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Abstract
Several neurophysiological abnormalities have been described in blepharospasm, including loss of inhibition in sensorimotor
pathways at cortical and brainstem level and abnormalities of sensory processing. These changes have traditionally been linked to
a basal ganglia dysfunction. However, this interpretation has recently been questioned and alternative pathophysiological model
positing that dystonia is a network disorder has been proposed. On the basis of available information, we can speculate that loss of
inhibition at cortical and brainstem level and abnormalities of sensory processing in blepharospasm probably reflect the func-
tional derangement of a network involving frontal and parietal cortical areas, basal ganglia, thalamus, and, possibly, the
cerebellum.
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Introduction

Idiopathic blepharospasm (BSP) is an adult-onset focal dysto-
nia that manifests more frequently in women and has a peak age
at onset in the fifth to sixth decade [1]. BSP is typically char-
acterized by orbicularis oculi muscle spasms that are usually
bilateral, synchronous, and symmetric [2, 3]. Dystonic spasms
may be phenomenologically heterogeneous, with either brief or
prolonged spasms and narrowing or closure of the eyelids [4].
In addition to spasms, BSP patients maymanifest a spectrum of
additional signs/symptoms, including sensory symptoms in the
eyes [5], increased spontaneous blink rate [6], sensory tricks
(stretching, massaging, or touching the eyebrow, the eyelid, or
the forehead) transiently improving eyelid spasm [7], apraxia of
eyelid opening [8], and dystonia and tremor in other body parts
[9]. BSP patients may also have psychiatric disturbances, most
frequently depression and obsessive compulsive disorder, and
mild cognitive disturbances affecting executive function, with
impairment in working memory, processing speed, visual mo-
tor ability, and short-term memory [10, 11].

Conventional imaging studies and autopsy findings failed
to identify structural brain lesions in idiopathic BSP.
Nevertheless, a pattern of functional abnormalities has been
established by neurophysiological investigations, including
loss of inhibition at different levels of the central nervous
system, maladaptive plasticity, and abnormal sensory process-
ing. These abnormalities were traditionally interpreted as the
consequence of a primary basal ganglia disturbance. Recent
evidence, however, points to anatomical and functional in-
volvement of several brain regions besides the basal ganglia.
A summary of individual case reports addressing secondary
cranial dystonia and new neuroimaging tools allowing mea-
surement and examination of functional interactions and con-
nectivity among brain regions provided support to the emerg-
ing hypothesis of BSP as a network disorder.

The aim of this paper was to review available evidence
supporting BSP as a network disorder and to understand
whether the proposed network model fits the well-known neu-
rophysiological abnormalities described in BSP.

The network model

Evidence from acquired BSP

Acquired BSP has been associated with structural lesions in
several brain regions including not only the basal ganglia but
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also the thalamus, the brainstem, the cerebellum, and the cor-
tex [12–52] (Table 1). Brain lesions can be focal or more
widespread and include ischemia or stroke, tumors, demyelin-
ating lesions, and other pathologies. The onset of BSP can be
temporally related to the occurrence of the presumed causative
lesion or be delayed by months or even years [29–31].
Symptoms can be persistent needing chronic treatment with
botulinum toxin or remit spontaneously over a variable period
of time or after the treatment of the underlying disease process
[15, 16, 25, 27]. Acquired BSP may present as isolated focal
dystonia, be part of a segmental or multifocal dystonia, or be
associated with other neurological symptoms [12–52].

Evidence from non-conventional magnetic resonance
imaging studies

Non-conventional imaging investigations performed in BSP
patients include voxel-based morphometry (VBM) studies,
diffusion tensor imaging (DTI) studies, and functional mag-
netic resonance imaging (fMRI) studies.

VBM studies performed in patients with idiopathic BSP
showed gray matter changes in the caudate/putamen, thalamus,
cerebellum, and cortical/subcortical regions highly relevant to
sensory processing and cognitivemodulation ofmotor behavior
like the primary sensorimotor cortex and the cingulate gyrus
[53–58]. Although not tested in all studies, the abnormal chang-
es found in some areas did not correlate with clinical variables
such as disease duration or severity (Table 2).

