#### **REVIEW ARTICLE**

# Levodopa/carbidopa/entacapone for the treatment of early Parkinson's disease: a meta-analysis

Xiaoli Liao<sup>1</sup> • Nianyue Wu<sup>1</sup> • Dongfeng Liu<sup>1</sup> • Bowei Shuai<sup>1</sup> • Shilei Li<sup>1</sup> • Ke Li<sup>1</sup>

Received: 8 March 2019 / Accepted: 20 February 2020 / Published online: 11 March 2020 © Fondazione Società Italiana di Neurologia 2020

#### Abstract



Treatment of Parkinson's disease with levodopa/carbidopa/entacapone (LCE) has been studied for a long time. However, the efficacy and safety of LCE in the treatment of early Parkinson's disease (PD) still need to be assessed. Our objective was to do a meta-analysis of relevant randomized controlled trials (RCTs) to evaluate the efficacy and safety of LCE for early PD. PubMed, Embase, the Cochrane Library, and the Web of Science were searched for RCTs with "levodopa/carbidopa/entacapone" and "Parkinson's disease" as keywords. The search period was from inception to October 2018. The quality of included studies was strictly evaluated. We evaluated the quality of included studies strictly and six studies met all inclusion criteria. The results showed that LCE could improve activities of daily living and motor function in PD patients. However, LCE therapy was associated with higher risks of total AEs and single AEs compared with traditional therapy.

Keywords Early Parkinson's disease · Levodopa/carbidopa/entacapone · Adverse events · Treatment of Parkinson's disease

# Introduction

Parkinson's disease (PD) is a neurological disorder with complex evolving layers. It has long been characterized by the classical motor features of Parkinsonism with Lewy bodies (LBs) and loss of dopaminergic neurons in the substantia nigra [1, 2]. LBs is a unique intracytoplasmic inclusion body containing a variety of cellular proteins.  $\alpha$ -synaptic nucleoprotein ( $\alpha$ -syn) is a major component of LBs. In recent years, the research focus of PD is mainly on the mechanism of  $\alpha$ -syn.  $\alpha$ -syn monomer is composed of the amino terminus, the carboxyl terminus, and the NAC domain (the substrate of transglutaminase). It normally exists in the body as a disordered monomer. However, in the brains of Parkinson's patients, these monomers are abnormally expressed and

Liao Xiaoli, Wu Nianyue and Liu Dongfeng contributed equally to this work.

Ke Li colinlike@163.com

Xiaoli Liao liaoxl@uestc.edu.cn aggregated to form synaptic nucleocapsin aggregates, which along with other proteins form LBs, causing mitochondrial dysfunction and apoptosis, which ultimately leads to brain cell death [3]. PD is characterized by bradykinesia, muscular rigidity, and rest tremor, as well as postural and gait impairment. In addition to motor symptoms, various non-motor features, such as olfactory dysfunction, cognitive impairment, psychiatric symptoms, and sleep disorders, may occur at different stages throughout the disease. As well as treating motor symptoms, these non-motor symptoms must also be addressed, but are often more difficult to treat [2, 4, 5].

PD has a high prevalence and it is associated with social and economic consequences. PD affects about 10–18 out of every 100,000 people every year [2]. The prevalence of PD increases with age and the global burden of care for the condition is likely to increase markedly over the next 25 years since life expectancy is rising worldwide [6].

A major goal of Parkinson's disease research is to develop disease-modifying drugs that slow or halt the underlying neurodegenerative process [2]. In the 1980s, levodopa was the only medication available for PD (except anticholinergics and amantadine). Levodopa act to enhance synaptic dopamine transmission using the dopamine precursor L-3,4ihydroxyphenylalanine. However, this drug has side effects such as dyskinesia and motor fluctuations [5]. Most of these dyskinesias occur when levodopa or other dopamine receptor

<sup>&</sup>lt;sup>1</sup> School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China

agonists have a concentration in the brain that is sufficient to overactivate dopamine receptors in the putamen [7]. Considering the limitations of levodopa monotherapy, the adjuvant therapy with adding other anti-Parkinson's drugs has been used in PD treatment.

