
ORIGINAL ARTICLE

A nomogram to predict rupture risk of middle cerebral
artery aneurysm

Jinjin Liu1
& Yongchun Chen1

& Dongqin Zhu1
& Qiong Li1 & Zhonggang Chen1

& Jiafeng Zhou1
& Boli Lin1

&

Yunjun Yang1
& Xiufen Jia1

Received: 20 January 2021 /Accepted: 10 April 2021
# Fondazione Società Italiana di Neurologia 2021

Abstract
Background Determining the rupture risk of unruptured intracranial aneurysm is crucial for treatment strategy. The purpose of
this study was to predict the rupture risk of middle cerebral artery (MCA) aneurysms using a machine learning technique.
Methods We retrospectively reviewed 403MCA aneurysms and randomly partitioned them into the training and testing datasets
with a ratio of 8:2. A generalized linear model with logit link was developed using training dataset to predict the aneurysm rupture
risk based on the clinical variables and morphological features manually measured from computed tomography angiography. To
facilitate the clinical application, we further constructed an easy-to-use nomogram based on the developed model.
Results Ruptured MCA aneurysm had larger aneurysm size, aneurysm height, perpendicular height, aspect ratio, size ratio,
bottleneck factor, and height-width ratio. Presence of a daughter-sac was more common in ruptured than in unruptured MCA
aneurysms. Six features, including aneurysm multiplicity, lobulations, size ratio, bottleneck factor, height-width ratio, and
aneurysm angle, were adopted in the model after feature selection. The model achieved a relatively good performance with
areas under the receiver operating characteristic curves of 0.77 in the training dataset and 0.76 in the testing dataset. The
nomogram provided a visual interpretation of our model, and the rupture risk probability of MCA aneurysms can be directly
read from it.
Conclusion Our model can be used to predict the rupture risk of MCA aneurysm.
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Introduction

Unruptured intracranial aneurysms are detected with greater
frequency with the improvement of modern imaging tech-
nique, such as digital subtraction angiography, magnetic res-
onance angiography, and 3-dimensional computerized tomog-
raphy angiography (CTA) [1]. Aneurysm rupture is a devas-
tating disease and is associated with a high morbidity and
mortality [2, 3]. The management of these unruptured intra-
cranial aneurysms is still controversial because of the
treatment-related fatality and morbidity [4, 5]. Therefore,

determining the aneurysm rupture risk is of great importance
to make treatment decision for unruptured intracranial
aneurysms.

In recent years, many risk factors have been found to be
associated with aneurysm rupture. These risk factors include
clinical characteristics, such as age, smoking, and aneurysm
multiplicity [6–8], and aneurysmmorphological features, such
as aneurysm size, aspect ratio, and wall irregularity [9–14].
However, the relationship among the risk factors and aneu-
rysm rupture risk is complex; accurately predicting the aneu-
rysm rupture risk is challenging. As a powerful and promising
tool, machine learning technique is capable of identifying
complex relationships in large datasets [15, 16], which makes
it suited to the task of aneurysm rupture risk evaluation. In
recent years, machine learning has been applied to aneurysm
risk prediction. A two-layer feed-forward neural network was
proposed to predict the rupture risk of anterior communicating
artery aneurysms and achieved a good prediction accuracy
[17]. Linear and ridge regression models were developed to
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predict the stability of 420 aneurysms at different locations
using morphological features extracted from PyRadiomics
[18]. Most recently, support vector machine, random forest,
and feed-forward artificial neural networks have been adopted
for aneurysm stability assessment [19]. All the aforemen-
tioned machine learning algorithms were applied to either an-
terior communicating artery aneurysm or aneurysms at several
locations. Aneurysm rupture risk was location dependent [20].
Few studies currently focus on the aneurysm rupture risk as-
sessment using a large dataset of middle cerebral artery
(MCA) aneurysms, although approximately 35% of all intra-
cranial aneurysm are MCA aneurysms [21]. Moreover, these
machine learning models behaved like black boxes and could
not be interpretable, which might limit their application in
clinics. Therefore, the purpose of this study was to evaluate
the MCA aneurysm rupture risk using a machine learning
method and provide a nomogram that can be practically uti-
lized for clinical applications.