DTI is a technique that assesses microstructural changes of
the nervous tissue through the analysis of water diffusion.
Among DTI indices, fractional anisotropy (FA) quantifies di-
rectionality of water diffusivity, thus providing a measure of
axonal integrity, while mean diffusivity is a measure of cellu-
lar and membrane density [59, 60]. No DTI change was ob-
served in three studies comparing 5 to 16 patients with healthy
controls [58, 61, 62]. However, a more recent study on 31BSP
patients showed decrease of FA in the white matter of the left
anterior lobe of the cerebellum and in the right precuneus of
the parietal lobe, and increased diffusivity in the right
lentiform nucleus, thalamus, and insula. FA abnormalities sig-
nificantly correlated with BSP severity and duration. By con-
trast, increased diffusivity changes lacked any correlation with
severity/duration of BSP [63].

Functional magnetic resonance imaging (fMRI) is a tool
that studies brain function by exploiting the blood oxygen
level-dependent (BOLD) signal changes, i.e., the signal
changes due to the increased levels of deoxy-hemoglobin fol-
lowing the activation of brain areas. Signal can be measured
while performing specific tasks (task-dependent fMRI) or in
the absence of a task or stimulus (resting state-fMRI (rs-
fMRI)) [64, 65].

In BSP, task-dependent fMRI studies investigated patients
during spontaneous or voluntary blinking [66] and

spontaneous spasm [67] with evidence of abnormal activation
in subcortical regions and in various cortical areas, including
visual and motor cortex. When a task not related to dystonia
was applied, abnormalities were found in the basal ganglia
and thalamus [68] (Table 3).

In rs-fMRI, different analytic methodologies can be ap-
plied, including the amplitude of low frequency fluctuations
(ALFF), the regional homogeneity analysis (ReHo), model-
free methods like the seed-based analysis and the independent
component analysis (ICA), the graph theoretical analysis, and
the voxel-mirrored homotopic connectivity [65, 69, 70]
(Table 4).

ALFF and ReHo methodologies explore the function of
and connectivity within specific pre-established brain regions.
In BSP, abnormal values of ALFF and ReHo were found in
various cortical and subcortical regions consistent with dys-
functions in multiple neural networks [71, 72, 76, 77]. In the
studies by Yang [72] and Ni [76], some of these changes
correlated with BSP severity, a finding not confirmed in the
later investigation of Jiang [77].

Seed-based analysis and ICA assess functional connectiv-
ity (FC) of spatially distinct brain areas through the identifi-
cation of their synchronous BOLD fluctuations at rest. The
analysis of FC identified different resting-state networks in
the normal brain, including the default mode network (poste-
rior cingulate cortex, medial prefrontal cortex, and lateral pa-
rietal cortex), the salience network (dorsal anterior cingulate
cortex, bilateral insula, and pre-supplementary motor area),
the basal ganglia network, sensorimotor network (within and
between left and right sensory and motor cortices), the dorsal
attentional network, and the frontoparietal network (lateral
prefrontal cortex and inferior parietal lobule) [65, 69]. In
BSP patients, seed-based analysis and ICA showed dysfunc-
tions within the sensory motor network, the salience network,
the default mode network, and the right frontoparietal network
[71, 73–75].

The graph theoretical analysis is an analytic methodology
that measures brain functional organization on a large-scale
level and allows examination of the whole brain connectivity
patterns. [65]. By this approach, abnormal network architec-
ture at large-scale level was found in BSP patients along with
the detection of sensorimotor and frontoparietal networks’ FC
alteration [73].

Finally, the voxel-mirrored homotopic connectivity, a
method of rs-fMRI designed to compare the interhemispheric
rs-fMRI FC revealed enhanced homotopic coordination in the
brain regions associated with sensory integration networks
and default-mode network [70].

