-J. Recognition of seizure semiology and semiquantitative FDG-PET analysis of anti-LGI1 encephalitis. CNS Neuroscience & Therapeutics n/a (n/a). https://doi.org/10.1111/cns.13707
- Chen C, Wang X, Zhang C, Cui T, Shi WX, Guan HZ, Ren HT, Shao XQ (2017) Seizure semiology in leucine-rich glioma-inactivated protein 1 antibody-associated limbic encephalitis. Epilepsy & behavior : E&B 77:90–95. https://doi.org/10.1016/j.yebeh. 2017.08.011
- Fisher RE, Patel NR, Lai EC, Schulz PE (2012) Two different 18F-FDG brain PET metabolic patterns in autoimmune limbic encephalitis. Clin Nucl Med 37(9):e213-218. https://doi.org/10. 1097/RLU.0b013e31824852c7
- 26. Solnes LB, Jones KM, Rowe SP, Pattanayak P, Nalluri A, Venkatesan A, Probasco JC, Javadi MS (2017) Diagnostic value of (18)F-FDG PET/CT versus MRI in the setting of antibody-specific autoimmune encephalitis. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 58(8):1307–1313. https://doi.org/10.2967/jnumed.116.184333
- Leypoldt F, Buchert R, Kleiter I, Marienhagen J, Gelderblom M, Magnus T, Dalmau J, Gerloff C, Lewerenz J (2012) Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 83(7):681–686. https://doi.org/10. 1136/jnnp-2011-301969
- Ge J, Deng B, Guan Y, Bao W, Wu P, Chen X, Zuo C (2021) Distinct cerebral (18)F-FDG PET metabolic patterns in anti-Nmethyl-D-aspartate receptor encephalitis patients with different trigger factors. Ther Adv Neurol Disord 14:1756286421995635. https://doi.org/10.1177/1756286421995635
- Kerik-Rotenberg N, Diaz-Meneses I, Hernandez-Ramirez R, Muñoz-Casillas R, Reynoso-Mejia CA, Flores-Rivera J, Espinola-Nadurille M, Ramirez-Bermudez J, Aguilar-Palomeque C (2020) A metabolic brain pattern associated with anti-N-methyl-D-aspartate receptor encephalitis. Psychosomatics 61(1):39–48. https://doi.org/10.1016/j.psym.2019.08.007
- Lagarde S, Lepine A, Caietta E, Pelletier F, Boucraut J, Chabrol B, Milh M, Guedj E (2016) Cerebral (18)fluorodeoxy-glucose positron emission tomography in paediatric anti N-methyl-D-aspartate receptor encephalitis: a case series. Brain Develop 38(5):461–470. https://doi.org/10.1016/j.braindev.2015.10.013
- Zhu F, Shan W, Lv R, Li Z, Wang Q (2020) Clinical characteristics of GAD 65-associated autoimmune encephalitis. Acta Neurol Scand 142(3):281–293. https://doi.org/10.1111/ane.13281
- 32. Baumgartner A, Rauer S, Mader I, Meyer PT (2013) Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 260(11):2744–2753. https://doi.org/10.1007/s00415-013-7048-2
- Masangkay N, Basu S, Moghbel M, Kwee T, Alavi A (2014) Brain 18F-FDG-PET characteristics in patients with paraneoplastic neurological syndrome and its correlation with clinical and MRI findings. Nucl Med Commun 35(10):1038–1046. https://doi.org/10. 1097/mnm.00000000000163
- Newey CR, Sarwal A, Hantus S (2016) [(18)F]-Fluoro-deoxyglucose positron emission tomography scan should be obtained early in cases of autoimmune encephalitis. Autoimmune diseases 2016:9450452. https://doi.org/10.1155/2016/9450452