Levodopa is partly metabolized by catechol Omethyltransferase (COMT). COMT inhibitors increase the elimination half-life of levodopa and boost the effect of each tablet by about 30% [5, 8]. Entacapone is a selective, reversible, peripheral inhibitor of the COMT, which mediates LD metabolized to 3-O-methyldopa (3-OMD) and prolongs LD half-life in vivo [9]. So, using one tablet that combines levodopa, carbidopa, and entacapone should have similar pharmacokinetic and efficacy profile and that can lead to increasing the daily "on" time, decreasing the daily "off" time, and the daily levodopa dose [10–12]. However, the plasma half-life of levodopa in rapidopa/levodopa (CD/LD) rapidrelease agents is only about 1.5 h, making it difficult to maintain therapeutic drug concentrations and leading to fluctuations in motor symptoms and a long-term risk of movement disorders. In order to quickly achieve the therapeutic concentration of levodopa and maintain the longer efficacy, CD/LD sustained release agents were developed [13–15].

Although a large number of studies have investigated the treatment of motor and non-motor symptoms in PD, there are still many controversies about the diagnosis and treatment of early PD patients (early PD patients are newly diagnosed patients in Hoehn-Yahr (H&Y) stage 1 and up to stage 2 [16]). So, we make this meta-analysis to review the evidence for efficacy and safety of LCE in the treatment of early PD patients.

# Methods

## Literature search strategy

We searched four databases of PubMed, Embase, Web of science, and the Cochrane Library. The publication period for the search is from inception to October 2018 for all the English language studies that used LCE in the treatment of early PD. The search was conducted using a combination of keywords including "Parkinson Disease," "Entacapone," and free words including "Idiopathic Parkinson's Disease," "Lewy Body Parkinson Disease," etc. We used the Boolean logic "AND" to combine the keywords and "OR" for the free words. Reference lists from the resulting publications and reviews were used to identify further relevant publications.

#### Inclusion and exclusion criteria

The studies to be included had to satisfy the following criteria:

- 1. Study design: randomized controlled clinical trials (RCTs). The research had to include a comparative treatment of LCE or Stalevo with other Parkinson's drugs like levodopa/carbidopa (LC) or placebo.
- 2. Subjects included patients with early PD. The early PD was defined as idiopathic PD, H&Y stage 3 or less, no motor complications history, no treatment, or limited (generally less than 6 months) use of anti-Parkinson's drugs.
- 3. Experimental parameters, such as the dose of LCE or Stalevo, and medication time.
- 4. The scales scores associated with PD, such as PDQ-8, UPDRS II, or III scores, and duration of dyskinesia.

Prespecified exclusion criteria were (1) case reports, abstracts, comments, reviews, and editorials; (2) duplicate publication; (3) uncorrelated experiment; and (4) no treatmentrelated outcomes were reported.

## **Data extraction**

Data for each study were extracted independently by two researchers (Wu and Liu). For all the studies we searched, we used the title summary screening in the first phase and the fulltext reading screening in the second phase to obtain the studies we needed to include in the end. For each study, information was carefully extracted from all the eligible studies, including (1) the first author, year of publication, number of subjects, sex ratio (male/female), mean age of subjects, and inclusion criteria of PD patients; (2) study design, PD scale used, duration of study, and visits of all stages; and (3) intervention characteristics of the trial groups and control groups. We resolved our differences through discussion and consulted a third investigator (Xia) if necessary.