Overview of neuroimaging studies

Reports on acquired BSP have limitations. First, the structural
abnormalities associated with BSP lack specificity because it
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Table 1 Reports on acquired blepharospasm

study No. of patients Lesion site Lesion type Dystonia distribution

Cavalheiro et al. [12] 1 Left thalamus Angiocentric glioma BSP

Singer et al. [13] 1 Right midbrain Cyst Right BSP

Persing et al. [14] 1 Cerebellopontine
angle

Meningioma BSP and OMD

Yin Foo Lee et al. [15] 1 Left lateral ventricle Ganglioglioma Left BSP

Lambrecq et al. [16] 1 Right lateral
ventricle + HCN

Ependymoma BSP and CD

Leenders et al. [17] 1 Left Rostral
brainstem--
thalamus

Calcified mass Left BSP and right HD

Aramideh et al. [18] 1 Left dorsomedial
lower pons

Metastatic lesion BSP

Jancovick and Patel [19] 2 Brainstem SM BSP

4 Rostral brainstem Vascular (infarction) BSP and OMD (2)

Awada [20] 1 Bilat thalamus Vascular (infarction) BSP

Powers [21] 1 Left thalamus Vascular (infarction) BSP

Keane and Young [22] 1 Bilat putamen and
caudate nucleus

Hypoxic
encephalopathy

BSP and limb dystonia

Palakurthy and Iyer [23] 1 Bilat basal ganglia
right perysilvian
area

Hypoxic
encephalopathy

BSP

Kirton and Riopelle [24] 1 Bilat basal ganglia Hypoxic
encephalopathy

BSP,OMD and CD

Velnar et al. [25] 1 Right subdural space Hematoma BSP

Gilbert et al. [26] 1 Left pons Capillary telangiectasia BSP

Grandas et al. [27] 1 Left striatum Vascular (infarction) Reflex BSP

Larumbe et al. [28] 1 Bilateral basal
ganglia

Hypoxic
encephalopathy

Reflex BSP and LD

Kulisevsky et al. [29] 1 Left
Thalamus-midbra-
in

Vascular (infarction) Left BSP

Miranda and Millar [30] 1 Bilat paramedian
thalamic nuclei

Vascular infarction BSP

Lal et al. [31] 1 Thalamus Vascular (hemorrhage) BSP

Algoed et al. [32] 1 Right frontal cortex Vascular (infarction) AEO

Johnston et al. [33] 2 Right middle
cerebral artery

Vascular (infarction) AEO

O’Rourke et al. [34] 1 Bilat cerebellar
hemispheres and
right occipital
cortex

Vascular (infarction) BSP and OMD

Gibb et al. [35] 1 Dorsal pons Angioma BSP

Lang and Sharpe [36] 1 CH BSP

Wali GM [37] 1 Left frontal cortex Vascular (VT and
infarction)

BSP

Lee and Lee [38] 1 Right subcortical
frontal

Vascular (infarction) AEO

Kim et al. [39] 1 Bilat frontal and right
temporal cortex

Traumatic injury AEO

Jacob and Chand [40] 1 Bilateral parietal
cortex

Vascular (infarction) BSP and OMD

Jankovic [41] 1 Bilateral thalamus
(VIM)

Surgery BSP

Sandyk and Gillman [42] 1 CH BSP

Day et al. [43] 1 Pons Vascular (infarction) BSP

Herraiz et al. [44] 1 Bilat pallidum Calcifications BSP and OMD

Blin et al. [45] 1 Bilat basal ganglia Calcifications BSP
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may also be found in non-dystonic people; second, we cannot
exclude a physiopathological role of microstructural defects or
functional disturbances arising from apparently normal brain
regions; finally, a temporal relationship between lesion devel-
opment and emergence of symptoms is not always evident.
Therefore, it is sometimes difficult to rule out the possibility of
an idiopathic BSP with coincidental lesions [52].

