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Abstract

The diagnosis of amyotrophic lateral sclerosis (ALS) requires both upper and lower motor neuron signs. However, quite a few
patients with ALS lack the upper motor neuron sign during the disease. This study sought to investigate whether metabolites,
including glutamate (Glu), N-acetyl aspartate (NAA), and gamma aminobutyric acid (GABA), in the supplementary motor area
(SMA) measured by magnetic resonance spectroscopy (MRS), could be a surrogate biomarker for ALS. Twenty-five patients
with ALS and 12 controls underwent 3.0-T MR scanning, which measured Glu, NAA, and GABA. Finally, receiver operating
characteristic (ROC) curves were created and the area under curve (AUC) was calculated to assess the diagnostic power. Logistic
regression analysis revealed the usefulness of both Glu and NAA for the differentiation of ALS from controls (Glu, P = 0.009; NAA, P
=0.033). The ratio of Glu to NAA or GABA was significantly increased in patients with ALS (GIw/NAA, P =0.027; Glu/GABA, P=
0.003). Both the AUCs were more than 0.7, with high specificity but low sensitivity. The present findings might indicate that both the

Glu/NAA and the GIu/GABA ratios in the SMA could be potential biomarkers for the diagnosis of ALS.
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Introduction

The clinical diagnosis of amyotrophic lateral sclerosis (ALS)
requires both upper and lower motor neuron signs. The upper
motor neuron signs depend on excitability of the neurons in the
primary motor cortex and anterior horn of the spinal cord, and the
volume of the muscles. These factors change during disease
progression and contribute to the clinical presentation of upper
motor neuron signs, which might be associated with the ALS
cases without upper motor neuron signs during the disease
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course. Indeed, one pathological study reported that 84.6% of
the patients with primary muscular atrophy, one of the motor
neuron diseases without upper motor neuron signs, showed de-
generation of the upper motor neurons [1]. There are concerns
that quite a few patients actually having ALS are not diagnosed
with ALS because of the lack of upper motor neuron signs and
thus fail to subsequently receive future effective therapies. To
address this issue, surrogate biomarkers are required for upper
motor neuron signs. Magnetic resonance spectroscopy (MRS) is
an emerging method for the assessment of metabolites, including
glutamate (Glu), N-acetyl aspartate (NAA), and gamma
aminobutyric acid (GABA), as candidate biomarkers [2]. Glu-
induced excitotoxicity is accepted as one of the causes of ALS
[3]. Previous studies have focused on metabolites measured by
MRS in the primary motor cortex (M1), as M1 is key to the
pathology/pathophysiology of ALS [4-21]. The Mls in the
two hemispheres are distant from each other; therefore, a double
scan is needed to measure the metabolites, and leads to prolon-
gation of scan time. In contrast, the supplementary motor area
(SMA) allows for a single scan to measure the metabolites on
both sides. Given the frontotemporal-lobar-degeneration-ALS
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spectrum [22], SMA is expected to be another key player in
ALS. Additional measurements in the SMA, derived from both
diffusion tensor imaging (DTI) and resting state functional MRI,
could further improve accuracy for the diagnosis of ALS. We
aimed at investigating whether the abnormalities in metabolites
including Glu and GABA, and in the MRI-derived measure-
ments, were detectable in the SMA of patients with ALS.

Material and methods
Subjects

A total of 37 subjects were consecutively recruited from the
Department of Neurology of the Tokushima University
Hospital between August 2014 and March 2018. All sub-
jects underwent both MRI and MRS. We obtained data on
age, sex, handedness, disease duration from symptom on-
set, disease severity, and mini-mental state examination
(MMSE) scores. Furthermore, the revised El Escorial
criteria were used for the clinical diagnosis of ALS. All
patients satisfied the clinical diagnostic criteria of possi-
ble, probable-laboratory-supported, probable, or definite
ALS. In addition, 6 of 25 patients were pathologically
diagnosed with ALS. The progression rate was calculated
according to the following formula: (48 - ALS functional
rating scale revised (ALSFRS-R))/disease duration from
symptom onset. In contrast, subjects with an aging brain
MRI and without neurological deficits were defined as
normal controls. The features of the included subjects
are shown in Table 1.

Image acquisition

Images were acquired on a 3.0-T Discovery 750 scanner (GE,
Milwaukee, WI) equipped with a standard head coil. Scan pa-
rameters have been separately described in the following section.

