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Abstract
Parkinson’s disease (PD) is a chronic and progressive neurodegenerative disorder that affects 1% of the population world-
wide. Etiology of PD is likely to be multi-factorial such as protein misfolding, mitochondrial dysfunction, oxidative stress, 
and neuroinflammation that contributes to the pathology of Parkinson’s disease (PD), numerous studies have shown that 
mitochondrial dysfunction may play a key role in the dopaminergic neuronal loss. In multiple ways, the two most important 
are the activation of neuroinflammation and mitochondrial dysfunction, while mitochondrial dysfunction could cause neu-
roinflammation and vice versa. Thus, the mitochondrial proteins are the highly promising target for the development of PD. 
However, the limited amount of dopaminergic neurons prevented the detailed investigation of Parkinson’s disease with regard 
to mitochondrial dysfunction. Both genetic and environmental factors are also associated with mitochondrial dysfunction and 
PD pathogenesis. The induction of PD by neurotoxins that inhibit mitochondrial complex I provide direct evidence linking 
mitochondrial dysfunction to PD. A decrease of mitochondrial complex I activity is observed in PD brain and in neurotoxin- 
or genetic factor-induced in vitro and in vivo models. Moreover, PINK1, Parkin, DJ-1 and LRRK2 mitochondrial PD gene 
products have important roles in mitophagy, a cellular process that clear damaged mitochondria. This review paper would 
discuss the evidence for the mitochondrial dysfunction and neuroinflammation in PD.
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Introduction

Parkinson’s disease (PD) is categorized by the attenuation 
of dopaminergic neurons in brain particularly substantia 
nigra region and the existence of Lewy bodies (LBs) is the 
common symptoms of PD [24]. Lewy body is produced in 
the presynaptic region by the α-syn expression and gets 
aggregated. Factors such as oxidative stress, inflammation, 
aging, genetic mutations, and environmental toxins may 
also cause PD. Off all factors, inflammation plays a major 
part in the introduction of PD [30]. Neuroinflammation is 

caused by infectious agents or neurotoxins with proinflam-
matory action properties that lead to the pathogenesis of 
PD. Previous reports have shown that dopamine-induced 
oxidative stress contributed to the inflammatory response 
in PD patients [6]. Production of ROS enhances the chronic 
inflammatory response by altering different biomolecules 
leading to the destruction of neurons [3]. Infectious sub-
stances or neurotoxins that alter glial cells include astrocytes 
and microglia which liberate neurotoxic factors like phago-
cyte oxidase (PHOX)-induced  H2O2 and cytokines (TNFα, 
IL-1β, etc.) [90].

Cytokines activate receptor-mediated pro-apoptotic path-
ways in dopaminergic neurons and up-regulate inducible 
nitric oxide synthase (iNOS) and cycloxygenase 2 (COX2) 
by stimulating microglia. Thus the increase in generation 
of ROS and NO leads to DNA damage, lipid peroxidation, 
and protein disruption [19]. In knockout mice studies, auto-
recurrent factors such as PARKIN, PINK1, and DJ-1 sug-
gested that these factors could be involved in negative regu-
lation of neurosystem. Although mitochondrial dysfunction 
is well known in the dopaminergic neurons of idiopathic and 
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familial PD, the mechanisms involved are unclear. Mito-
chondrial dysfunction is primarily due to the formation of 
reactive oxygen species (ROS), ATP depletion, cytochrome 
c-release, a reduction in mitochondrial complex I enzyme 
activity, and caspase 3 activation [46]. The disorder of the 
systemic mitochondrial complex I has been associated  for 
a long time in the diagnosis of idiopathic PD that produces 
an improved level of OS (Oxidative Stress) in nigral neu-
rons. Reduced mitochondrial activity enhances OS and ROS, 
accelerating the degeneration of neurons to worsen the integ-
rity of neurons. The OS or ROS causes cellular damage and 
also implements signaling pathways which result in cell 
death [62].

