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Singular cases of Alzheimer’s disease disclose new and old
genetic “acquaintances”
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Abstract
Background Alzheimer’s disease (AD) is the most common age-related dementia. Besides its typical presentation with amnestic
syndrome at onset, atypical AD cases are being increasingly recognized, often in presenile age.
Objectives To provide an extensive clinical and genetic characterization of six AD patients carrying one or more singular
features, including age of onset, atypical phenotype and disease progression rate. By reviewing the pertinent literature and
accessing publicly available databases, we aimed to assess the frequency and the significance of the identified genetic variants.
Methods Biomarkers of amyloid-β deposition and neurodegeneration were used to establish the in vivo diagnosis of probable
AD, in addition to neurological and neuropsychological evaluation, extensive laboratory assays and neuroradiological data.
Considering the presenile onset of the majority of the cases, we hypothesized genetically determined AD and performed
extensive genetic analyses by both Sanger sequencing and next generation sequencing (NGS).
Results We disclosed two known missense variants, one in PSEN1 and the other in PSEN2, and a novel silent variant in PSEN2.
Most notably, we identified several additional variants in other dementia-related genes by NGS. Some of them have never been
reported in any control or disease databases, representing variants unique to our cases.
Conclusions This work underlines the difficulties in reaching a confident in vivo diagnosis in cases of atypical dementia.
Moreover, a wider genetic analysis by NGS approach may prove to be useful in specific cases, especially when the study of
the so-far known AD causative genes produces negative or conflicting results.
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Introduction

Alzheimer’s disease (AD) is the most common age-related
degenerative dementia. From a clinical perspective, AD typi-
cally displays an amnestic syndrome of the hippocampal type
that can be associated with various cognitive or behavioural
deficits during disease evolution [1]. Atypical forms of AD
present with relative preservation of memory at onset and
generally occur at an earlier age. They include posterior,
logopenic and frontal variant of AD [1]. According to the
revised international criteria, at least one biomarker of
in vivo Alzheimer’s pathology must be positive: a cerebrospi-
nal fluid (CSF) profile consisting of decreased amyloid-β 1–
42 (Aβ42) together with increased total tau (T-tau) or 181-
phopshorylated tau (P-tau) concentrations, or an increased re-
tention on amyloid tracer PET (AMY-PET) [1]. In addition to
the use of single CSF markers, the combination of multiple
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CSF markers in the form of ratios further increases the diag-
nostic accuracy [2]. AD is usually sporadic, with age of onset
most often being > 65 years, thus qualifying for late onset AD
(LOAD). In no more than 5% of all patients, a positive famil-
ial history for dementia or a clear-cut autosomal dominant
pattern of inheritance can be found. These familial AD cases
(FAD) arise before age 65 more frequently than sporadic
cases, hence the definition of early onset AD (EOAD) [3].
Approximately 50% of FAD patients carry a mutation in
presenilin 1 (PSEN1), presenilin 2 (PSEN2) or amyloid-β
protein precursor (APP) genes, with more than 350 variants
collectively identified so far [4, 5]. However, some of them are
not pathogenic or their significance remains uncertain, as they
may qualify as genetic risk factors or disease-modifying
alterations.

Here, we describe a case series of cognitive disorders with
in vivo biomarker positivity for Aβ deposition, showing var-
ious clinical atypical aspects together with peculiar genetic
features. We disclosed two known missense variants, one in
PSEN1 and the other in PSEN2, and a novel silent variant in
PSEN2. Moreover, additional variants in dementia-related
genes have been identified by next generation sequencing
(NGS). Our results are intriguing as they raise the question
of the role of genetic risk burden in AD.

Patients and methods

Subjects

We describe 6 unrelated cases affected by cognitive disorders
who underwent a complete diagnostic protocol including neu-
rological and neuropsychological evaluation, extensive labo-
ratory assays, EEG, structural (CT or MR) and functional
(18FDG-PET) neuroimaging. The research for AD pathophys-
iological biomarkers, either CSF Aβ42, T-tau and P-tau assay
or amyloid tracer PET, was performed in all patients.

