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Abstract

Aim Developmental and epileptic encephalopathies (DEEs) are a group of devastating disorders caused by epileptic activity,
resulting in deterioration in developmental, cognitive, and motor functions. The number of genes identified as being responsible
for DEEs has been increasing rapidly. However, despite a comprehensive molecular analysis, a molecular diagnosis can only be
established in 50% of cases. The aim of this project is to use whole exome sequencing (WES) to determine the molecular etiology
of DEEs in undiagnosed patients with a pedigree suggestive of an autosomal recessive single gene disease.

Methods Three DEE families, having either consanguineous parents of an affected individual and/or having more than one
affected offspring, were enrolled in the project. Prior to this project, the families had been evaluated using a next-generation
sequencing panel including 16 DEE genes in a previous study; however, no molecular diagnosis could be established. In five
cases from the three selected DEEs families in our study, the genetic etiology was investigated using WES.

Results All patients in the study group had infantile onset epileptic seizures; however, semiologies varied. All patients presented
with severe developmental delay. WES revealed biallelic disease causing mutations in DENDDS5A, GRN, and TBCD genes in
family 1, family 2, and family 3, respectively. In each family, the identified variants associated with the disease were segregated.
Reverse phenotyping supported the molecular analysis.

Conclusion This study provided a valuable contribution to the genotype-phenotype relationship by determining rare epilepsy
syndromes in undiagnosed patients previously. WES is a useful diagnostic alternative, particularly in consanguineous families.

Keywords Developmental and epileptic encephalopathies - Genetics - Infantile spasms - Mutation - Neonatal seizures

Introduction

Developmental and epileptic encephalopathies (DEEs) are a
group of devastating disorders caused by epileptic activities,
resulting in deterioration in developmental, cognitive, and
motor functions [1, 2]. Early-onset epileptic encephalopathies
appear during neonatal and infantile period. DEEs are a
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heterogeneous group of disorders resulted by congenital or
acquired cerebral damage. The number of genes which been
identified as being responsible for DEEs has been increasing
rapidly, and over 50 genes have been identified during the last
3 years [3—5]. The most common genetic anomalies causing
DEEs are single nucleotide variations responsible for 30-40%
of genetic etiology. Copy number variations are seen rarely
and responsible for 5-10% of cases [5]. Molecular diagnosis
of DEEs is not only important for confirming the clinical
diagnosis but also for the selection of appropriate treatment
options, giving an accurate prognosis as well as the provision
of appropriate genetic counseling. There are several molecular
analysis methods including gene panels, whole exome se-
quencing, or genome sequencing able to detect molecular pa-
thology underlying DEEs. These methods have some advan-
tages and disadvantages compared with each other. Hebbar
et al. [5] had recommended selecting most appropriate test
considering several factors such as age at seizure onset,
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severity of disease, other associated features, and patient in-
surance. However, despite a comprehensive molecular analy-
sis, a molecular diagnosis can only be established in 20-40%
of cases [2, 4, 6].

In a previous study, we evaluated the molecular etiology of
early-onset DEEs using a targeted next-generation sequencing
(NGS) panel [7]. This panel included 16 genes responsible for
DEEs: ARX, CDKL5, CNTNAP2, FOLRI, FOXG1, LAMC3,
MBDS5, MECP2, NTNG1, PCDH19, PNKP, SCNIA, SCNIB,
SCN2A, STXBP1, and KCNQ?2. In that study group, a molec-
ular diagnosis could only be made in 40% of cases. However,
the diagnostic success rate was found to be higher in patients
born to non-consanguineous parents (55.5%) than in patients
born to consanguineous parents (16%). In consanguineous
families, due to the panel containing mainly de novo and
channel-encoding genes, a sufficient diagnostic success rate
could not be achieved.

In this study, we aimed to evaluate the diagnostic utility of
whole exome sequencing (WES) in previously molecularly
undiagnosed DEE patients with a pedigree suggestive of an
autosomal recessive single gene disease.

Material and methods
Study group

Five patients from 3 unrelated families having early-onset
refractory seizures with global developmental delay and cog-
nitive dysfunction were enrolled into the study. Prior to this
project, we evaluated the molecular etiology of early-onset
DEEs using a targeted NGS panel in 30 patients [7]. NGS
panel which included 16 DEE genes (ARX, CDKLS,
CNTNAP2, FOLRI, FOXGI1, LAMC3, MBD5, MECP2,
NTNGI, PCDHI19, PNKP, SCNIA, SCNIB, SCN2A,
STXBPI, KCNQ?2) failed to identify a molecular etiology in
60% of these families. Among these patients who could not be
molecularly diagnosed, patients those pedigrees suggestive of
an autosomal recessive inheritance (having either consanguin-
eous parents and/or more than one affected sibling) were eval-
uated. Demographic data, family history, and laboratory and
imaging test results were all obtained from hospital records.
Clinical, laboratory, and electrophysiological findings of the
patients were evaluated by experienced pediatric neurologist
and geneticist, and three families with no specific clinical
diagnosis were selected.