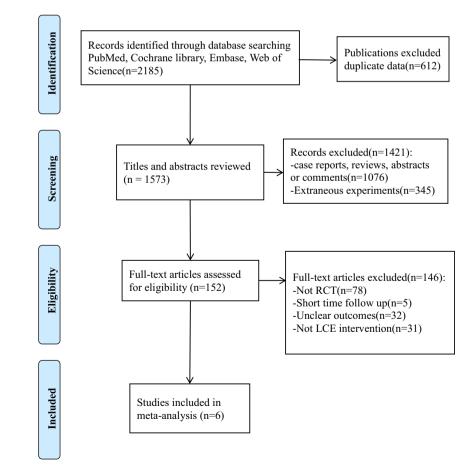
## **Quality assessment**

The two researchers evaluated the methodological quality of the included studies by the Cochrane risk-of-bias assessment tool independently. The tool classifies the studies as having low, moderate, or high risk of bias across six domains: Random sequence generation (selection bias), allocation concealment (selection bias), blinding of participants and personnel (performance bias), incomplete outcome data (attrition bias), selective reporting (reporting bias), other sources of bias (other bias). Disagreements were resolved through consensus or discussed with a third investigator.

#### **Statistical analysis**

The results of each identified trial were combined by using meta-analytic methods to evaluate the overall effect for experimental group (use LCE) versus control (use others). For continuous data (such as UPDRS, PDQ-8), we calculated mean differences (MDs), standard differences (SDs), and their 95% confidence intervals (CIs). For categorical outcomes (such as dyskinesia, risk of AEs), we calculated relative risk (RRs). We used the recommended method from the Cochrane handbook to estimate SDs if they were not available in the included studies. The random effects was used rather than a fixed effects model because this takes into account the heterogeneity between multi-studies. For the assessment of heterogeneity, the  $I^2$  statistic was used. When outcome measurements in all studies are made on the same scale, it can be used as a summary statistic in meta-analysis. Publication bias was examined by funnel plot. All analyses performed with RevMan 5.3. *p* values  $\leq 0.05$  were considered significant.

# Result


## **Study inclusion**

Our literature search yielded 2185 articles, of which 2033 literatures were excluded through title and abstract screening. Through screening the full-text of the remaining 152 articles, 78 studies were excluded because of non-RCT experimental literature, 5 studies were excluded because of the short follow-

Fig. 1 Flowchart of studies included and excluded. RCT, randomized controlled trial; LCE, levodopa/carbidopa/entacapone up time, 32 studies were excluded because of the unclear outcomes, and 31 studies were excluded because the intervention drugs did not included LCE. Ultimately, we included six articles [6, 10, 17–20] which satisfied the inclusion criteria. The flowchart of studies included and excluded is presented in Fig. 1.

# **Basic characteristic of studies**

Six RCTs met the inclusion criteria, of which 1983 participants were included. The levodopa/carbidopa/entacapone group contained 983 participants and the control group contained 1000 participants. One study adopted levodopa/ DDCI+ entacapone (L/D/E) and five studies adopted levodopa/carbidopa (LC) in the control group. The average age of the included participants was about 60 to 70, the proportion of male was slightly higher than female, the average duration of PD was about 5.3 years, and all participants' Hoehn and Yahr staging was no more than three. In the six studies, treatment duration ranged from 6 to 134 weeks, and the number of participants ranged from 95 to 745. In terms of experimental outcomes, UPDRS as the outcome measure was observed in four studies, CGI as the outcome measure was reported in two studies, and PDQ-39 as the outcome measure was observed in four studies. All studies reported adverse