Pathways and mechanisms 
for neuroinflammation

Cytokines

Surface markers present in both microglia and peripheral 
macrophages are similar which are difficult to differentiate 
cell types in postmortem PD brain tissue. Lipopolysac-
charide (LPS) stimulated peripheral macrophages from 
PD patients to produce fewer TNF-α, IL-1 a/b, IFN-α, 
and IL-6 than healthy regulation and extent associated 
with disability, indicating the decreased cytokine which 
can develop in tandem with a disease. In different levels 

of multiple cytokines like TNF-α, IL-1b, IL-3, and IL-6, 
in postmortem striatum, SN and cerebral spinal fluid 
(CSF) in PD patients [21] are high, and increased levels 
of TNF-α receptor R1 (TNF-R1, p55), bcl-2, soluble Fas 
(sFas), caspase-1, and caspase-3 [55] indicate the presence 
of a proinflammatory/apoptotic microenvironment in PD 
patients. However, other regulatory cytokines, including 
IL-4, transforming growth factor (TGF)-α, TGF-β1, and 
TGF-β2 [10], also got elevated that shows its ability to 
control the environment during inflammation. In addition, 
hippocampal tissues possessed the increased level of IL-2 
from PD patients compared to controls indicating that IL-2 
receptors (IL-22R) on cells contained in the hippocampus 
is also up-regulated in PD patients [39]. Although proba-
bly expressed by both neuronal and glial cells, the location 
of IL-2 and IL-2R primarily for frontal cortex, septum, 
striatum, hippocampal formation, hypothalamus, locus 
coeruleus, cerebellum and pituitary, and corpus callosum 
fibers suggested possible regulatory interactions between 
peripheral tissue and CNS [57]. Most often, IL-2 acts in 
an auto- and the paracrine manner in the brain as in the 
peripheral immune system, but that reveals the character-
istics of a neuroendocrine modulator under various physi-
ological conditions. For example, IL-2 regulates neuronal 
and glial growth and differentiation during development 
and also has its effects in the modulation of sleep/excite-
ment, memory, and cognition, dementia, and neuropsy-
chology [9] (Fig. 1).

Fig. 1  Schematic representation of neuroinflammation in PD
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Free radicals and reactive oxygen species

Inflammatory responses are induced by reactive microglia, 
macrophages, and proinflammatory T cells that provide a 
primary source of free radicals with the ability to modify 
proteins, lipids, and nucleic acids. It increases a state of anti-
oxidant stress that increases the production of high intracra-
nial organisms, which in turn reduces the free radical capture 
that leads to greater changes to survival and reductions in 
damaged macromolecules [81]. The most reactive nature and 
short half-lives of reactive species, combined with the limit-
ing nature of neuroinflammatory foci for clinical sampling, 
avoid direct measurement in the pathogenic processes of 
these reactive species. However, changes in proteins, lipids, 
and nucleic acids offer substitute biomarkers, which is used 
to measure the extent of oxidative stress [2, 57]. Postmortem 
analyses of patients with PD have indicated the presence 
of these biomarkers for oxidative stress. Protein modifica-
tions are also a biomarker which is exhibited in the brains of 
PD patients. Contrasted with minds from control benefac-
tors, elevated dimensions of nitrated proteins was found in 
cerebrum and CSF of PD patients [56]. Most eminent are 
adjustments of proteins that include Lewy bodies (LB), the 
neuronal considerations that are viewed as the signs of PD 
and comprises fundamentally of α-synuclein, ubiquitin, and 
lipids. Additionally, S-nitrosylated types of Parkin, an E3 
ubiquitin ligase engaged with protein ubiquitination, has 
been separated from the transient cortex from PD patients, 
however not from minds of HD or AD patients [1].