Materials and methods

Patients

This study was approved by our hospital ethics committee,
and written informed consent was waived. A total of 472
patients with MCA aneurysm were found from the
Electronic Medical Record System from January 2009 to
October 2016. Patients were excluded if they had fusiform
MCA aneurysms, or Moyamoya disease, or arteriovenous
malformations. To ensure the accuracy of morphology mea-
surement, we excluded those with poor image quality.

Image acquisition and morphology definition

We adopted three CT scanner for image acquisition, including
a 320-detector row CT scanner (Aquilion ONE, Toshiba
Medical Systems, Tochigi, Japan) with a section thickness
of 0.5 mm and a reconstruction interval of 0.5 mm, a 64-
channel multidetector CT scanner (LightSpeed VCT 64,
General Electric Medical Systems, Milwaukee, WI, USA)
with a section thickness of 0.625 mm and a reconstruction
interval of 0.625 mm, and a 16-channel multidetector CT
scanner (LightSpeed pro 16, General Electric Medical
Systems, Milwaukee, WI, USA) with a section thickness of
1.25 mm and a reconstruction interval of 0.625 mm.

We reconstructed three-dimensional aneurysms from CTA
images using GE Workstation ver. 4.6 and manually mea-
sured lengths and angles related to aneurysm features.
Figure 1 illustrates the measurement of vessel size, aneurysm
height, aneurysm width, perpendicular height, flow angle,
vessel angle, parent-daughter angle, and aneurysm angle.
Vessel size was determined as the average cross-sectional

diameter of all arteries associated with the aneurysm. The
cross-sectional diameter of a particular vessel diameter was
measured by averaging the cross-sectional diameter of the
artery proximal to the aneurysm neck (Via) and the cross-
sectional diameter at 1.5XVia away from the aneurysm neck
(Vib) (see Fig. 1), i.e., (Via+Vib)/2, i = 1, 2, or 3. Aneurysm
size is the largest cross-sectional length of the aneurysm
dome. Aneurysm height is the greatest distance from the cen-
ter of the aneurysm neck to aneurysm dome, whereas the
perpendicular height is the largest perpendicular distance from
the center of aneurysm neck to the aneurysm dome. Aneurysm
width is the maximal diameter perpendicular to the aneurysm
height. Height-width ratio was calculated as the ratio of aneu-
rysm width to aneurysm neck. Aspect ratio was defined as the
ratio between the perpendicular height and the aneurysm neck
size. Size ratio was calculated as the ratio of the aneurysm
height to the vessel size. Bottleneck factor is the ratio between
aneurysm width and neck size. In addition, 4 angle-related
parameters were measured. Flow angle is the angle between
the aneurysm height line and the vector of the blood flow in
the parent artery; vessel angle is the angle between the vector
of the blood flow and the aneurysm neck line; aneurysm angle
represents the angle between the aneurysm neck line and the
aneurysm height line; parent-daughter angle is the angle be-
tween the vector of the blood flow through the daughter vessel
and the vector of the blood flow through the parent vessel.

Aneurysm lobulations include three types, i.e., regular, ir-
regular, and daughter-sac types [17]. Locations of MCA an-
eurysms were divided into 4 groups: (1). aneurysms arising on
the main trunk (M1) of the MCA, between the bifurcation of
internal carotid artery and the main MCA bifurcation, at the
origin of lenticulostriate arteries (M1-LSAAs), (2) aneurysms
arising on M1 at the origin of early cortical branches (M1-
ECBAs), (3) aneurysms at the main MCA bifurcation
(MbifAs), and (4) aneurysms distal to the main MCA bifurca-
tion on M2, M3, or M4 segments (MdistAs) [22]. The main
projection of the MCA aneurysm [12] was determined as fol-
lows: in the axial CTA view, the aneurysm domewas grouped
as anterior (in front of theMCA), posterior (behind theMCA),
or neutral (neither anterior nor posterior projection); in the
coronal CTA view, the aneurysm dome was categorized as
superior (toward frontal lobe), inferior (toward temporal lobe),
or neutral (neither superior nor inferior projection).