Case 1

This patient insidiously presented at age 55 with short-term
memory impairment and apathy. Familial history and neuro-
logical examination were negative, except for Epstein sign;
MMSE was 22/30. An extensive neuropsychological evalua-
tion showed deficits of long- and short-term memory, lan-
guage, abstract reasoning, executive functions and a marked
anosognosia. Brain MRI disclosed diffuse cortical atrophy,
while 18FDG-PET (Fig. 1) revealed bilateral hypometabolism
in the frontal dorso-lateral, superior parietal, temporo-parietal
cortices, with prevalent involvement of the left hemisphere,
and posterior cingulate cortex (PCC). AMY-PET showed in-
creased uptake mainly in the frontal and lateral temporal
regions.

Case 2

In this patient, the onset of cognitive impairment was approx-
imately at 75 years and characterized by short-term memory
deficits, anomia, subtle behavioural changes (mild disinhibi-
tion) and in the following months psychomotor slowing.
Familial history was negative. Neurological examination
disclosed an asymmetric parkinsonian syndrome (R > L).
MMSE was 22/30. Neuropsychological testing revealed defi-
cits in verbal memory, attention, abstract reasoning and se-
mantics. Brain MRI showed moderate atrophy in frontal, lat-
eral temporal and temporo-mesial cortex prevailing on the left
side. AMY-PET evidenced a massive and diffuse burden of
amyloid-β. His extrapyramidal syndrome showed satisfying
response to L-Dopa administration.

Case 3

This woman presented with apathy and short-term memory
deficit at the age of about 62. Family history evidenced mem-
ory disturbances in her mother and grandmother. MMSE was
27/30. Neuropsychological assessment detected long-term
verbal memory and attentional deficits. Brain CT revealed
diffuse supratentorial white matter hypodensity, while
18FDG-PET (Fig. 1) showed mild hypometabolism mainly
affecting the left hemisphere and involving the mesial and
lateral temporal cortex, the dorsolateral/medial frontal cortex
and to a lesser extent the PCC. AMY-PET evidenced a diffuse
amyloid deposition.

Case 4

This patient, without family history of dementia, around the
age of 59 developed apathy with a language disorder charac-
terized by word-finding problems and slow, hesitating speech,
followed by psychomotor agitation, delusional ideation, clum-
siness of his upper left limb and generalized motor slowness.
His language got significantly worse, with agrammatism and
telegraphic sentences, but with only mild impairment in com-
prehension. Neurological examination at age 61 disclosed
mixed pyramidal and extrapyramidal syndrome, prevailing
on the left side, left cortical sensory loss and frontal release
signs. His MMSE score was 7/30, being non-fluent aphasia
with features of apraxia of speech and dressing apraxia among
the most significant cognitive deficits. Brain MRI revealed
discrete atrophy mainly in temporo-insular cortices bilaterally,
whereas 18FDG-PET (Fig. 1) disclosed severe and diffuse
cortical hypometabolism more marked in temporo-parietal
cortices, precuneus and PCC bilaterally, with prevalent in-
volvement of the right side and slight striatal metabolic asym-
metry (R < L). AMY-PET detected diffuse burden of
amyloid-β.
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Case 5

This subject developed at age 45 a complex behavioural syn-
drome characterized by apathy, social withdrawal, and eating
and sleep disorders. Familial history was negative. Over the
next 5 years, there was a clinical worsening with word-finding
difficulties, dyscalculia, memory deficits and motor clumsi-
ness in both hands. At age 50, his MMSE score was 16/30
and he presented ideo-motor apraxia, anomia, verbal memory
deficits and dysexecutive syndrome. EEG showed diffuse
slowing of cerebral electric activity, while brain MRI detected
atrophy in parietal regions with slight right prevalence.
Subsequently, he also manifested limb myoclonus and psy-
chomotor agitation with complex visual hallucinations. Seven
years after the symptom onset, the patient came to our obser-
vation and underwent a more extensive diagnostic protocol.
Neurological examination showed left pyramidal and bilateral
asymmetric (L > R) extrapyramidal syndrome, action-induced
limb myoclonus and Epstein sign. MMSE score was 8/30.
Brain MRI evidenced marked and diffuse atrophy, with pos-
terior predominance. 18FDG-PET (Fig. 1) demonstrated bilat-
eral hypometabolism in the parietal, occipital and temporal
lobes and in the PCC with relative sparing of frontal lobes
and subcortical structures. The occipital hypometabolism
mostly involved the associative visual regions with relative
sparing of the primary visual cortex. CSF biomarkers assay
revealed reduced Aβ42 (456 pg/mL; normal values – n.v. – >

500 pg/mL) [6] and amassive increase of both T-tau (3435 pg/
mL; n.v. < 300 pg/mL) [6] and P-tau (470 pg/mL, n.v. <
61 pg/mL) [7]. T-tau/Aβ42 ratio was 7.533 (n.v. ≤ 0.52),
whereas P-tau/Aβ42 was 1.031 (n.v. ≤ 0.08) [2].