In vitro and in vivo, S-nitrosylation of Parkin actuates 
an underlying increment in ligase action prompting aut-
oubiquitination of Parkin, inevitable hindrance of ubiq-
uitin ligase movement, and diminished activity in the E3 
ligase–ubiquitin–proteasome degradative pathway [87]. 
Carbonyl adjustments, which are intelligent of protein 
oxidation, are expanded by more prominent than twofold 
in the SN contrasted with the basal ganglia and prefron-
tal cortex of ordinary subjects [83]. Increments in protein 
carbonyls have been found in SN, basal ganglia, globus pal-
lidus, substantia innominata, cerebellum, and frontal post, 
yet not in patients with accidental LB ailment (ILBD), a 
putatively presymptomatic PD issue. The inclusion of the 
last two mind locales are surprisingly dependent on the 
limited neuropathology of PD, yet may mirror a result of 
L-DOPA treatment or an increasingly worldwide outcome 
of the incendiary spread of oxidative worry in PD. Other 
proof for oxidative harm to proteins in PD is the expanded 
articulation of neural heme oxygenase-1 [71] and expanded 
immunostaining of glycosylated proteins by nigral neurons 
[7]. Free radicals and nucleic corrosive adjustments change 
of nucleic acids by free radicals and responsive species can 
actuate chromosomal deviations with increase effectiveness 
[20], proposing that chromosomal harm showed in neurons 

of PD patients may be identified with a strangely increased 
oxidative pressure.

Among the most encouraging biomarkers of oxida-
tive harm to nucleic acids is nucleoside 8-hydroxyguano-
sine (8-OHG) for RNA or 8-hydroxy-20-deoxyguanosine 
(8-OHdG) for DNA. 8-OHG is an oxidized base delivered by 
free extreme assault on DNA by C-8 hydroxylation of gua-
nine and is a standout among the most regular nucleic corro-
sive adjustments seen under states of oxidative pressure [95]. 
The immunohistochemical portrayal of these adjustments 
demonstrates that the most abnormal amounts of 8-OHG 
changes are present in neurons of the SN and to a lesser 
degree in neurons of the core raphe dorsalis and oculomotor 
core, and at times in glial cells [95].  8-OHG nucleic cor-
rosive changes are once in a while recognized in the atomic 
region and for the most part limited to the cytoplasm, and 
(2) immunoreactivity is fundamentally reduced by RNase or 
DNase and removed with the two proteins, [95] propose that 
objectives of oxidative assault incorporate both cytoplasmic 
RNA and mitochondrial DNA. Specific notable are the dis-
coveries that convergences of 8-OHG in CSF of PD patients 
are higher than in age-coordinated controls,nonetheless, 
serum groupings of 8-OHG show deep factor [43, 95].

Lipid peroxidation

Lipid peroxidation often occurs in response to oxida-
tive stress, and a large variety of aldehydes are formed 
when lipid hydroperoxides break down into biological 
systems. 4-Hydroxy-2-nominal (HNE) is a responsive α, 
β-unsaturated aldehyde that is significant amid the oxida-
tion of film lipid polyunsaturated fats and structures stable 
adducts with nucleophilic bunches on proteins [26]. HNE 
change of film proteins shapes stable adducts that can be 
utilized as biomarkers of cell harm because of oxidative 
pressure. Immunochemical recoloring on enduring dopamin-
ergic nigral neurons in the midbrains of PD patients dem-
onstrate the nearness of HNE-changed proteins on 58% of 
the neurons contrasted with 9% of those in control subjects. 
The powerless or non-coloring on oculomotor neurons was 
observed in a similar midbrain areas of PD patients and the 
nearness of HNE altered proteins in LB from PD patients 
[14]. HNE species are regularly more steady than oxygen 
species, they can without much of a stretch spread from the 
site of creation to impact alterations at a far off site [96]. 
HNE adjustments of DNA, RNA, and proteins have differ-
ent unfavorable organic impacts, for example, obstruction 
with enzymatic responses and enlistment of warmth stun 
proteins, and are viewed as to a great extent in charge of 
the cytotoxic impacts under states of oxidative pressure [78, 
92]. The cytotoxic impacts of HNE changes might be estab-
lished to some extent because of the restraint of edifices 
I and II of the mitochondrial respiratory chain; enlistment 
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of caspase-8, caspase-9, and caspase-3; cleavage of poly 
(ADP–ribose) polymerase (PARP) with consequent DNA 
fracture; inhibition of NFκB-intervened signalling pathways 
[51], and reduction of glutathione levels [25, 65]. Fixations 
that initiate no intense change in cell in vitro at first reason 
is an abatement in the proteasomal reactant action to the 
degree that it incites collection of ubiquitinated and nitrated 
proteins, decreases in glutathione levels and mitochondrial 
action, and expanded dimensions of oxidative stress to DNA, 
RNA, proteins, and lipids [37]. Another receptive aldehyde 
species created from the peroxidation of lipids is malondi-
aldehyde (MDA), which is shaped from the breakdown of 
endoperoxides amid the last phases of the oxidation of poly-
unsaturated fats; especially powerless are those containing at 
least three or more bonds. MDA can exist as free aldehydes 
or respond with essential amine gatherings of macromol-
ecules to shape adducts with cell structures [2, 31]. Proof of 
expanded dimensions of MDA-adjusted proteins are found 
in the SN and CSF of PD patients, but not in controls which 
is a characteristic feature of expanded lipid peroxidation and 
supportive presence of perpetual reactions in the patients 
[68]. F2-isoprostane (F2-IsoP) and isofuran (IsoF) are dif-
ferent results of lipid peroxidation, and both are entrenched 
as explicit biomarkers of in vivo oxidative pressure [66]. 
This particular increment in IsoF species in PD patients 
demonstrates that the microenvironmental oxygen strain is 
ordinarily more noteworthy in PD than different clusters and 
proposes a one of a kind method of oxidant damage in PD, 
which might be characteristic of an expanded intracellular 
oxygen pressure coming about because of mitochondrial 
brokenness or a more prominent force of incendiary reac-
tion in PD. This information positively show that oxidative 
worry in the SNpc area in PD, however, yet to be deter-
mined is whether innate immune cell activation of microglia 
and/or astrocytes during the progression of PD shifts the 
homeostatic balance towards increased protection from or 
exacerbation of ROS damage and whether this dynamically 
changes with disease progression.