| Table 1 Basic chara                                                                      | Basic characteristics of included studies                                            | studies                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                |                            |                                                |                                                                                  |                                                            |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|
| Study                                                                                    | Participants                                                                         |                                                                                                                                                         | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | Duration                   | Efficacy outcome                               |                                                                                  | Visits                                                     |
|                                                                                          | Trial                                                                                | Control                                                                                                                                                 | Trial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control                                                        |                            | Primary                                        | Secondary                                                                        |                                                            |
| Brooks, D. J 2005                                                                        | Stalevo: $n = 82$ ,<br>$a = 66.4 \pm 8.6$<br>M/F = 60/40,<br>H& Y = 1-3              | L/D/E: $n = 94$ ,<br>$a = 64, 9 \pm 8.1$<br>M/F = 54/46,<br>H&Y = 1-3                                                                                   | Stalevo: 50/12.5/200 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L/D/E: 100/25/200 mg<br>or 150/37.5/200 mg                     | 10 weeks                   | Treatment success<br>rate;CGI-C                |                                                                                  | Week 1, 2, 4, 6                                            |
| Fung, V. S. C 2009                                                                       | LCE: $n = 93$ ,<br>$a = 64.8 \pm 10.2$<br>M/F = $61.3/38.7$ ,<br>H&Y = $1-2.5$       | LC: $n = 91$ ,<br>$a = 62.9 \pm 9.45$<br>M/F = 54.9/45.1,<br>H&Y = $1-2.5$                                                                              | LC: (3–4 stable doses) +<br>E 200 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LC: (3-4 stable doses) 12 weeks PDQ-8                          | 12 weeks                   | PDQ-8                                          | UPDRS I,II,III, IV                                                               | Day7; Week 4, 12                                           |
| Stocchi, F 2010                                                                          | LCE: $n = 373$ ,<br>$a = 60.6 \pm 8.7$<br>M/F = $65.7/34.3$ ,<br>H&Y = $1.9 \pm 0.5$ | LC: $n = 372$ ,<br>$a = 59.8 \pm 8.2$<br>M/F = 59.7/40.3,<br>5 H&Y = 1.9 \pm 0.5                                                                        | LC: 50/12.5 mg (2×/d)<br>to 100/25 mg or<br>150/37.5 mg (4×/d) +<br>E:200 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                | LC: 50/12.5 mg(2×/d)<br>to 100/25 mg or<br>150/37.5 mg (4×/d)  | 208 weeks                  | 208 weeks The time to onset<br>of dyskinesia   | Frequency of dyskinesia Week 1, 2, 6, 8, 13<br>and wearing-off;<br>UPDRS II, III | Week 1, 2, 6, 8, 13                                        |
| Lew, M. F.2011                                                                           | LCE: <i>n</i> = 180,<br>a = 68.7 ± 9.2<br>M/F = 58.9/41.1,<br>H&Y < 2.5              | DEL: $n = 179$ ,<br>$a = 68.3 \pm 10.4$<br>M/F = 60.3/39.7,<br>H&Y < 2.5                                                                                | LCE: 12.5/50/200,<br>25/100/200, or<br>37.5/150/200 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                | 16 weeks                   | UPDRS III                                      | PDQUALIF                                                                         | Week 4, 8, 16, 20                                          |
| Tolosa, E 2014                                                                           | LCE: $n = 46$ ,<br>$a = 66.4 \pm 8.2$<br>M/F = 44.4/55.6,<br>H&Y = 1-3               | LC: $n = 49$ ,<br>$a = 66.5 \pm 9.0$<br>M/F = 55.1/44.9,<br>H&Y = 1-3(only<br>1 > stage 3)                                                              | LCE: 100/25/200 mg (1 t)<br>or 150/37.5/200 mg (1 t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LC: 100/25 mg (1 t)<br>or 100/25 mg (1.5 t)                    | 3 months UPDRS II          | UPDRS II                                       | UPDRS I,III, IV                                                                  | Month 1, 2, 3                                              |
| Hauser, Robert A 2009 LCE: <i>n</i> = 208,<br>a = 65.3 ± 9<br>M/F = 69.2/30<br>H&Y < 2.5 | 9 LCE: $n = 208$ ,<br>$a = 65.3 \pm 9.26$<br>M/F = 69.2/30.8,<br>H&Y < 2.5           | LC: $n = 215$ ,<br>$a = 64.5 \pm 8.79$<br>M/F = 59.5/40.5,<br>H&Y < 2.5                                                                                 | LCE: 100/25/200 mg (3×/d) LC: 100/25 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LC: 100/25 mg                                                  | 39 weeks                   | P-CGI-C                                        | CGI-C; UPDRS II, III;<br>health-related QoL                                      | Week 2, 4, 13, 26, 39                                      |
| a, age; M, male; F, fen<br>PDQ, Parkinson's Dis                                          | nale; <i>H&amp; Y</i> , Hoehn-Ya ease Questionnaire; <i>t</i> ,                      | a, age; $M$ , male; $F$ , female; $H\&Y$ , Hoehn-Yahr; $L/D/E$ , levodopa/DD $PDQ$ , Parkinson's Disease Questionnaire; $t$ , tablet; $UPDRS$ , Unified | <i>a</i> , age; <i>M</i> , male; <i>F</i> , female; <i>H&amp;Y</i> , Hoehn-Yahr; <i>L/D/E</i> , levodopa/DDCI/entacapone; <i>LCE</i> , levodopa/carbidopa/entacapone; <i>LC</i> , levodopa/carbidopa; <i>d</i> , day; <i>CGI-C</i> , Clinical Global Impression of Change; <i>PDQ</i> , Parkinson's Disease Questionnaire; <i>t</i> , tablet; <i>UPDRS</i> , Unified Parkinson's Disease Rating Scale; ×/d, times/day; <i>P-CGI-C</i> , patient-assessed clinical global impression of change; <i>QoL</i> , quality of life | pa/carbidopa/entacapone;<br>Scale; ×/d, times/day; <i>P</i> -0 | LC, levodo<br>JGI-C, patie | pa/carbidopa; d, day<br>nt-assessed clinical g | ; <i>CGI-C</i> , Clinical Global global impression of chan                       | Impression of Change;<br>ige; <i>QoL</i> , quality of life |