MRS

T2-weighted images were acquired before the 1H-MRS ex-
amination, and a single volume of interest (VOI: 30 x 30 x 30

mm) was included in the SMA (Fig. 1a). IH-MR spectra were
obtained using a point resolved echo spectroscopic sequence
(PRESS) with the following parameters: repetition time (TR)
= 2000 ms, echo time (TE) = 30 ms, and number of signals
averaged = 128, to measure the concentration of both Glu and
NAA (Fig. 1b). A Mesher-Garwood PRESS (MEGA-PRESS)
was used to determine the GABA concentration with the fol-
lowing parameters: TR = 1500 ms, TE = 30 ms, and number
of'signals averaged = 256 (Fig. 1¢). Metabolite concentrations
were estimated by the LCModel (version 6.3) and quantified
using Cramer-Rao lower bounds (CRLB), which yield the
estimated error of the metabolite quantification [19]. The mea-
sured values with CRLB below 20% were included in the
analyses for Glu and NAA, while those with a CRLB below
25% were included in the analyses for GABA. One patient
was missing Glu concentration due to large CRLB.

DTI

Scan parameters included a diffusion gradient direction of 33,
b value of 800 s/mm?, field of view (FOV) of 240 mm, matrix
of 128 x 128, TR of 15,000 ms, TE of 84.9 ms, flip angle of
90, and slice thickness of 2.5 mm. Details on image prepro-
cessing have been described elsewhere [23]. Briefly, FA maps
were generated after both correction of Eddy current-induced
distortions and head motion, and extraction of non-brain tis-
sue. Non-linear registration was employed for automatic cal-
culation of the FA value in the SMA followed by smoothing
(8 x 8 x 8 mm® kernel). The VOI of the SMA was derived
from an automated anatomical labeling (AAL) atlas (Fig. 1d)
[24]. The FA value was the mean in the SMA. Two patients
were missing FA maps, either because of an extremely large
distortion or discontinuation of the scan.

Resting state functional MRI

Details of the methods of image acquisition and preprocessing
have been described elsewhere [25, 26]. Scan parameters were
as follows: FOV, 240 mm; matrix, 64 x 64; TR, 2000 ms; TE,
27.2 ms; flip angle, 77; slice thickness, 3.0 mm. All volumes
were subjected to motion correction, slice-timing correction,
and non-linear registration to the Montreal Neurological

Table 1 Characteristics of the included subjects (mean =+ standard deviation)

Group Male Age—years MMSE Disease ALSFRS-  Progression Clinical diagnosis (pathological
(female) duration—years R rate diagnosis)

Control 5 (7) 66.2+15.75 283+1.60 NA NA NA NA

ALS 18(7) 67.7+10.33 262+248 1.36+0.90

38.8+6.01 8.7+9.37 3 DEF (1); 10 PRO (3);

4 CPLS (1); 8 POS (1)

Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, amyotrophic lateral sclerosis functional rating scale revised; DEF, definite; NA, not
available; PLS, probable-laboratory-supported; POS, possible; PRO, probable
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Fig. 1 VOIs for both MRS and MRI, and spectra. The MRS VOI in the
SMA (a). The MRS spectra of PRESS (b) and MEGA-PRESS (c). The
VOI in the SMA for DTTand RS-fMRI (d). GABA, gamma aminobutyric
acid; Gln, glutamine; Glu, glutamate; DTI, diffusion tensor imaging;
MEGA-PRESS, Mesher-Garwood point resolved echo spectroscopic

Institute (MNI-152: 2 x 2 x 2 mm®) template [27]. The time
series for each voxel was temporally band-pass filtered (0.01—
0.08 Hz) to remove the effects of very-low-frequency drift and
high-frequency respiratory and cardiac noise [28, 29].
Regional homogeneity (ReHo) is a method to measure region-
al synchronization of the blood oxygen level-dependent
(BOLD) signal across the whole brain using Kendall’s coeffi-
cient of concordance, which assumes that synchronization of
the BOLD signal within a functional cluster could be changed
or modulated by different conditions [30]. Individual ReHo
maps were divided by each mean value of the ReHo and were
then smoothed with a Gaussian filter of 8 mm full width at
half-maximum (FWHM). The VOI of the ReHo was the same
as that of the DTI (Fig. 1d). Two patients were missing their
ReHo maps, either because of artifacts or because of discon-
tinuation of the scan.