Mitochondrial dysfunction

During mitochondrial respiration, the electrons of nicoti-
namide adenine dinucleotide (NADH) are transferred to 
complex I (NADH: ubiquinone oxidoreductase) and form 
a final product,  H2O, via the activities of complexes III and 
IV. During the course of electron transfer, recovery of energy 
is done through ATP formation which in turn enhances the 
production of ROS and RNS which triggers an apoptotic cas-
cade. Previous studies  shown that oxidative damage in the 
catalytic subunits of complex I in the frontal cortex region 
of PD patients, which is correlated with complex assembly 
and dysfunction of the complex [42]. Due to the influence of 

high proton motive force, the electron supplied from com-
plex II to ubiquinone is reversibly transferred to complex I 
and reduces  NAD+ to NADH, resulting in an alkaline pH or 
high membrane, which influences the production of ROS. 
ROS promote single electron transfer across complexes and 
form a superoxide anion leading to overproduction of free 
radicals [85]. Increased ROS production in the mitochondria 
or decreased mitochondrial defense suppression results in 
DNA, protein, and mitochondrial lipid damage. This dam-
age compromises the respiratory chain, thereby establishing 
a new link between oxidative stress and bioenergetic failure 
[46, 91] (Fig. 2).

Mitochondrial familial in Parkinson’s disease

Mitochondria are very dynamic organelles which perform a 
profuse function. Apart from the versatile role of mitochon-
dria, it possesses various cellular processes like regulation of 
calcium homeostasis, cell death pathway, and stress response 
[84]. Thus, deterioration of mitochondrial function results 
in cellular damage leading to neurodegenerative disorder. 
Many researchers evidenced that mitochondrial dysfunction 
plays an important role in the pathogenesis of Parkinson’s 
disease and this might be due to the inhibition of complex I 
of the ETC which can induce Parkinsonism. PD-associated 
genes such as α-synuclein and LRRK2 are responsible for 
autosomal dominant forms, and Parkin, PINK1, and DJ-1 
mediate autosomal recessive PD [67].