Nevertheless, it is of interest that the microstructural alter-
ations found in idiopathic BSP on DTI and VBM investiga-
tions largely affect brain regions associated with acquired
BSP. The possibility that a structural lesion within a neural
network induces functional changes leading to the appearance
of dystonic symptoms still remains a plausible physiopatho-
logical mechanism. The consistency of the findings between
idiopathic and acquired BSP strongly supports the hypothesis
that many brain regions are involved in the physiopathology
of BSP. Supporting this view, information from functional
imaging studies indicated that BSP patients may have both
abnormal intraregional brain activities and interregional dys-
functional connectivities and supported derangements in com-
munication among frontal and parietal cortical areas, the basal
ganglia, the thalamus, and the cerebellum.

Another issue to be considered is the lack of correlation
between severity/duration of BSP and the abnormalities found
in some regions of the brain. Although the correlation between
clinical variables and imaging findings was not tested system-
atically, this observation would suggest that the abnormalities

found in multiple brain regions not limited to the basal ganglia
may be trait alterations in BSP patients.

In conclusion, information provided by imaging studies
supports the hypothesis that BSP may arise from a disordered
brain network [78].

Neurophysiological abnormalities

Several neurophysiological abnormalities affecting sensori-
motor pathways at different levels of the central nervous sys-
tem have been described in BSP (Table 5).

The earliest detected abnormality was the decreased inhi-
bition of the R2 response of the blink reflex by paired electri-
cal stimulation of the supraorbital nerve [79–81, 84, 85] that
relies on brainstem oligosynaptic circuits [87]. As botulinum
toxin treatment leaves the blink reflex recovery cycle un-
changed but significantly improves OO muscle spasms, [82,
83] the blink reflex abnormalities in BSP are likely to reflect a
pathophysiological mechanism rather than dystonic activity in
the OO muscle. The enhanced excitability of interneurons in
the brainstem extends outside the blink reflex to include an
enhanced recovery curve of the silent period 2 of the masseter
inhibitory reflex [85, 92], and the trigemino-facial circuits to
include an abnormal auditory startle reaction [88], an abnor-
mal trigemino-sternocleidomastoid reflex, [84] and an abnor-
mal somatosensory pre-pulse modulation of the blink reflex

Table 1 (continued)

study No. of patients Lesion site Lesion type Dystonia distribution

Verghese et al. [46] 1 Putamen Hemorrhage BSP

Jimenez-Jimenez et al. [47] 1 Left thalamus and
others

Neurocysticercosis BSP

Choe and Gausas [48] 1 Not identified Paraneoplastic
encephalitis

BSP

Armangue et al. [49] 1 Right frontobasal
cortex

Autoimmune
encephalitis

BSP

Nociti et al. [50] 1 Left parietal cortex
and periventricular

Multiple sclerosis BSP

1 Left parietal cortex

Kostić et al. [51] 1 Left thalamus,
frontoparietal
cortex

Tumor BSP

1 Left thalamus and
upper brainstem

Trauma

Khooshnoodi et al. [52] 18 5 thalamus, 4
cerebellum, 5
brainstem, 3 basal
ganglia, 1 parietal
cortex

15 vascular (infarction),
2 vascular
malformation, 1 cyst

BSP and OMD (2) or CD (2)
or truncal dystonia (1)

BSP, blepharospasm;OMD, oromandibular dystonia;AEO, apraxia of eyelid opening;CD, cervical dystonia;HD, hemidystonia; LD, limb dystonia;CH,
communicating hydrocephalus; HCN, head of caudate nucleus
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by peripheral stimuli [81, 86]. Brainstem interneuron hyper-
excitability secondary to a suprasegmental dysfunction may
explain the enhancement of the recovery curves of the R2
response of the blink reflex as well as the abnormal changes
observed in other brainstem reflex responses [87, 88, 92]. The
basal ganglia would influence the blink reflex circuit through
two main routes. First, basal ganglia projections via thalamus
to cortex might change the activity in descending cortico-
brainstem pathways controlling blink reflex excitability.
Alternatively, there could be a route via projections to either
pedunculopontine nucleus (PPN), or most likely the superior
colliculus (SC); in turn, outputs from the SC could project to
the raphe magnus and hence to interneurons in the trigeminal
sensory nucleus [93–95].