The study was approved by the Ethical Committee of the
Ege University Medical Faculty (Date: March 9, 2015; num-
ber: 15-9/49) and financially supported by Ege University
Scientific Research Projects Coordination (Grant Number
17-TIP-006). Samples from the patients were collected in ac-
cordance with the Helsinki Declarations. Written informed
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consent for genetic testing was obtained from all cases or their
parents/guardians.

Whole exome sequencing

Whole exome sequencing was performed on affected siblings
in families 1 and 3 and affected offspring and healthy parents
in family 2. Genomic DNA samples were extracted from 1 ml
of peripheral blood leukocytes obtained from the parents and
probands using the QIAamp DNA Blood Mini Kit (QIAGEN,
Hilden, Germany). DNA quality and quantity were assessed
using a NanoDrop 2000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA). Approximately 2 pg of
high-quality genomic DNA from each sample was prepared
as the starting material for generating the sequencing library
using the SeqCap EZ Human Exome Library v3.0 (F.
Hoffmann-La Roche Ltd., Basel, Switzerland), in accordance
with the manufacturer’s instructions.

SeqCap EZ Exome v3.0 Kit (F. Hoffmann-La Roche Ltd.,
Basel, Switzerland) was used for target enrichment. Paired-
end sequencing was performed in all samples using the
[llumina HiSeq 2000 platform (Illumina Inc., San Diego, CA).

Burrows—Wheeler Alignment (BWA) tool was used for
mapping to the reference genome (hgl9) and alignment [8].
Variant calling was performed using SAMtools and GATK
best practices pipeline [9, 10].

Data analysis

Sequencing data was analyzed using Illumina VariantStudio
3.0 software and Integrative Genomics Viewer (IGV).
Variants with a frequency of less than 0.5% were selected
based on NCBI dbSNP build141 (http://www.ncbi.nlm.nih.
gov/SNP/), 1000 Genomes Project (http://www.
1000genomes.org/), Exome Aggregation Consortium
(ExAC) (http://exac.broadinstitute.org/), and Genome
Aggregation Database (gnomAD) (http://gnomad.
broadinstitute.org/). Any variants which had a read depth
below 10X were excluded. The impact of the variants on the
protein structure was identified using several in silico
prediction tools such as MutationTaster, SIFT, REVEL,
DANN, dbscSNV, and CADD [11-16]. Conservation of
residues across species was evaluated using PhyloP
algorithm and GERP [17, 18]. Variant pathogenicity was
classified in accordance with American Collage of Medical
Genetics (ACMG) recommendations [19].

Confirmation and segregation analysis

The most likely disease-causing variants, identified by data
analysis, were then confirmed using direct Sanger sequencing
on ABI PRISM 3130 DNA analyzer (Applied Biosystems).
Following this segregation analysis was performed.
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Results
Study group
Family 1

In case 1, a l14-year-old boy was presented with a focal
seizure at the age of 2.5 months. He was born at the
39th week of gestation via spontaneous vaginal delivery
following an uneventful pregnancy. He had intellectual
disability and motor retardation. There was no consan-
guinity between the parents; however, both were coming
from the same small village.

On physical examination, weight, height, and head circum-
ference were measured as 32 kg (<3 p,—2.9 SD), 141 cm (<3
p, —3.1 SD), and 48.5 cm (<3 p, —4.9 SD), respectively.
Intellectual disability was considered severe. Poor eye contact
and repetitive stereotypic movements were observed. He also
had microcephaly, wide nasal tip, short philtrum, open mouth,
thick and everted lips, and spasticity on lower extremities
(Fig. 1).

His biochemical and metabolic screening tests and hor-
monal profile, hearing, and ophthalmologic examination were
all normal. Cranial MRI revealed periventricular nodular
heterotopia, and EEG findings were compatible with multifo-
cal epileptic activity.

In case 2, a 9-year-old boy is the second affected offspring
of this family. Firstly, he displayed a generalized tonic-clonic
seizure at the age of 3 months. He displayed refractory focal
and generalized motor seizures in spite of antiepileptic treat-
ment. In conjunction with his older sibling, intellectual dis-
ability, stereotypic movements, microcephaly, and dysmor-
phic facial features were also present.