Autosomal dominant PD

α‑Synuclein

α-Synuclein, a 140 amino acid polypeptide encoded by 
SNCA, is the main component of Lewy bodies. α-Syn pre-
sent in the mitochondrial membrane had shown its effect 
on mitochondrial structure and functions [59]. A mutation 
in α-Syn with PD-related mutations such as A53T, A30P, 
E46K, H50Q, and G51D leads to mitochondrial fragmenta-
tion, proteasomal and lysosomal protein degradation, ER 
stress, and Golgi fragmentation. Recent studies showed 
that biogenesis of mitochondria was influenced through 
the regulation of PGC1α [75, 89]. Cytosolic acidification 
is helpful to enhance the binding of α-Syn to mitochondria 
[67]. The mitochondrial alteration was found in the mouse 
model by overexpressing wild-type or mutant α-synuclein 
[88]. This is due to increased α-synuclein aggregation that 
leads to decreased COX, complex IV activity, and mitochon-
drial membrane potential. α-Synuclein knockout mice were 
reported for abnormal mitochondrial lipid with decrease in 
cardiolipin content which was related with a decrease in 
complex I/III activity [38].  Increased α-synuclein expres-
sion and deficiency lead to mitochondrial abnormalities, thus 
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from the above evidence that α-syn has effects on mitochon-
dria indirectly influencing its mitochondrial function.

LRRK2

LRRK2 (leucine-rich repeat kinase 2) is a multirole protein 
kinase that exerts its pathogenic role by enhancing the kinase 
activity [67]. PD-associated mutations in LRRK2 include 
p.G2019S, p.R1441C/G/H, p.Y1699C, p.I2020T, and 
p.N1437H [60]. By overexpressing WT or mutant LRRK2 
showed increased vulnerability to mitochondrial toxins that 
cause defects in mitochondrial dynamics and increased 
ROS production. Several proteins (mitochondrial fission 
protein, dynamin-related protein 1, mitofusin (MFN) 1/2, 
and optic atrophy 1) interact with LRRK2 which are respon-
sible for pathological effects on mitochondria. UCP2 and 
UCP4 up-regulation lead to increased proton leak and loss 
of mitochondrial membrane potential [70]. Overexpression 
of LRRK2 leads to loss of DA neurons in Drosophila and C. 
elegans. PD can contribute to the immune system by directly 
disabling LRRK2 immune system cells. The strong stimula-
tion of the LRRK2 protein is found in microglia cells of the 
mouse [54]. However, in LRRK2 p.R1441G knock-in mice, 
LPS-activated microglia cells showed the highest exposure 
of pro-inflammatory cytokines and decreased expression of 
anti-inflammatory cytokines compared with wild-type con-
trol microglia cells [48, 64].

Parkin

Parkin, a gene that encodes a cytosolic 465 amino acid 
protein with the ubiquitin-like domain at N-terminal and 
RBR domain of C-terminus, has two RING finger motifs 
which flanks a cysteine rich between RING finger domain 
[45]. Mutation in Parkin leads to autosomal recessive PD. 
Mitochondrial morphology and their functions are greatly 
affected by Parkin deficiency. Major Parkin targets located in 
mitochondria were found by ubiquitous examination. Parkin 
has a different function in managing healthy mitochondria 
by organizing their biogenesis and degeneration through 
mitophagy [77]. In the early phase of mitochondrial deterio-
ration, Parkin leads to damage of mitochondria, and PTEN 
is stimulated [8]. Mitophagy removes the process to mito-
chondria from the healthy mitochondrial pool and enhances 
their degradation through the autophagy-lysosomal pathway. 
In the recent past, the in vitro models revealed the patho-
physiological significance of Parkin-mediated mitophagy 
in PD [27]. Under stable conditions, Parkin mediates the 
destruction of Parkin interacting molecule, a repression of 
the PGC1α activity, leads to nuclear transfer of PGC1α and 
transcriptional implementation of mitochondrial related 
genes. Loss of Parkin function permits PARIS to accumu-
late and suppress mitochondrial biogenesis and results in 
decreased mitochondrial mass and functional defects [15]. 
These findings focus on the key role of Parkin which plays 

Fig. 2  Schematic representation 
of mitochondrial dysfunction 
in PD
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in restructuring the balance of mitochondrial production and 
destruction.