Transcranial magnetic stimulation (TMS) showed abnor-
mal excitability of the primary motor cortex (M1) in BSP, as
demonstrated by reduced short-interval intracortical inhibition
(SICI) in the hand muscles and by reduced duration of the
cortical silent period in the cranial muscles of such patients
[89, 90]. Using paired associative stimulation, a technique that
investigates cortical plasticity, Quartarone and colleagues [91]

observed that the plasticity of cortical motor areas is increased
in the hand muscles of patients with BSP. Although the afore-
mentioned TMS were traditionally attributed to a basal gan-
glia dysfunction, deep brain stimulation (DBS) studies per-
formed in patients with a variety of movement disorders have
shown that stimulation of the subthalamic nucleus (STN) re-
stores SICI in patients with Parkinson’s disease (PD) [96];
stimulation of the ventralis intermedius nucleus of thalamus
(VIM) may enhance M1 excitability to TMS in patients with
essential tremor [97]; stimulation of the STN may improve
silent period changes in patients with PD [98]; and GPI stim-
ulation may modulate M1 excitability in patients with dysto-
nia [99]. Finally, electrical or magnetic stimulation of the cer-
ebellum can modulate excitatory and inhibitory M1 circuits
[100–103].

Earlier studies tested the sensory system in dystonic pa-
tients by assessing somatosensory-evoked potentials (SEPs)
that is electrical potentials generated in sensory pathways at
peripheral, spinal, subcortical, and cortical levels of the ner-
vous system [104]. SEPs may be used to assess sensory inte-
gration in the time domain by applying the paired-pulse

Table 2 Morphometric studies on blepharospasm

Study No. of patients/controls Analytic method Brain regions with
abnormalities

Correlation with clinical variables

Black et al. [54] 5/13 Stereologic method
Manual tracing

Enlarged putaminal volume
bilaterally

Not tested

Etgen et al. [55] 16/16 VBM GMI in the putamen
bilaterally

GMD in left inferior parietal
lobe

BoT treatment duration with GMD

Obermann et al. [56] 11/14 VBM GMI in the caudate head and
cerebellum

GMD in putamen and
thalamus bilaterally

Not tested

Martino et al. [57] 25/24 VBM GMI in the right middle
frontal gyrus

GMD in left postcentral and
superior temporal gyrus

No correlation

Suzuki et al. [58] 32/48 VBM GMI density in primary
sensory-motor cortex bilat-
erally
and left cingulate gyrus

Disease duration and severity

Horovitz et al. [59] 14/14 VBM GMI in left lateral middle
temporal gyrus, right
postcentral gyrus, and
bilateral precuneus

GMD in right orbitofrontal
cortex, left facial portion of
the precentral cortex, left
lateral inferior frontal gyrus,
right occipital cortex, and
right anterior cingulate
gyrus

Decreased left CBT volume
and connectivity

Disease duration with right occipital
cortex GMD

VBM, voxel-based morphometry; GMI, gray matter increase; GMD, gray matter decrease; BoT, botulinum toxin; CBT, corticobulbar tract
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paradigm; in normal subjects, a preceding (conditioning) stim-
ulus induces suppression of SEP amplitude evoked by the
following (test) stimulus [105]. In patients with dystonia, this
inhibitory effect is impaired [106–108]. Supporting this view,
several studies on patients with various forms of focal dysto-
nia including BSP have reported increased somatosensory
temporal discrimination thresholds (STDT), the shortest time
interval needed to discriminate two consecutively applied tac-
tile stimuli [109–112]. Increased STDT values are present in
body parts that may be affected or unaffected by dystonia and
do not improve after botulinum toxin [112, 113]. Because
altered STDT has been observed in BSP and in other focal
dystonias, does not correlate with clinical severity, and has
been also observed in unaffected first-degree relatives of pa-
tients, the abnormal temporal processing of sensory informa-
tion is likely to enhance the permissive environment that pre-
disposes patients to the development of dystonia [106,
114–118]. Supporting this view, STDT abnormalities have
been reported in patients with increased blinking as prodromal
phase of BSP [119, 120].GABA-mediated mechanisms of in-
hibition in the somatosensory cortex S1 as well as a
dopamine-mediated subcortical network, involving the basal
ganglia, thalamus, and superior colliculus, probably contrib-
ute to the mechanisms underlying STDT [111, 121, 122].