Family 2

In case 3, a 10-year-old girl had a normal neurocognitive
development until the age of 7 months. Loss of cognitive
and motor functions was observed following this period. At
the age of 12 months, she had a seizure in the form of infantile
spasm for the first time. These seizures repeated 10-12 times a
day and were resistant to antiepileptic drugs. She was born to
consanguineous parents at the 38th week via cesarean section.
Family history revealed that an older sister with neurodegen-
eration, severe developmental delay, and refractory epilepsy
died due to pneumonia at the age of 7 years. She was a 10-
year-old girl, and her parents described that she had normal
development until 7 months of age. She exhibited severe loss
of cognitive and motor functions within time. At the age of
12 months, she presented with epileptic spasms refractory to
multiple antiepileptic drugs.

On physical examination, weight, height, and head circum-
ference were 41 kg (10-25 p, 0.87 SD), 120 cm (<3 p, —3.07

SD), and 56.5 cm (>97 p, 2.26 SD), respectively. She had
severe developmental delay. Generalized hypotonia,
macrocephaly, proptosis, and strabismus were observed (Fig.
1). Deep tendon reflexes were hypoactive.

Biochemical and metabolic screening tests were found to
be normal. A cranial MRI revealed severe diffuse cerebral,
cerebellar, and brain stem atrophy.

Family 3

In case 4, an 18-year-old boy was presented with focal motor
seizures at the age of 12 months. Despite multidrug regimen,
his seizures had not been fully controlled. He was born at the
39th week of gestation via a spontaneous vaginal delivery.
There was no consanguinity between the parents; however,
both were coming from the same small village.

On physical examination, weight, height, and head circum-
ference were 47 kg (10-25 p, — 1.08 SD), 156 cm (1025 p, —
0.81 SD), and 53 c¢cm (— 1.72 SD), respectively. He had poor
eye contact, and he was not able to speak. Severe global de-
velopmental delay was noted. Deep tendon reflexes were
diminished.

His biochemical and metabolic screening tests and hor-
monal profile, auditory, and ophthalmologic examinations
were all normal. EMG revealed sensorimotor axonal
polyneuropathy. Cranial MRI demonstrated bilateral
periventricular leukomalacia and thin corpus callosum.

In case 5, the second affected child of family 3 had refrac-
tory epileptic seizures since 7-months-old. She had also severe
developmental delay, periventricular leukomalacia, and sen-
sorimotor axonal polyneuropathy.

Clinical features, biochemical analysis, and electrophysio-
logical and imaging test results of all patients are given in
Table 1.

WES and segregation analysis

Sequencing depth for each sample was more than 95.16% of
target regions having at least a 10-fold coverage. Detailed
coverage metric values for each sample within the target re-
gion are given in Table 2.

Family-based variant filtering was performed (two affected
siblings in families 1 and 3, proband and parents in family 2).
After selection variants with a minor allele frequency of <
0.5% in public databases, a read depth > 10X, and having a
predicted deleterious effect (missense, nonsense, frameshift,
and splice site variants), 47, 140, and 152 variants remained in
families 1, 2, and, 3, respectively. To evaluate their putative
pathogenic impact, a series of prediction tools were used and a
comprehensive literature search was performed for each
variant.

In family 1, a homozygous c.110-3T>G variant in
DENNDSA gene was identified in both affected siblings.
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Fig. 1 Dysmorphic facial features of the study group: case 1 (a-b), case 2 (c), case 3 (d), case 4 (e), and case 5 (f)

This variant had not been reported in any database to date. It
was predicted as being deleterious based on its DANN,
GERP, and dbscSNV (v1.1) scores. The variant classified as
“variant of unknown significance (VUS)” in accordance with
ACMG recommendations. Via segregation analysis, both par-
ents were found to be heterozygous carriers. The mutation
analysis of a healthy brother was negative.

In family 2, a homozygous missense variant c.480G>A
(p.Aspl44Asn) was detected in GRN gene. This variant
(rs200591137) had been reported in gnomAD exomes data-
base with a minor allele frequency of 1/125.729. It was con-
sidered to be deleterious based on prediction tools and classi-
fied as “VUS” in accordance with ACMG recommendations.
Both parents were found to be heterozygous carriers for the
same variant.