Case 6

This case, without family history for cognitive disorders, in-
sidiously presented at age 52 with a language disorder char-
acterized by anomia and apraxia of speech which progressive-
ly worsened until mutism. Neurological examination showed
a “worried” facial expression, asymmetric (R > L) mixed py-
ramidal and extrapyramidal syndrome, focal and segmental
myoclonus, exaggerated startle reaction and frontal release
signs. A neuropsychological examination showed severe
non-fluent aphasia with almost complete mutism and slightly
impaired comprehension, severe bucco-lingual and ideo-
motor apraxia. EEG showed marked slowing in cerebral elec-
tric activity. Brain MRI revealed asymmetrical cortico-
subcortical atrophy prevailing in left fronto-temporal areas.
18FDG-PET (Fig. 1) showed asymmetric cortical
hypometabolism characterized by a prevalent involvement
of the left temporo-parietal cortex and, to a lesser extent, of
the left premotor-motor and sensorimotor regions. In addition,
there was also a mild lef t s t r ia ta l and thalamic
hypometabolism. CSF Aβ42 was decreased (235 pg/ml; n.v.
> 500 ng/mL), whereas T-tau and P-tau were normal; T-tau/

Fig. 1 PET transaxial images at two axial and one sagittal section show
18FDG uptake in the patients (P1, P4, P5, P6, P3) and in a control subject
(C). Compared with control, P1, P4, and P5 showed a relative
hypometabolism involving mainly the posterior cortical regions

including the PCC with some spread to the frontal cortex in P1, P4 and
to the striatum (R < L) in P4. P6 and P3 show less marked asymmetric
hypometabolism (L <R) involving also the striatum (L < R)
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Aβ42 and P-tau/Aβ42 ratios were 1.247 and 0.145 respective-
ly. The research of 14.3.3 protein in CSF was negative.

Patient consents

Written informed consent was acquired from all patients for
genetic analysis, processing data and permission to publish
data in respect of privacy.

Biochemical analysis

CSF levels of T-tau, P-tau and Aβ42 were determined with
human specific ELISA kits (Innogenetics). Plasma level of
progranulin was measured using an ELISA kit (Human
Progranulin ELISA kit, Adipogen Inc., Seoul, Korea).

Genetic analysis

Sanger Sequencing of APP, PSEN1 and PSEN2 genes [8, 9]
and APOE genotyping [10] was performed in all cases.
Additionally, a gene panel of 48 dementia-related genes was
analysed by NGS techniques. Nextera Rapid Capture system
for enrichment (Illumina) coupled with gene-specific probes
(Integrated DNA Technologies) was used to sequence the
following genes: APP, PSEN1, PSEN2, PRNP, GRN,
MAPT, CHMP2B, FUS, TARDBP, VCP, TREM2, ABCA7,
APOE, BIN1, CALHM1, CCL2, CCNF, CD33, CHCHD10,
CLU, CSF1R, CST3, CTSF, DCTN1, FLNC, hnRNPA1,
hnRNPA2B1, ITM2B, LRRK2, NCSTN, NOS3, NOTCH3,
OPTN, PFN1, PLD3, PRKAR1B, SERPINI1, SIGMAR1,
SNCA, SNCB, SORL1, SQSTM1, STH, TBK1, TMEM106B,
TUBA4A, TYROBP,UBQLN2. Sequencing was performed on
the Illumina MiSeq instrument using 2X150 bp paired-end
read cycles. MiSeq Reporter software (Illumina) was used
for alignment (reference human genome UCSC hg19) and
variant calling. Variants were annotated using Variant
Studio software (Illumina). Low-quality variants were filtered
out using the Illumina Qscore threshold of 30; in addition,
variants with a minor allele frequency higher than 2% in
GnomAD (Genome Aggregation Database, http://gnomad.
broadinstitute.org/) were filtered out. Variants of interest
were confirmed using standard Sanger sequencing.