Statistics

This study was performed according to STARD recommen-
dation. The between-group difference was analyzed using a
two-sided unpaired Student’s ¢ test. Furthermore, forward
stepwise logistic regression analysis was used as a

Chemical shift (ppm)

2 1

sequence; MRS, magnetic resonance spectroscopy; NAA, N-acetyl as-
partate; PRESS, point resolved echo spectroscopic sequence; RS-fMRI,
resting state functional magnetic resonance imaging; SMA, supplemen-
tary motor cortex; VOI, volume of interest

multivariate analysis to determine which factors contributed
to the diagnosis of ALS with the maximum likelihood estima-
tion technique. The factors used for multivariate analysis were
GABA, Glu, NAA, ReHo, FA, sex, and age. Pearson’s prod-
uct moment correlation coefficient was used for correlation
analysis between two factors, such as GABA, Glu, NAA,
ReHo, FA, age, discase duration, ALSFRS-R, progression
rate, and MMSE. Each receiver operating characteristic
(ROC) curve was created and an area under curve (AUC)
was calculated to assess the diagnostic power. We defined a
P value of less than 0.05 as statistically significant. All statis-
tical analyses were performed using the Statistical Package for
the Social Sciences version 21 (IBM, Armonk, NY).

Results

Neither metabolites, FA, nor ReHo reach significant differ-
ence between groups, although Glu, NAA, GABA, and
ReHo tended to show significant differences (Glu, P =
0.103; NAA, P = 0.138; GABA, P = 0.202; ReHo, P =
0.064; FA, P = 0.600; Fig. 2a and supplementary Fig. 1A).
Specifically, the ratio of Glu to NAA or GABA was
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Fig. 2 Group differences in Glu, NAA, GABA, and the Glu/NAA and
Glu/GABA ratios. Logistic regression analysis revealed significant dif-
ferences in Glu and NAA between groups (a). Both the Glu/NAA and
Glu/GABA ratios were found to be significantly increased in the ALS
group when compared with the control group. Furthermore, the ROC

significantly increased in patients with ALS when compared
with control subjects (Glu/NAA, P = 0.027; Glu/GABA, P =
0.003; Fig. 2b). This result indicated an increased concentra-
tion of Glu and a decreased concentration of NAA and GABA
in the ALS group when compared with the control group.
Both the AUCs were more than 0.7, with high specificity,

curve demonstrated a moderate accuracy of the ratios for the diagnosis
of ALS (b). ALS, amyotrophic lateral sclerosis; Ctr, control; GABA,
gamma aminobutyric acid; Glu, glutamate; NAA, N-acetyl aspartate;
ROC, receiver operating characteristic. # and * indicate significant dif-
ference with logistic regression analysis and Student’s ¢ test, respectively

suggesting that both the Glu/NAA and the Glu/GABA ratios
were suitable for definitive diagnosis (Glu/NAA, AUC =0.74,
P =0.019, cut off = 0.95, sensitivity = 0.50, specificity =
0.917; Glu/GABA, AUC = 0.71, P = 0.048, cut off = 3.93,
sensitivity = 0.54, specificity = 0.917; Fig. 2b). Furthermore,
logistic regression analysis revealed the usefulness of Glu and
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NAA for the differentiation between ALS and controls (om-
nibus test of model coefficients, P = 0.004; Glu, P = 0.009,
odds ratio = 2.10; NAA, P = 0.033, odds ratio = 0.33;
Hosmer-Lemeshow goodness-of-fit, P = 0.115; GABA, P =
0.258; ReHo, P =0.292; FA, P =0.816; Sex, P =0.261; Age,
P =0.850; Fig. 2a). Finally, there were significant correlations
between NAA and age or Glu, and between FA and ReHo
(NAA against Age, P =0.049, » =—0.40; NAA against Glu, P
=0.001,»=0.65; FA against ReHo, P <0.001,»=0.70; Fig. 3
and supplementary Fig. 1B).