Autosomal recessive PD

PINK1

Mutation in PINK1 is the main cause of autosomal recessive 
PD [29]. PINK1 is a mitochondrial serine/threonine kinase 
which plays an important role in managing mitochondrial 
homeostasis. Defects in PINK1 may cause deformities in 
mitochondria like a change in morphology, trafficking etc. 
[40]. PINK1 activate the Parkin by direct phosphorylation 
of Parkin at S65 and transactivation by phosphorylation of 
ubiquitin at S65 thus in turn helpful in clearance of damaged 
mitochondria [58]. Nuclear Dot protein and optineurin help 
PINK1 to mediate mitophagy. Similarly, LRRK2 and PINK1 
promote mitophagy by aborting the mitochondrial traffick-
ing through phosphorylation [4]. Various researchers have 
proved that loss of PINK1 leads to mitochondrial dysfunc-
tion in vitro and in vivo models (Drosophila and mice) [61]. 
PINK1 regulates mitochondrial homeostasis, for example, 
PINK1 deficiency is found to be effective in mitochondrial 
 Ca2+ overload and a specific depletion in mitochondrial 
complexes I and III [32]. Increased mitochondrial fission has 
increased protein kinase A (PKA)-mediated DRP1 activa-
tion and modified mitochondrial biogenesis through Parkin-
mediated destruction of PARIS [72].

DJ‑1

DJ-1 protein is largely present in the cytosol and a little part 
in the nucleus and mitochondrial matrix and intermembrane 
space and decreases degradation [34]. Upon OS, DJ-1 trans-
fer easily to mitochondria and nucleus and plays a vital role 
and act as a neuroprotector [79]. A decrease in mt DNA, 
ATP level, and respiratory control ratio was observed in 
DJ-1 knockout in fly and mice [76]. Further, DJ-1 and its 
mutant are highly related to Hsp 70 in mitochondria. Dur-
ing OS, wild-type DJ-1 with mitochondrial Hsp 70 was 
increased, and translocation happens with the help of mito-
chondrial chaperones [97]. DJ-1 interacts with Parkin and 
PINK1 under OS conditions and activates Mn-SOD gene 
responsible for the mitochondrial antioxidant enzyme. Fur-
thermore, decreased DJ-1 leads to reduced MMP, increased 
mitochondrial fragmentation, autophagy, OS, and mitochon-
drial fusion [86].

Mitophagy in PD

Autophagy is a highly conserved cellular degradative path-
way that is essential for survival, differentiation, devel-
opment, and homeostasis [94]. The specific autophagic 

elimination of mitochondria is defined as mitophagy [94]. 
Previous studies have reported that autophagosomes accu-
mulate due to aggregation of misfolded proteins in the 
brains of patients leading to diverse neurodegenerative 
diseases, including Alzheimer’s disease, Parkinson’s dis-
ease, and Huntington’s disease [73]. Defects in mitophagy 
have been shown to summarize a number of reported PD 
features, namely impaired motor coordination, tremor, and 
the accumulation of protein aggregates/inclusion bodies in 
residual neurons. In general, the autophagy process involved 
in the suppression of many neurodegenerative processes by 
degrading unfolded proteins and also inhibits a few types of 
PD by degrading damaged mitochondria. Parkin (PARK2) 
and Pink1 (PARK6) are the genes involved in eliminating 
damaged mitochondria by autophagy in familial PD [62]. 
During the process of mitophagy, first Pink1 accumulates on 
the outer mitochondrial membrane from the cytosol succeed-
ing mitochondrial depolarization. Later, Parkin, a cytosolic 
E3-like ligase, binds with Pink1 on the outer mitochondrial 
membrane, which then leads to ubiquitination of depolarized 
mitochondria by the ubiquitin ligase activity of the Parkin 
followed by employing numerous autophagy components 
such as p62 [41]. Autophagic molecules recognize ubiqui-
tinated mitochondria and are digested by autophagy. Thus, 
genetic mutations in these genes Parkin and Pink1in familial 
and sporadic PD becomes inefficient in the elimination of 
damaged mitochondria, which results in the degeneration of 
dopaminergic neurons.