Model development

In this study, 80% of the included aneurysms were randomly
chosen as the training dataset, and the rest were used for test.
Number of features was reduced by evaluating the correlation
between the features and the class, and the remaining features
were further filtered by using univariate analysis. The follow-
ing features were finally chosen: multiplicity, aneurysm lobu-
lations, size ratio, bottleneck factor, height-width ratio, and
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aneurysm angle. A generalized linear model with logit link
(https://www.rdocumentation.org/packages/stats/versions/3.
6.2/topics/glm) was developed using the selected features.
The prediction accuracy of the model was quantified by the
sensitivity, specificity, and the area under the receiver
operating characteristic (ROC) curve (AUC). For the purpose
of clinical application, we further constructed a nomogram on
the basis of the developed model. A nomogram represents a
graphical calculation instrument that facilitates the approxi-
mate computation of a mathematical function via intersecting
lines and is designed to extract the maximum amount of in-
formation from data and provide a quick approximation of the
output probability [23, 24]. R statistical software (version 3.6.
1) was used for model development.

Statistical analysis

Categorical variables were presented as the frequency
(percentage) and continuous variables as mean ± standard
deviation. Student t-test or Mann-Whitney U tests were
adopted for comparisons of continuous variables, and Fisher
exact tests or χ2 tests were applied for comparisons of cate-
gorical variables. A P value less than 0.05 was considered
statistically significant. All data was analyzed using the soft-
ware package SPSS 22.0 (IBM Corp, Armonk, New York).

Results

Baseline characteristics

A total of 403 patients were enrolled in this study. Of these
patients, the mean age was 56.5 years old, and 231 (57.3%)

were women. One hundred and thirty patients had multiple
aneurysms. Table 1 shows patients’ baseline information be-
tween the ruptured and unruptured MCA aneurysms. Patients
with ruptured aneurysms were significantly more likely to be
younger (55.1 vs. 59.5 years old), whereas patients with
unruptured aneurysm were significantly more likely to have
multiple aneurysms (p < .001).More female patients and more
smoking patients had ruptured aneurysms, although the dif-
ferences were not statistically significant. The main MCA
bifurcation was the most common location for both ruptured
and unruptured aneurysms, and patients with aneurysms at the
main MCA bifurcation were more likely to be ruptured.

Morphologic characteristics between ruptured and
unruptured MCA aneurysms

Table 2 demonstrates the comparison of morphological char-
acteristics between ruptured and unruptured aneurysms.
Aneurysm size, aneurysm height, and perpendicular height
were significantly higher in ruptured aneurysms than in
unruptured ones (P<0.05), which implied that larger an-
eurysms were prone to be unstable. Four ratios, includ-
ing aspect ratio, size ratio, bottleneck factor, and height-
width ratio, were all significantly higher in ruptured
aneurysms than in unruptured ones (P<0.05) .
Aneurysm angle and flow angle were significantly dif-
ferent between the ruptured and unruptured aneurysms.
Aneurysm lobulations was significantly different be-
tween the ruptured and unruptured aneurysms.
Unruptured aneurysms were more frequently regular
type (70.4% versus 46.4%), whereas ruptured aneurysm
were more frequently daughter-sac type (29.5% versus
10.4%).