Overview of neurophysiological studies

Neurophysiological investigations in idiopathic BSP found
abnormal functional changes that were consistent with loss
of inhibition at different levels of the nervous system. Some

of these studies may have been limited by the small size of the
study sample and the lack of attention to the possible correla-
tions between neurophysiological changes and clinical vari-
ables. Furthermore, several neurophysiological abnormalities
could also be found in movement disorders other than dysto-
nia [123–126]. Nevertheless, loss of inhibition is a well-
defined functional trait of dystonia [127] that could also be
detected in unaffected body regions of dystonic patients or in
non-manifesting DYT1mutation carriers, thus raising the pos-
sibility that these changes are an endophenotype of dystonia
[128–130].

Discussion

Although BSP is traditionally considered a basal ganglia dis-
order, accumulating evidence from structural and functional
investigations points to the anatomical and functional involve-
ment of several brain regions. This has led to the hypothesis
that BSP may arise from a disordered brain network [78].
Considering the remarkable clinical heterogeneity of motor
and non-motor manifestations characterizing BSP, a related
heterogeneity of the underlying anatomical substrates would
not be surprising.

Available information makes it highly likely that the pri-
mary defect in BSP lies somewhere in a network connecting
the basal ganglia, thalamus, frontal and parietal cortices, cer-
ebellum, and brainstem [78]. Likewise, similar findings from
clinical reports and non-conventional imaging studies also
support a derangement of brain networks in other focal

Table 3 Task-dependent fMRI studies on blepharospasm

Study No. of patients/
controls

Task explored Statistical
analysis

Brain regions
with abnormalities

Baker et al. [66] 5/5 Spontaneous blinking and
voluntary blinking

Spontaneous blinking
versus eye closed

Abnormal increased activation in
primary visual cortex, area prostriata,
and occipital visual association areas

Voluntary blinking
versus eye closed

Abnormal increased activation in
primary visual cortex, central
thalamus, posterior putamen, and
supplementary and primary motor
cortex

Spontaneous blinking versus
voluntary blinking

Abnormal increased activation in
primary visual cortex, primary motor
cortex, cerebellar paravermian area,
central thalamus, and anterior
cingulate gyrus

Schmidt et al. [67] 6/4 Eyelid spasm in patients Eyelid spasm intervals versus
no spasm intervals

Unilateral or bilateral activation in the
putamen not present during
voluntary blinking in controlsVoluntary blinking in controls Voluntary blinking versus

spontaneous blinking

Obermann et al.
[68]

11/14 Grip force forearm contraction Grip force forearm contraction
versus rest condition

Increased activation in the thalamus,
caudate nucleus, putamen and lateral
globus pallidus
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dystonias like cervical dystonia and upper limb dystonia [78,
131]. If the network model can also explain the well-
established neurophysiological abnormalities that are present

in BSP and were previously attributed to a basal ganglia dis-
turbance, then this would enhance the likelihood of the net-
work model itself.