Mitochondrial fission and fusion in Parkinson’s 
disease

Parkinson’s disease (PD) is a neurodegenerative disorder 
with characteristic symptoms. The most compelling research 
platform in PD or any other neurodegenerative disorders is 
the underlying pathology as they are potential therapeutic 
targets and beacon for the better understanding of the dis-
ease. In the case of PD, dysfunctional mitochondrial dynam-
ics and the resultant incapacitation form the basic driving 
force for the cause and progress of disease as indicated by 
scientific studies [5, 12, 18]. The most notable and compel-
ling evidence on the role of mitochondrial dysfunction in PD 
is the exposure of the chemical 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and its metabolite  MPP+ on the 
complex I activity of mitochondria. MPTP mice model is 
one of the most widely used mice models for PD research 
and scientific study for therapeutic interventions [63].

Within the nerve cell, the mitochondria (Mt) generate 
energy for the active functioning of the cell. These mito-
chondria often undergo specific dynamic changes with 
respect to the number, size, and shape by the process of 
mitochondrial fission or fusion. Fission of Mt results in 
multiple smaller organelles and fusion results in on larger 
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Mt. These processes are supported by the fission/fusion 
proteins and by the cells demand. Dysfunctions in mito-
chondria will disrupt the integrity of the nerve cell network 
and metabolic efficiency. Genetic and biochemical studies 
on the model organisms such as Drosophila melanogaster 
and Saccharomyces cerevisiae along with human cells have 
vividly accounted for the regulation of Mt fission and fusion 
mechanics by conserved proteins and dynamin-GTPases [16, 
52]. Also, the Mt biogenesis is not de novo which means that 
Mt cannot be made; hence, the fission and fusion process are 
quintessential for the biogenesis process.

The implications of Mt fission and fusion in PD patho-
genesis are described as follows. Pink1 is a serine/threonine 
kinase that is present in the mitochondria and cytosol, and 
Parkin is a cytosolic E3 ubiquitin ligase. These two proteins 
are mostly associated with PD. Scientific research on these 
proteins have given solid evidence that loss of Pink1 in the 
neuronal cell cultures resulted in abnormal Mt morphology 
[28]. Further, the knockdown of Pink1 in SH-SY5Y cells 
can lead to the fragmentation of Mt and is reversible by the 
overexpression of Parkin [22]. This evidence suggest that 
a strong interaction exists between these two protein and 
act downstream of each other [44, 93]. A genetic study on 
the Pink1/Parkin mutant Drosophila flies has proven that 
overexpression of Marf/Mfn2 (a fly homolog of mamma-
lian Mfns) or Opa1 can ameliorate the phenotypes such as 
the flight muscle degeneration, defects in flying, or abnor-
mal wing position [23]. Taken together, the mitochondrial 
fission and fusion have quite a significant effect over the 
functionality and quality of the nerve cell integrity, subse-
quently contributing to the pathogenesis of PD. Currently, 
the genetic testing kits for the proteins, SNCA, Parkin, 
PINK1, and LRRK2 are available commercially [33] along 
with animal models. Given the heterogeneity and complex-
ity of the disease, more suitable underlying principles and 
their respective biomarkers have to be investigated deeply 
to win over PD.

The experimental model 
of neuroinflammation and mitochondrial 
dysfunction

There is widespread evidence that PD is caused by neuro-
toxins particularly 6-hydroxydopamine, rotenone, paraquat, 
diquat, and MPTP. All these chemicals act through various 
mechanism (Fig. 3).

6‑Hydroxydopamine

6-Hydroxydopamine serves as a well-formed animal model 
for PD to induce neurodegeneration and stimulation. 
6-OHDA is the neurotoxic effects of entering the cytosol via 

the complex electron transporter chain, the complex I-pre-
venting DA transporter, which enhances the ROS productiv-
ity, where it can automatically carry oxidation. Despite the 
6-OHDA, it does not penetrate into the blood–brain barrier, 
which requires its local injection in SNpc or the striatum. 
The local injection of 6-OHDA in SNpc was first reported 
by Ungerstedt [80]. The researchers used a bone sample 
to stimulate the neurons-containing disorder in the rodent 
brain, in which the SNpc or brain was used to decompose the 
dopamine levels in the tyrosine after using the stereotaxic 
injection of this compound, which is the TH positive ter-
minals of the striatum [11]. This functional procedure, like 
human, provides a gradual improvement of the neurological 
process. Therefore, 6-OHDA stimulates the most repetitive 
and reliable brain SNpc injury, which is shown to be very 
helpful in finding novel treatment techniques for neurologi-
cal effects.