- 35 Probasco JC, Solnes L, Nalluri A, Cohen J, Jones KM, Zan E, Javadi MS, Venkatesan A (2018) Decreased occipital lobe metabolism by FDG-PET/CT: an anti-NMDA receptor encephalitis biomarker. Neurology(R) neuroimmunology & neuroinflammation 5(1):e413. https://doi.org/10.1212/nxi.000000000000413
- Siddiqui SV, Chatterjee U, Kumar D, Siddiqui A, Goyal N (2008) Neuropsychology of prefrontal cortex. Indian J Psychiatry 50(3):202–208. https://doi.org/10.4103/0019-5545.43634
- Gibson LL, McKeever A, Coutinho E, Finke C, Pollak TA (2020) Cognitive impact of neuronal antibodies: encephalitis and beyond. Transl Psychiatry 10(1):304. https://doi.org/10.1038/ s41398-020-00989-x
- Li F, Tsien JZ (2009) Memory and the NMDA receptors. N Engl J Med 361(3):302–303. https://doi.org/10.1056/NEJMcibr0902052
- Irani SR, Vincent A (2011) NMDA receptor antibody encephalitis. Curr Neurol Neurosci Rep 11(3):298–304. https://doi.org/10. 1007/s11910-011-0186-y
- 40. Shin YW, Lee ST, Shin JW, Moon J, Lim JA, Byun JI, Kim TJ, Lee KJ, Kim YS, Park KI, Jung KH, Lee SK, Chu K (2013) VGKC-complex/LGI1-antibody encephalitis: clinical manifestations and response to immunotherapy. J Neuroimmunol 265(1– 2):75–81. https://doi.org/10.1016/j.jneuroim.2013.10.005
- 41. Irani SR, Alexander S, Waters P, Kleopa KA, Pettingill P, Zuliani L, Peles E, Buckley C, Lang B, Vincent A (2010) Antibodies to Kv1 potassium channel-complex proteins leucine-rich, glioma inactivated 1 protein and contactin-associated protein-2 in limbic encephalitis, Morvan's syndrome and acquired neuromyotonia. Brain : a journal of neurology 133(9):2734–2748. https://doi.org/ 10.1093/brain/awq213
- Lancaster E, Martinez-Hernandez E, Dalmau J (2011) Encephalitis and antibodies to synaptic and neuronal cell surface proteins. Neurology 77(2):179–189. https://doi.org/10.1212/WNL.0b013 e318224afde

- Lancaster E, Dalmau J (2012) Neuronal autoantigens—pathogenesis, associated disorders and antibody testing. Nat Rev Neurol 8(7):380–390. https://doi.org/10.1038/nrneurol.2012.99
- 44. Saiz A, Blanco Y, Sabater L, González F, Bataller L, Casamitjana R, Ramió-Torrentà L, Graus F (2008) Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain : a journal of neurology 131(10):2553–2563. https://doi.org/10.1093/brain/awn183
- 45. Turpin S, Martineau P, Levasseur MA, Meijer I, Décarie JC, Barsalou J, Renaud C, Decaluwe H, Haddad E, Lambert R (2019) 18F-Flurodeoxyglucose positron emission tomography with computed tomography (FDG PET/CT) findings in children with encephalitis and comparison to conventional imaging. Eur J Nucl Med Mol Imaging 46(6):1309–1324. https://doi.org/10. 1007/s00259-019-04302-x
- 46. Morbelli S, Arbizu J, Booij J, Chen MK, Chetelat G, Cross DJ, Djekidel M, Drzezga A, Ekmekcioglu O, Garibotto V, Hesse S, Ishii K, Jafari L, Lammertsma AA, Law I, Mathews D, Minoshima S, Mosci K, Pagani M, Pappata S, Silverman DH, Signore A, Van De Giessen E, Villemagne V, Barthel H (2017) Erratum to: the need of standardization and of large clinical studies in an emerging indication of [18 F]FDG PET: the autoimmune encephalitis. Eur J Nucl Med Mol Imaging 44(3):559–560. https://doi.org/10. 1007/s00259-016-3598-8
- Saif MW, Tzannou I, Makrilia N, Syrigos K (2010) Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med 83(2):53–65

**Publisher's note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.