Sor t ing In to le ran t From Tolerant (SIFT) and
Polymorphism Phenotyping (PolyPhen) softwares were used
to predict pathogenicity of missense mutations. Combined
annotation-dependent depletion (CADD) score (https://cadd.
gs.washington.edu/) was used to predict the pathogenicity of a
truncating variant (SORL1 Ser10STOP). NetGene2 (http://
www.cbs.dtu.dk/services/NetGene2/) and BDGP (http://
www.fruitfly.org/seq_tools/splice.html) splice site prediction
tools were used to predict the effect on the splice site of the
DCTN1 c.3529 + 5G >A variant.

Results

Clinical, instrumental and CSF findings

Our series consists of six cases whose clinical features are
summarized in Table 1. Disease onset was in the presenile
period in all patients (mean age of onset: 54.6 ± 6.6), ex-
cept for case 2. Only case 3 showed family history for
dementia. The onset was typical in two patients (cases 1
and 3) and atypical in the others. Moreover, an extrapy-
ramidal syndrome complicated all these atypical cases.
The clinical diagnosis was AD in cases 1, 2, 3 and 4. In
case 5, there was an important discrepancy between clin-
ical findings, suggestive of behavioural variant of
frontotemporal dementia (bvFTD) with parkinsonism,
and MRI and 18FDG-PET data, expression of atypical
AD. In case 6, the clinical diagnosis was corticobasal
syndrome (CBS). Given the peculiarity of disease onset,
plasma progranulin dosage was performed in cases 4, 5
and 6, with normal values. In addition, all patients
underwent an APOE genotyping, which only in cases 2
and 3 showed a ε3/ε4 heterozygosity. The diagnosis of
probable AD was supported by at least one positive path-
ophysiological biomarker in all cases: AMY-PET in cases
1, 2, 3 and 4 and CSF biomarkers in cases 5 and 6. In
case 6, although T-tau and P-tau values were not in-
creased, T-tau/Aβ42 and P-tau/Aβ42 ratios both resulted
well above the standardized cut-offs [2], thus strongly
suggesting an underlying AD pathology.

Genetic findings

Diagnostic genes (APP, PSEN1, PSEN2, PRNP, GRN,
MAPT, CHMP2B, FUS, TARDBP, VCP, TREM2) were se-
quenced at 100% by NGS (read depth ≥ 20X) or, in some
cases with incomplete coverage, by standard Sanger tech-
nique. Genetic results are described in Table 2 and Table 3.
Population frequency, in silico pathogenicity prediction (SIFT
and Polyphen) and classification in Human Gene Mutation
Database (HGMD) are presented. Briefly, concerning AD-
causative genes (Table 2), we identified two known missense
variants, Glu318Gly in PSEN1 (patients 1 and 2) and
Arg71Trp in PSEN2 (patient 3), and a novel silent variant,
Ser236Ser in PSEN2 (patient 4). Moreover, thanks to NGS
approach, we disclosed other variants in dementia-related
genes, in particular FUS, ABCA7, CSF1R, DCTN1,
SERPINI1 and SORL1 (Table 3).

Some variants have never been reported in any control
(GnomAD) or disease (HGMD) databases, representing vari-
ants unique to our cases. CADD analysis of the SORL1
Ser10STOP variant predicted pathogenicity, as well as
NetGene2 and BDGP predictions of the DCTN1 c.3529 +
5G >A splice variant.
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Discussion

Alzheimer’s disease is mainly distinguished in a typical pre-
sentation with hippocampal amnestic syndrome and atypical
forms with different cognitive or behavioural deficits.

In this paper, we describe a series of 6 unrelated patients
affected by dementing syndromes characterized by one or more
“atypical” features including age at onset, clinical presentation
and disease progression rate. Case 5 presented a complex syn-
drome indicative of bvFTD with parkinsonism and additional
atypical features. The severity of clinical picture and the high
levels of CSF taumight suggest the possibility of a prion disease.
However, the long course, the MRI features, the neuroimaging
findings (parieto-temporal atrophy and hypometabolism) and
CSF Aβ42 reduction made presenile AD the most likely diagno-
sis. Case 6 was classified as possible CBS, a clinical syndrome

with different underlying pathological substrates [11, 12]. In vivo
AD pathophysiological biomarkers and 18FDG-PET
hypometabolic pattern suggested an underlying AD pathology
(CBS-AD), in agreement with the results of a recent combined
18FDG-PET/neuropathological study [13]. Notably, in all pa-
tients, the in vivo AD pathophysiological biomarkers supported
the diagnosis of probable AD. Indeed, these biomarkers should
always be looked for, together with the downstream degenerative
topographical biomarkers (18FDG-PET, MRI), in atypical de-
mentia cases.