Table 4 Resting-state fMRI studies on blepharospasm

Study No. of patients/ con-
trols

Analytic method Brain regions with
abnormalities

Correlation with
clinical variables

Zhou et al. [71] 9/9 ALFF analysis Increased ALFF: insula lobe, left putamen,
pallidum, medial
prefrontal cortex. Decreased ALFF:
cerebellum, thalami, bilateral
somatosensory regions, medial and
posterior cingulate cortex

Not tested

Yang et al. [72] 18/18 ALFF analysis Increased ALFF: left orbitofrontal areas
Decreased ALFF: left thalamus

Negative correlation between
decreased left thalamus ALFF
and JRS score and positive
correlation between increased
left orbital areas ALFF and
disease duration

Battistella et al.
[73]

9/15 ICA Decreased FC: bilateral primary sensorimotor
cortex, supplementary motor area, left
superior temporal gyrus, left prefrontal
cortex, bilateral middle temporal gyrus

Increased FC: left insular cortex

No correlation with disease
duration and severity
(BFMDRS)

Graft theoretical
analysis

Abnormal large-scale neural network

Jochim et al. [74] 13/13 Seed analysis Reduced FC between: caudate and primary
sensorimotor, somatosensory association
and visual cortices; putamen and parietal
association cortex; cerebellum and
somatosensory and visual associative areas;
cingulate cortex and the primary
sensorimotor/premotor and parietal associ-
ation cortex; premotor areas and the pri-
mary somatosensory cortices; postcentral
gyrus and temporoparietal, secondary
somatosensory, cingular, and cerebellar re-
gions.

Negative correlation between FC
reduction cerebellum-visual
cortex and BDS score

Huang et al. [75] 25/25 ICA Decreased FC in bilat sensorimotor cortex,
SMA, right premotor cortex, bilat
precuneus, left superior parietal cortex,
right middle and inferior frontal gyrus and
right dorsolateral prefrontal cortex.
Increased FC; left superior frontal gyrus,
middle frontal gyrus.

Negative correlation between
reduced FC in right superior
frontal gyrus and disease
duration; higher FC in the
premotor area in sensory trick
+ patients

Ni et al. [76] 26/26 fALFF analysis
ReHo analysis

Increased fALFF and ReHo in the right
caudate head

Positive correlation of fALFF and
ReHo values in right caudate
head and FC right caudate
head -left striatum with JRS
sum score

FC analysis Increased FC between right caudate head
and left striatum and right supplementary
motor area

Wei et al. [70] 26/24 VMHC Enhanced homotopic coordination in inferior
temporal gyrus, inferior frontal gyrus,
posterior cingulated cortex, postcentral
gyrus

No correlation with symptom
severity (JRS), disease
duration, SAS and SDS scores

Jiang et al. [77] 24/24 ReHo analysis Decreased ReHo: left superior temporal
pole/left insula, left calcarine cortex, bilat-
eral superior medial frontal gyrus.
Increased ReHo: bilateral supplementary
motor area

No correlation with symptom
severity (JRS), disease
duration, SAS and SDS scores

ALFF, amplitude of low-frequency fluctuations; fALFF, fractional ALFF; ReHo, regional homogeneity analysis; ICA, independent component analysis;
FC, functional connectivity; VMHC, voxel-mirrored homotopic connectivity; JRS, Jankovic Rating Scale; SAS, self-rating anxiety scale; SDS, self-rating
depression scale; BDS, blepharospasm disability scale; BFMDRS, Burke–Fahn–Marsden Dystonia Rating Scale
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In patients with BSP, neurophysiological studies highlight-
ed loss of inhibition at cortical and sublevels (cortical and
subcortical) of the central nervous system. Theoretically,
changes of excitability in restricted brain areas like cortical
M1, brainstem, and cortical S1 may depend on intrinsic dis-
orders in these areas and/or may reflect abnormal influences
from distant brain structures. The latter hypothesis is support-
ed by several evidences: DBS studies have shown that stimu-
lation of the STN, GPi, or VIM modulates M1 excitability
[96–99]; excitatory and inhibitory M1 circuits are also affect-
ed by electrical or magnetic stimulation of the cerebellum
[100–103]; and GPi stimulation increases R2 inhibition of
the blink reflex recovery curve in dystonic patients [132].
Therefore, changes in cortical/brainstem excitability may re-
flect dysfunctions possibly involving the basal ganglia-
thalamo-cortical projections and the cerebello-thalamo-
cortical projections. Likewise, cortical S1 abnormalities un-
derlying STDT disturbances may develop secondarily to ab-
normal connectivity from subcortical projections from the
basal ganglia, thalamus, and superior colliculus rather than
occurring independently.