Discussion

The VOI in the SMA allowed for a single measurement of the
metabolite concentration on both sides, in contrast to the dou-
ble measurement required for the VOI in the M1. In this study,
the VOI in the SMA helped measure the concentrations of
Glu, NAA and GABA, and revealed an increased concentra-
tion of Glu and a reduced concentration of NAA in the pa-
tients with ALS. Specifically, both the GIu/NAA and Glu/
GABA ratios were elevated in the ALS group when compared
with the control group. Multivariate analysis demonstrated
that the combination of Glu and NAA was best to differentiate
patients with ALS from the controls, whereas the univariate
analysis did not show any significant difference in each level
of either the Glu or the NAA between the groups due to a lack
of statistical power. Several lines of evidence suggest the pres-
ence of reduced levels of NAA in several regions, including
the M1, in ALS [4-15, 17, 20, 21], while results of Glu or GIx
(Glu + glutamine) were heterogeneous. Previous studies re-
ported a decreased level of Glx in the medulla [5], an in-
creased level of Glx and Glu in the M1 [15, 16], no significant
difference in Glx or Glu in the M1, occipital cortex or
brainstem [4, 31], and a decreased level of Glu in the M1
[6]. Furthermore, a 7-T MRI was applied to assess Glu con-
centration, and previous studies reported two different re-
sults: one reported no significant difference in the M1 or
pons [21]; the other reported reduced level of Glu in the
M1 [20]. The results on Glu concentration were heteroge-
neous in the M1, in spite of the 7-T MRI, although one
longitudinal study reported the association of dynamic
changes in motor cortex NAA with progression of upper
limb function, and in pons Glx with progression of bulbar
function [32]. Excitotoxicity is considered to play a key
role in ALS pathophysiology from the point of view of
Glu [3]. Riluzole, an inhibitor of Glu release, is one op-
tion for the treatment of patients with ALS on the basis of
the concept of Glu-induced excitotoxicity [3]. Glu con-
centration in the cerebrospinal fluid was increased in pa-
tients with ALS [33], and knock-down of the metabotro-
pic glutamate receptor 1 prolonged the survival of mouse
model of ALS [34]. Given these results, Glu

concentration was expected to be elevated in the brain
of patients with ALS and to contribute to the pathophys-
iology underlying excitotoxicity. The increased ratio of
Glu/NAA might imply that glutamatergic neurons were
less vulnerable to excitotoxicity than other types of neu-
rons in ALS if Glu and NAA indicated the number of
glutamatergic neurons and all types of neurons, respec-
tively [19]. Alternatively, the extracellular concentration
of Glu might be increased due to dysfunction of glial
glutamate transporter [35].

A reduced concentration of GABA in the M1 was repeat-
edly reported by one group [16—18]. GABA concentration in
the SMA tended to be decreased when compared with con-
trols, although it did not reach the statistical significance.
However, the Glu/GABA ratio was significantly increased,
which suggested a reduction in GABA concentration in the
SMA. More number of subjects are needed to determine
whether the GABA concentration is decreased or not in pa-
tients with ALS. The results of FA and ReHo showed the
same tendency described for GABA concentration.

Of note, the VOI in the SMA reduced the frequency
of measurement, given that one scan provides the con-
centration in both sides of the brain. Considering that
the frontotemporal lobar degeneration spectrum includes
ALS [22], it is pertinent to generate the SMA VOI for
detection of abnormalities in ALS. This was supported
by several studies using neuroimaging [23, 36-39].
Decreased FA [23, 36, 38], hyperactivity within a
sensori-motor network [37], and cortical thinning was
reported in the SMA [39]. Furthermore, microglial acti-
vation was reported in the SMA as well as in the Ml
[40]. Collectively, the method used here is thought to
be biologically and technically plausible for future clin-
ical practice and research.

The limitations of this study will now be highlighted.
A moderate number of subjects could lead to a lack of
sufficient statistical power. As previously discussed
[19], the source of Glu concentration was not distin-
guished by MRS [19]. We speculated that the Glu con-
centration measured by MRS was associated mainly
with the intracellular fluid, given that the intracellular
Glu concentration was at least three-orders-of-
magnitude higher than that in the extracellular compart-
ment [20, 41]. The time-dependent change was ignored
because of the cross-sectional design of the study.
Between-group difference in metabolites, including Glu
and GABA, could depend on disease stage. A longitu-
dinal study is required to reveal the dynamics of the
levels of metabolites, including Glu and GABA.

In conclusion, the ratios of both Glu/NAA and Glu/
GABA in the SMA exhibited low sensitivity but high
specificity to distinguish ALS through a single scan.
Finally, the increased level of Glu per NAA in patients
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with ALS might indicate that Glu neurons are resistant
to Glu-related excitotoxicity relative to other types of
neurons. Further work is needed to confirm the present-
ed findings.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s10072-021-05107-3.
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