The results of genetic analyses were, in our opinion, very
interesting. The variant found in cases 1 and 2, PSEN1
Glu318Gly, was first identified in patients with EOAD [14].
Studies performed to define its effects on amyloid-β metabo-
lism gave conflicting results [15, 16], and association studies
were inconclusive [16, 17]. The variant disclosed in case 3,

Table 3 DNA variants found in other dementia-related genes

Case Gene Coordinates Transcript DNA variant Amino acid
variant

Sift PolyPhen GnomAD
Freq %

HGMD classification

1 ABCA7 1047345 NM_019112.3 Gac/Tac Asp679Tyr del prob dam 0 No

SORL1 121425954 NM_003105.5 aCa/aTa Thr833Ile del poss dam 0 No

2 FUS 31196452 NM_004960.3 tAt/tGt Tyr239Cys tol prob dam 0.001698 No

5 DCTN1 74598723 NM_004082.4 Atc/Gtc Ile196Val tol ben 0.4519 Functional
polymorphism

SORL1 121323069 NM_003105.5 tCg/tAg Ser10STOP* - - 0 No

6 CSF1R 149456911 NM_005211.3 Gcc/Acc Ala273Thr tol prob dam 0 No

DCTN1 74590116 NM_004082.4 c.3529 + 5G>A† - - 0.59160 No

SERPINI1 167512569 NM_001122752.1 Gca/Aca Ala280Thr tol ben 1.125 No

Sift, Sorting Intolerant From Tolerant software; PolyPhen, Polymorphism Phenotyping software; GnomAD, Genome Aggregation Database; HGMD,
Human Gene Mutation Database; ben, benign; del, deleterious; dam, damaging; poss, possibly; prob., probably; tol, tolerated

*Combined annotation dependent depletion (CADD) score (https://cadd.gs.washington.edu/) was > 35
†NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/) and BDGP (http://www.fruitfly.org/seq_tools/splice.html) splice site prediction tools predicted
loss of splice site

Table 2 DNA variants found in genes causative for AD

Case Gene Coordinates Transcript DNA variant Amino acid variant Sift PolyPhen GnomAD
Freq %

HGMD classification

1 PSEN1 73,673,178 NM_000021.3 gAa/gGa Glu318Gly tol ben 1.485 Disease-associated
polymorphism with
supporting functional
evidence

2 PSEN1 73,673,178 NM_000021.3 gAa/gGa Glu318Gly tol ben 1.485 Disease-associated
polymorphism with
supporting functional
evidence

3 PSEN2 227,071,475 NM_000447.2 Cgg/Tgg Arg71Trp del ben 0.3836 Disease causing mutation?

4 PSEN2 227,076,671 NM_000447.2 agT/agC Ser236Ser - - 1.331 No

Sift, Sorting Intolerant From Tolerant software; PolyPhen, Polymorphism Phenotyping software; GnomAD, Genome Aggregation Database; HGMD,
Human Gene Mutation Database; ben, benign; del, deleterious; tol, tolerated
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PSEN2 Arg71Trp, probably involved in protein stability and
signalling pathways [18], has been found in patients with
EOAD or LOAD, as well as in healthy subjects and
Parkinson’s disease dementia [19, 20], and only in one large
AD family it seemed to clearly segregate with the disease [21,
22]. It is possible that, by interacting with other factors,
PSEN1 Glu318Gly and PSEN2 Arg71Trp increase disease
risk and modulate clinical phenotype. PSEN2 Ser236Ser,
present in case 4, is a silent variant whose pathogenicity is
not predictable.