In family 3, two heterozygous variants in 7BCD gene were
identified in both affected siblings. The variant ¢.202C>T
(p-GIn68Ter) had not previously been reported in the data-
bases and was classified as “pathogenic.” The second variant
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¢.880C>T (p.Arg294Trp) (rs200591137) had been reported in
gnomAD genomes and gnomAD exomes databases with a
minor allele frequency of 1/31.182 and 1/123.543, respective-
ly. It was classified as “VUS” in accordance with ACMG
recommendations. The amino acid Arg294 is highly con-
served across species, and additionally, a different missense
variant affecting the same amino acid has been registered on
ClinVar as “likely pathogenic.” Segregation analysis revealed
that the mother was a heterozygous carrier for ¢.202C> T
variant, with the father a heterozygous carrier for ¢.880C>T
variant.

Confirmation and segregation analysis results of all fami-
lies are given in Fig. 2.

Reverse phenotyping

Following WES results, some additional tests were performed
in families to evaluate genotype-phenotype correlation. In
family 1, a cranial computed tomography was performed to



Neurol Sci (2020) 41:3729-3739

3733

Table 1 Clinical features and neurophysiological and imaging test findings of the study group
Family Case Sex Age The Seizure DD/  Head EEG Cranial MRI  Others
no. no. (year) onset semiology ID circumference
age of (SDS)
seizures
(month)
1 1 M 14 2.5 Focal motor Severe —4.96 Focal epileptic activity Mega cisterna  Severe language
magna delay, autistic
behavior, and
stereotypic
movements
2 M 9 3 Infantile spasms, Severe —4.2 Multifocal epileptic activity Periventricular Severe language
focal/- nodular delay, autistic
generalized heterotopia behavior, and
motor seizures stereotypic
movements
2 3 F 10 12 Infantile spasms ~ Severe 2.26 Hypsarrthythmia/multifocal Cerebral and ~ Hypotonia
epileptic activity cerebellar
atrophy
3 4 M 18 12 Focal motor Severe —1.72 Multifocal epileptic activity Periventricular Spasticity,
leukomalac- sensorimotor
ia and thin axonal
corpus polyneuropat-
callosum hy
5 F 13 7 Focal motor Severe —0.9 Focal epileptic activity Periventricular ~ Spasticity,
leukomalac- sensorimotor
ia and thin axonal
corpus polyneuropat-
callosum hy

investigate intracranial calcifications reported in biallelic
DENNDS5A mutation carriers. Intracranial calcifications on
deep white matter, basal ganglia, and thalamus were detected
in both siblings. In family 2, a detailed family history revealed
that the grandmother of the father showed clinical features of
dementia and cognitive impairment at the age of 60 years. On
peripheral blood smear using light microscopy, vacuolated
lymphocytes were observed (Fig. 3). However, further elec-
tron microscopic evaluation for lipopigment accumulation or

Table 2 Whole exome sequencing coverage metric values for each
sample within the target region

Patientno. 1x (%) 10x (%) 20x (%) 30x (%) Mean coverage
1 99.61  95.77 87.62 73.87 55.9X

2 99.86  97.33 92.66 83.57 65.5X

3 99.75  95.16 83.2 64.86 46.2X

4 99.89  97.48 93.05 84.59 70.7X

5 99.77  97.82 95.01 89.94 81.3X

6 99.72  97.26 93.33 85.79 73.8X

7 99.9 97.72 94.03 87.1 78X

any biochemical tests to determine blood progranulin dosage
were not available at the time of study. An ophthalmological
examination revealed no signs for retinal degeneration. In
family 3, a cranial MRI was considered necessary for the
confirmation of cerebral atrophy. However, due to adverse
behavioral characteristics of both siblings, it was an
impossibility.

Discussion

In this study, the diagnostic success of WES in three DEE
families with pedigrees suggestive of autosomal recessive sin-
gle gene disorders was evaluated. Prior to WES, the families
had been analyzed using a next-generation sequencing panel
which included 16 known DEE genes; unfortunately, no mo-
lecular diagnosis could be established [7]. WES was able to
provide a diagnosis of rare Mendelian disorders in each
family.

DENNDSA, located at 11p15.4, plays a role in the regula-
tion of membrane traffic between Golgi and endosomal com-
plex. In 2016, Han et al. showed that biallelic DENNDS5A
mutations were responsible for DEEs [20]. They reported
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Fig. 2 Sequencing electropherograms of the mutations identified in family 1 (a), family 2 (b), and family 3 (¢)

two different homozygous null variants in three epileptic en-
cephalopathy cases from two unrelated families. Dysmorphic
facial features, microcephaly, and global growth retardation
were described in all three cases. Seizures started in the new-
born period, with tonic, myoclonic, or generalized tonic-
clonic seizures all been observed. Intracranial calcifications
had been noted in all three cases. They also showed the loss
of function of DENNDJA alternating neurite and dendrite out-
growth during neuronal differentiation via functional studies.
In 2017, Anazi et al. also reported homozygous variants in the
DENNDSA gene in 2 different cases presenting with epilepsy,
global developmental delay, and microcephaly [21]. Detailed
clinical features of biallelic DENNDJ5A mutations are given in
Table 3. In our study, we identified a novel splice site
DENNDSA variant in family 1. The clinical findings of both
siblings were consistent with DENND5A-related epileptic