If impaired inhibition at cortical/brainstem levels and tac-
tile information processing abnormalities can be interpreted as
dysfunctional connectivity between subcortical networks and
M1/S1 cortices, then neurophysiological abnormalities carried
by BSP patients would be coherent with the pathophysiolog-
ical model positing that BSP arise from a disordered network
connecting the basal ganglia, thalamus, frontal and parietal
cortical areas, cerebellum, and brainstem. In this network or-
ganization, the thalamus would be a central dysfunctional hub
because it not only gates bottom-up and top-down streams of

sensory information directed to and from the cortex but also
integrates sensory inputs of different modalities with output
from the basal ganglia and cerebellum [133]. The cerebellum
might be considered an additional dysfunctional hub in the
network model of dystonia, as suggested for cervical dystonia
and focal hand dystonia by dysfunction of cerebello-thalamo-
cortical circuits [134–136] and impaired cerebellum-
dependent associative learning explored by the classical eye-
blink conditioning paradigm (EBCC), a Pavlovian learning
protocol integrated at the level of Purkinje cells and deep
cerebellar nuclei [137–139]. However, there is no neurophys-
iological evidence as yet of cerebellar involvement in idio-
pathic BSP. Future studies designed to assess the EBCC and
the functional interactions between cerebellum and M1 in
BSP patients may clarify whether different forms of focal
dystonia share the same dysfunctional circuits.

In conclusion, evidence from structural and functional in-
vestigations supports the hypothesis that BSP could arise from
a disordered brain network. This model seems also to fit the
neurophysiological abnormalities so far reported in idiopathic
BSP. However, several questions still remain open. Further
studies are needed to better understand which is the core of
the dysfunctional network and which are sites that can be
permissive; which abnormalities play a causative role and
which are compensatory phenomena; which factors may
cause BSP to fully clinically express; how structural and func-
tional abnormalities correlate with clinical symptoms and dis-
ease evolution; and whether the spectrum of non-motor symp-
toms characterizing BSP is in some way related to the abnor-
mal network of brain structures thought to contribute to the
condition.

Table 5 Neurophysiological studies on blepharospasm

Neurophysiological protocol Study No. of patients/controls Abnormality

Blink reflex recovery cycle Berardelli et al. [79] 16/10 Enhanced R2 recovery

Tolosa et al. [80] 14/15 Enhanced R2 recovery

Baione Vet al. [81] 24/24 Enhanced R2 recovery

Conte et al. [82] 23 Unchanged R2 recovery after BoT-T

Valls-Sole et al. [83] 14/17 Enhanced R2 recovery, unchanged after BoT-T

Carella et al. [84] 13/10 Enhanced R2 recovery

Pauletti et al. [85] 21/13 Enhanced R2 recovery

Pre-pulse inhibition of the blink reflex Gomez-Wong et al. [86] 17/11 Reduced inhibition of R2

Baione et al. [81] 24/24 Reduced inhibition of R2

Masseter inhibitory reflex recovery cycle Cruccu et al. [87] 5/50 Enhanced SP2 recovery cycle

Pauletti et al. [85] 21/13 Enhanced SP2 recovery cycle

Trigemino-sternocleidomastoid reflex Carella et al. [84] 13/10 Reduced suppression of EMG activity

Auditory startle reaction Muller et al. [88] 13/13 Enhanced reflex EMG activity

Paired-pulse TMS paradigm Sommer et al. [89] 16/23 Reduced intracortical inhibition

Cortical silent period Currà et al. [90] 23/10 Facial muscles silent period shortening

Paired associative stimulation Quartarone et al. [91] 8/10 Excessive motor cortex plasticity

BoT-T, botulinum toxin treatment
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