Among the relevant findings of NGS analysis, ABCA7 and
SORL1 are well-known AD risk genes [23, 24]. The ABCA7
transporter is involved in Aβ clearance and its mutations ac-
celerate amyloidosis in a mouse model of AD [25]. A strong
association was demonstrated between ABCA7 variations and
amyloidosis in AD patients [26]. A reduced expression of
SORL1, promoter of the APP non-amyloidogenic pathway
[27], has been demonstrated in human AD brains, and its
genetic variants increase risk of both LOAD and EOAD
[28]. In patient 1, we identified the ABCA7 Asp679Tyr and
the SORL1 Thr833Ile variants. They had never been reported
before but are predicted to be deleterious by in silico analyses,
therefore possibly exerting a synergistic effect with the
PSEN1 Glu318Gly variant in amyloidogenic process.

Patient 2, affected by LOADwith parkinsonism, harboured
the Tyr239Cys variant in FUS, a gene implicated in ALS and
FTD cases [29]. This variant is present in GnomAD with a
very low frequency and is predicted to be deleterious by some
in silico analyses.

In patient 5, we found the Iso196Val variant inDCTN1 gene.
Several DCTN1 mutations have been described in association
with ALS, degenerative parkinsonisms and Perry syndrome
[30, 31]. Interestingly, our patient displayed some features of
Perry syndrome at disease onset, such as personality change,
and eating and sleep disturbances, while parkinsonism occurred
thereafter. However, in vivo biomarkers more likely predicted
amyloid-β rather than TDP-43 pathology, which is Perry syn-
drome’s substrate. Despite some evidence of pathogenicity from
in vitro studies [32],DCTN1 Iso196Val variant has been reported
both in patients and in several healthy controls, making it a
possible risk factor rather than a causative mutation. This patient
also presented the Ser10STOP variant in SORL1, which is a
truncating variant absent in ExAc (Exome Aggregation
Consortium, http://exac.broadinstitute.org/) and GnomAD
databases, with a CADD score of 35: these types of variant are
considered as definitely pathogenic and associated with a
significant 12-fold increased AD risk, which is comparable with
the APOE-ε4 homozygosity effect [33]. Rare pathogenic SORL1
mutations segregate with disease in LOAD families, and their
pathological mechanism is likely to be haploinsufficiency [34].

In case 6, we found variants in other dementia-related
genes. The novel Ala273Thr variant, predicted as damaging
by in silico analysis, was identified in CSF1R. CSF1R

mutations are causative of adult-onset leukoencephalopathy
with axonal spheroids and pigmented glia [35], and have re-
cently been reported in pathologically confirmed AD subjects
[36]. Noteworthy, one of these cases exhibited a clinical pic-
ture very similar to that of our case. We can therefore hypoth-
esize that rare variants of CSF1R may influence the suscepti-
bility to AD, as already shown for other adult-onset leukodys-
trophy causative genes, such as TREM2 and NOTCH3 [37,
38]. Mutations in SERPINI1 are responsible for familial en-
cephalopathy with neuroserpin inclusion bodies [39]. Though
rapidly progressive dementia and myoclonus belong to the
clinical spectrum of SERPINI1 mutations [40], the
Ala280Thr variant found in patient 6 is predicted as tolerated
by in silico analyses. Finally, the splicing mutation c.3529 +
5G >A identified in DCTN1 gene is predicted as potentially
capable of altering the splicing site by in silico analyses; there-
fore, a possible pathogenic effect cannot be excluded.

In conclusion, two relevant aspects emerge from the observa-
tions made on this case series. First, some of the patients here
presented are paradigmatic of the difficulties in reaching a con-
fident in vivo diagnosis due to the “atypical” clinical aspects,
despite the application of very extensive diagnostic protocols.
Therefore, post-mortem neuropathological examination remains
the gold standard to definitely elucidate the nature of the neuro-
degenerative process in the single patient with atypical dementia.

Second, in this series of cases, it is also possible to highlight
the very interesting aspects emerging from a wider than standard
genetic analysis.We found the coexistence of more than one rare
non-causative genetic variant in 4 out of 6 patients, suggesting an
additive contribution of them to develop dementia, whereas each
single variant may not be sufficient. This raises a crucial ques-
tion: what is the role of these non-causative mutations that are
increasingly found in different neurological disorders, particular-
ly in dementias? One hypothesis is that they could act as risk or
modifier factors to the disease. Further studies adding evidence
from NGS data to the current knowledge will be necessary to
support this hypothesis and to define the individual risk associ-
ated to each variant.
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