Rotenone

It is a natural compound present in various plant species 
such as Derris, Lonchocarpus, Tephrosia, and Mundulea. It 
is broadly used as an insecticide and pesticides which pos-
sess a neurotoxic effect. Rotenone is lipophilic and has the 
tendency to cross the blood–brain barrier, neuronal cells, 
and organelles such as mitochondria without the help of 
transporters. It blocks the mitochondrial ETC via inhibi-
tion of complex I that lead to free radical generation in the 
mitochondrial matrix and ROS formation. The mechanism 
of action of rotenone is unclear, but evidence from in vitro 
and in vivo PD models suggest that this may cause delayed 
decrease in glutathione leading to oxidative damage to pro-
tein and DNA. Administration of rotenone modify the DJ-1 
and leads to α-syn aggregation causes PD. Rotenone expo-
sure to rats leads to cytoplasmic inclusions in the brain; thus 
it has linked with mitochondrial dysfunction and PD. This 
may also cause damage to neurons in the striatum.

Paraquat and diquat

After the identification of MPTP,  MPP+ as a functioning 
metabolite of MPTP model and analysts have discovered a 
structure like  MPP+ in forming synthetic substances. Sub-
sequently, herbicide paraquat was recognized as a specialist 
that used to think about PD in mice. Paraquat was infused 
into mice to initiate engine shortfalls and loss of nigral 
dopaminergic neurons in a portion subordinate way. Uver-
sky [82] revealed that paraquat administrated fundamentally, 
have been appeared to repeat highlights of PD in rodents. 
Somayajulu-Niţu et al. [74] also detailed that paraquat-led 
neurodegeneration speaks to a beneficial rodent model of 
PD that is reasonable for thought-out and neuroprotective 
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studies to recognize new medication that focuses on the 
treatment of PD.

MPTP

MPTP is a primary toxin that connected with mitochondrial 
complex I inhibition and PD. MPTP is produced as a byprod-
uct of the synthesis of meperidine simple with heroin-like 
properties [36]. It has additionally been appeared to intently 
repeat the DA degeneration and manifestations of PD in 
different models and has been the most generally utilized 
toxin-induced models of PD [47]. MPTP promptly crosses 
the blood–brain barrier and is changed over to the lethal 
1-methyl-4-phenyl-2,3-dihydropyridium particle (MPP +) 
(Fig. 3) by monoamine oxidase B in astrocytes toxin [17]. 
Furthermore, it is then taken up into DA neurons by DAT 
decrease in MPTP danger in DAT lacking mice [53].  MPP+ 
is taken up into mitochondria by means of uninvolved trans-
port because of the expanded mitochondrial transmembrane 

angle, where MPP + restrains mitochondrial complex I [13, 
29]. This restraint of complex I prompts cell passing by 
means of vitality deficiencies, free radical, and ROS age 
[49], and perhaps excitotoxicity [35]. In an MPTP mouse 
model of PD, α-synuclein is nitrated [50], giving another 
connection between MPTP and PD. In any case, regardless 
of the majority of the proof of connections among MPTP 
and PD, there are contrasts between MPTP models of PD 
and idiopathic PD with varieties in sickness movement, an 
intense beginning, and the absence of normal LB develop-
ment [69].

Conclusion

PD is a complex neurodegenerative disorder with various 
etiological factors involved in the pathogenesis. There are 
many pathways that play a vital role in modulating path-
ogenic events that lead to the death of the dopaminergic 

Fig. 3  Schematic representation 
of various toxin-induced animal 
model of PD
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neurons in PD. Curiously, these pathways affect the neuronal 
dopaminergic cell function and survival. The role of neuro-
inflammation and mitochondrial dysfunctions is the overall 
inability of available animal models to predict accurately the 
outcomes of trials that test neuroprotection in human beings.
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