Fig. 1 Measurements of
aneurysm morphological
features: Via and Vib (i = 1, 2, 3),
cross-section diameter of the ar-
tery; Hmax, aneurysm height
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Nomogram for predicting rupture risk of MCA
aneurysm

The generalized linear model adopted six variables, including
aneurysm multiplicity, aneurysm lobulations, size ratio, bot-
tleneck factor, height-width ratio, and aneurysm angle.
Figure 2 represents the use of a nomogram to visually interpret
the developed model. Application of this nomogram is simple.
One can read the scoring points from the “Point” reference
line according to the variable values, including aneurysmmul-
tiplicity, aneurysm lobulations, size ratio, bottleneck factor,
height-width ratio, and aneurysm angle. The total points can
be obtained by summing the points of each variable.
According to the total points, the predicted probability of rup-
ture risk can be read at the bottom “Probability” line.

Table 3 summarizes the prediction performance of the gen-
eralized linear model. Figure 3 illustrates the ROC curves of
the developed model for both training and test datasets. The
model achieved a sensitivity of 0.73 and a specificity of 0.71
in the training dataset and a sensitivity of 0.75 and a specificity
of 0.72 in the test dataset. The areas under ROC curves were
0.77 (95% CI, 0.71–0.83) and 0.76 (95% CI, 0.65–0.88) for
the training and testing datasets, respectively.

Discussion

In this study, we measured the morphological features of
MCA aneurysm and developed a generalized linear model to
predict the rupture risk of MCA aneurysm based on the mea-
sured morphological features. The model achieved a good
prediction performance with AUC of 0.77 in training dataset

and 0.76 in testing dataset. A nomogram was further provided
to facilitate the practical application of this model in clinics.

Six features, including aneurysm multiplicity, aneurysm
lobulations, size ratio, bottleneck factor, height-width ratio,
and aneurysm angle, were adopted in our prediction model.
Multiple aneurysms were more commonly seen in unruptured
aneurysms [18], and aneurysm multiplicity was significant
factor for rupture of small aneurysm [7]. Aneurysm lobula-
tions reflect the irregularity of an aneurysm dome. Our study
found that the presence of a daughter-sac was more common
in ruptured aneurysms. Previous study [25] showed the strong
correlation between the presence of a daughter-sac and the
rupture of MCA aneurysms. The presence of a daughter an-
eurysmwas a likely path to aneurysm rupture. Amathematical
model revealed that the tensile stress in the daughter aneurysm
wall first decreased to protect against rupture as the daughter
aneurysm developed, and further growth of the daughter an-
eurysm resulted in an increase of stress and eventually led to
rupture [26]. Size ratio, bottleneck factor, and height-width
ratio have been reported to be related to aneurysm rupture
[12]. In our study, all these three ratios were significantly
higher in ruptured than in unruptured MCA aneurysms.
Aneurysm angle has been shown to be a promising morpho-
logical metric for intracranial aneurysm rupture risk assess-
ment [27].

Great efforts have been exerted for evaluating the aneu-
rysm rupture risk. Morphological analysis, hemodynamic
analysis, and clinical factor assessment have been performed
to find the risk factors of aneurysm rupture [27–29]. A few
approaches, such as scoring system and machine learning
models, have been proposed to predict the aneurysm rupture
risk using these risk factors. A PHASES score system [6] has
been developed from a prospective cohort study. This score

Table 1 Baseline characteristics
All (n = 403) Unruptured (n=125) Ruptured (n=278) P value

Sex (women) 231 (57.3%) 65 (52.0%) 166 (59.7%) 0.156

Age 56.5±11.7 59.5±10.7 55.1±11.9 < 0.001

Smoking (yes) 98 (24.3%) 27 (21.6%)a 71 (25.5%) b 0.515

Multiple (yes) 130 (32.3%) 66 (52.8%) 64 (23.0%) < 0.001

Location* <0.001

M1-LSAAs 13 (3.2%) 10 (8.0%) 3 (1.1%)

M1-ECBAs 98 (24.3%) 35 (28.0%) 63 (22.6%)

MbifAs 280 (69.5%) 73 (58.4%) 207 (74.5%)