Fig. 3 Peripheral blood smear of
case 3 revealing vacuolated
lymphocytes
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encephalopathy. As reported in the literature, seizures are ear-
ly onset and have been observed in different semiologies.
Dysmorphic facial features of our patients (triangular face,
thick eyebrows, wide nasal tip, prominent nostrils, short and
deep philtrum, open mouth, and thick lower and upper ver-
milion) have been found to be similar to the patients described
in the literature.

GRN gene is located at 17q21.31 and encodes the
progranulin glycoprotein. It is known that monoallelic loss
of function GRN mutations are responsible for frontotemporal
lobar degeneration (FTLD) [22]. FTLD is the most common
cause of dementia after Alzheimer’s disease. In 2012, Smith
et al. described a homozygous mutation in the GRN gene in
two siblings presenting with adult onset progressive vision
loss, retinal dystrophy, recurrent seizures, ataxia, and cerebel-
lar atrophy [23]. Supporting molecular findings, they also
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showed that plasma progranulin levels were low in heterozy-
gous carriers and undetectable in homozygous in related fam-
ily. The authors considered that biallelic GRN mutations were
responsible for neuronal ceroid lipofuscinosis (NCL) type 11.
In a further study conducted by the same group, fingerprint
storage and the absence of progranulin protein were observed
in the skin biopsy and peripheral blood leukocytes of those
two siblings [24]. Following this, three further NCL cases
carrying homozygous GRN mutations were reported
(Table 4) [25, 26].

Neuronal ceroid lipofuscinosis is clinically and genetically
heterogeneous neurodegenerative disease [27, 28]. To date, 14
different types have been identified. The disease is character-
ized by progressive loss of cognitive and motor functions,
retinal degeneration, cerebellar atrophy, and seizures. It is
classified as infantile, late-infantile, juvenile, or adult onset
based on the age of onset of clinical features. The clinical
features of the patient in family 2 including infantile onset
progressive neurodegeneration, epilepsy, and cerebellar atro-
phy were considered to be compatible with NCL. Vacuolated
lymphocytes shown in peripheral blood smear of case 3 sup-
ported the diagnosis. To our knowledge, our patient carrying
biallelic GRN gene variant is the first described infantile onset
NCL type 11 case in the literature. However, while visual loss
and retinal degeneration are major clinical features of NCL
type 11 in adults, no retinal involvement was observed in
our patient or her sister during their clinical follow-up.
Kamate et al. reported two siblings whose symptoms appeared
at the age of 8 and 13, respectively [26]. No retinal involve-
ment was observed in their study either. Retinal degeneration
may be specific to NCL type 11 in adulthood.

Biallelic TBCD gene variants are responsible for early-
onset and progressive encephalopathy [29]. To date, ap-
proximately 34 cases have been described in the literature
[29-33]. The disease is characterized by progressive
encephalopathy which usually begins during infantile
period. Epilepsy has been described in approximately
90% of cases, and seizure types vary [33]. The clinical
findings of two affected siblings in family 3 were
considered to be compatible with the clinical picture
caused by biallelic TBCD gene mutations.

The majority of DEEs are resulted by de novo variants in
responsible genes [4]. However, in a recent study conducted
by Papuc et al. [34], autosomal recessive inheritance was
found to be responsible for 38% of molecularly diagnosed
cases. In a highly consanguineous study group, Nashabat
et al. [35] also identified autosomal recessive etiology in
50% of 72 molecularly characterized early infantile epileptic
encephalopathy cases. In our previous study, a targeted gene
panel failed to succeed a high molecular diagnostic rate in
consanguineous families. In three of these undiagnosed fam-
ilies, WES revealed molecular diagnosis of rare autosomal
recessive genetic disorders. WES can be considered as a first

step diagnostic test in the DEE families with consanguineous
marriage and/or two or more affected siblings.

The limitation of the present study is that we could not
perform functional studies to determine the disease-causing
effects of the identified variants in the patients. Therefore,
the molecular diagnosis could only be supported by segrega-
tion analysis and reverse phenotyping.

To conclude, in this study, three rare syndromes associated
with epilepsy were identified, contributing to genotype-
phenotype relationship. It was thought that WES might pro-
vide a more appropriate diagnostic method in DEE cases with
suspected autosomal recessive inheritance than a gene
targeted panel.
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