MdisAs 12 (3.0%) 7 (5.6%) 5 (1.8)

a 38 missing values
b 25 missing values

*M1-LSAAs, aneurysms arising on the main trunk (M1) of the MCA, between the bifurcation of internal carotid
artery and the main MCA bifurcation, at the origin of lenticulostriate arteries; M1-ECBAs, aneurysms arising on
M1 at the origin of early cortical branches;MbifAs, aneurysms at themainMCAbifurcation;MdistAs, aneurysms
distal to the main MCA bifurcation on M2, M3, or M4 segments
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system used age, hypertension, a history of subarachnoid
hemorrhage, aneurysm size, aneurysm location, and geo-
graphical region as predictors and was found to be an easily
applicable aid for the aneurysm rupture analysis. Recent stud-
ies [30, 31], however, demonstrated that the PHASES score
might only provide a weak tool for evaluating aneurysm

rupture risk, and parameters beyond the features of the
PHASES score might be needed to improve the prediction
accuracy. With the advance of artificial intelligence, machine
learning technique has been applied for aneurysm rupture risk
prediction. A feed-forward artificial neural network was suc-
cessfully used to predict the rupture risk of anterior

Table 2 Morphological
characteristics between ruptured
and unruptured MCA aneurysm

All (n=403) Unruptured (n=125) Ruptured (n=278) P value

Aneurysm size (mm) 6.49±3.27 5.76±3.33 6.82±3.20 0.002

Vessel size (mm) 2.30±0.58 2.40±0.63 2.27±0.55 0.036

Aneurysm height (mm) 4.99±2.83 4.17±2.99 5.35±2.68 <0.001

Perpendicular height (mm) 4.10±2.49 3.59±2.78 4.33±2.32 0.006

Width (mm) 4.71±2.55 4.41±2.59 4.85±2.52 0.112

Neck size (mm) 3.92±1.62 4.00±1.63 3.88±1.61 0.499

Aspect ratio 1.09±0.58 0.92±0.59 1.17±0.56 <0.001

Size ratio 2.34±1.58 1.80±1.30 2.58±1.63 <0.001

Bottleneck factor 1.24±0.56 1.12±0.52 1.30±0.57 0.004

Height-width ratio 0.87±0.23 0.79±0.20 0.91±0.24 <0.001

Aneurysm angle 64.2±19.0 67.9±18.4 62.6±10.1 0.01

Vessel angle 62.1±32.1 55.7±28.7 64.9±33.2 0.008

Flow angle 134.3±29.1 132.7±29.6 135.1±29.0 0.462

Parent-daughter angle 79.3±23.3 80.4±24.2 78.8±23.0 0.525

Aneurysm lobulations <0.001

Regular type 217 (53.8%) 88 (70.4%) 129 (46.4%)

Irregular type 91 (22.6%) 24 (19.2%) 67 (24.1%)

Daughter-sac type 95 (23.6%) 13 (10.4%) 82 (29.5%)

Projection in axial CTA 0.117

Anterior 221 (54.8%) 59 (47.2%) 162 (58.3%)

Posterior 73 (18.1%) 27 (21.6%) 46 (16.5%)

Neutral 109 (27%) 39 (31.2%) 70 (25.2%)

Projection in coronal CTA 0.990

Superior 118 (29.3%) 36 (28.8%) 82 (29.5%)

Inferior 128 (31.8%) 40 (32.0%) 88 (31.7%)

Neutral 157 (39.0%) 49 (39.2%) 108 (38.8%)

Hypoplastic A1 0.996

No 315 (78.2%) 98 (78.4%) 217 (78.1%)

Ipsilateral 46 (11.4%) 14 (11.2%) 32 (11.5%)

Contralateral 42 (10.4%) 13 (10.4%) 29 (10.4%)

Hypoplastic PCoA 0.864

No 69 (17.1%) 21 (16.8%) 48 (17.3%)

Ipsilateral 56 (13.9%) 15 (12.0%) 41 (14.7%)

Contralateral 63 (15.6%) 19 (15.2%) 44 (15.8%)

Both 215 (53.3%) 70 (56.0%) 145 (52.2%)

Fetal PCoA 0.974

No 292 (72.5%) 91 (72.8%) 201 (72.3%)

Ipsilateral 39 (9.7%) 13 (10.4%) 26 (9.4%)

Contralateral 45 (11.2%) 13 (10.4%) 32 (11.5%)

Both 27 (6.7%) 8 (6.4%) 19 (6.8%)

MCA middle cerebral artery, CTA computed tomography angiography, PCoA posterior communicating artery
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communicating artery aneurysms based on patients’ basic
characteristics and aneurysm morphological features [17].
Random forest, linear support vector machine, and radial basis
function kernel support vector machine models were applied
to classify aneurysm rupture status at different locations, and it
was found that aneurysm location and size were the strongest
predictors of aneurysm rupture and machine learning models
were robust tools in predicting aneurysm rupture risk [32].
Linear, ridge, and lasso regression models were developed
to predict the stability of 420 aneurysms at different locations
based on PyRadiomics-derived morphological features; it was
found that the extracted features were useful for aneurysm
stratification and the developed models could be used for the
prediction of aneurysm stability [18]. Recently, a random for-
est machine learning algorithm was applied to classify the
rupture status of 226 intracranial aneurysms at different loca-
tions using only morphologic variables (model 1), only hemo-
dynamic parameters (model 2), and both morphologic and
hemodynamic parameters (model 3); corresponding accuracy
was 77.0% for model 1, 71.2% for model 2, and 78.3% for
model 3 [33]. These machine learning methods mentioned
above were applied in either anterior communicating artery
aneurysm or aneurysms at different locations. To date, appli-
cation of machine learning technique to predict the rupture
risk of MCA aneurysm has been rarely reported. In this study,

we enrolled 403MCA aneurysms. A generalized linear model
was constructed to predict the rupture risk of MCA aneurysm,
and a relatively good prediction performance was achieved.
More important, a nomogram, as a model visualization figure,
provided a simple and easy tool for the practical application of
the developed model in clinics.

Limitations

There were several limitations in this study. First, this was
retrospective and single-center study, and only Chinese pop-
ulation were involved. Previous research has shown that an-
eurysm rupture risk is population dependent [6].
Generalization of our model to other population may not be
satisfied. Second, aneurysm growth is a dynamic process, and
aneurysm may evolve before rupture. However, we did not
perform long-term follow-up study to monitor unruptured an-
eurysm over time because of the ethical dilemma and patients’
safety issue [34]. Third, we did not test our model using ex-
ternal dataset. Further external validation in a large indepen-
dent population is still required. Finally, our model includes
only radiological data regarding the aneurysms, and no clini-
cal data are included, which may limit the application of our
model. Many clinical factors have been reported to be associ-
ated with intracranial aneurysm rupture [35, 36]; however,

Fig. 2 Nomogram to predict the
rupture risk of MCA aneurysms.
Aneurysm multiplicity: 1 (single
aneurysm) and 2 (multiple
aneurysms). Aneurysm
lobulations: 1 (regular type), 2
(irregular type), and 3 (daughter-
sac type)

Table 3 Prediction accuracy of
the developed model Dataset Sensitivity Specificity AUC (95% confidence interval)

Training dataset 0.73 0.71 0.77 (0.71–0.83)

Testing dataset 0.75 0.72 0.76 (0.65–0.88)

AUC area under the receiver operating characteristic curve
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only several clinical parameters were considered in this study
due to the retrospective design. Future work considering more
clinical data is still needed. Nevertheless, our work may be
considered as a starting point for the development of further
clinical-radiological models that may guide physicians to
make treatment decision for each single patient.

Conclusions

In summary, we examined the risk factors from a large MCA
aneurysm dataset and developed a classification machine
learning model to predict rupture status of MCA aneurysms.
In addition, we constructed an easy to use nomogram tool for
the practical application purpose, which might facilitate the
treatment optimization.
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