events (AEs), included total adverse events and single adverse events (nausea, diarrhea, dyskinesia, dizziness, and so on). The basic characteristics of the six studies were summarized in Table 1.

## **Risk of bias**

We used the Cochrane Collaboration's tool for assessing risk of bias. Six studies described the sequence generation and provided complete outcome data. Five studies have complete allocation sequence concealment. Four studies described blinding of participants, personnel, and outcome assessors. Therefore, all studies, included finally, were considered to have low risk of bias, of which average bias risk score is 5. Table 2 summarized the risks of bias of each study.

## **UPDRS II**

Three of included studies reported the results of UPDRS II. In these studies, the intervention of control group was levodopa/ carbidopa (LC). These studies contained 702 participants. It showed that the effect of LCE was more obvious than LC for reducing UPDRS II scores and the heterogeneity was not significant (WMD = -0.98, 95% CI - 1.48 to -0.48, p = 0.0001; heterogeneity, Chi2 = 3.07, p = 0.22, 12 = 35%; Fig. 2a).

#### UPDRS III

Similarly, UPDRS III data was available from four studies, of which the intervention of control group was LC. These studies contained 1061 participants. We found the significant effect of LCE compared with LC, and we used the random effects models for pool analysis because of the heterogeneity (WMD = -1.93, 95% CI -4.25 to 0.39, p = 0.10; heterogeneity, Chi<sup>2</sup> = 4.69, p = 0.0001, I<sup>2</sup> = 85%; Fig. 2b). However, we did not make further analysis to explore the sources of heterogeneity because of the limitations.

 Table 2
 Risk of bias of randomized controlled trials

#### CGI

Two studies that reported clinical global impression (CGI) scores were included in the efficacy analysis. The CGI scores were evaluated by investigators. The control group of one article was LC and the other was levodopa/DDCI+ entacapone (L/D/E). The results showed that there was no significant difference in overall efficacy between the LCE group and the control group (RR = 1.01, 95% CI 0.93 to 1.10, p = 0.80; heterogeneity, Tau<sup>2</sup> = 0.00, Chi<sup>2</sup> = 0.25, p = $0.61, I^2 = 0\%$ ; Fig. 3, (1)). However, the LCE group, reported "very much improved" had a larger probability (RR = 1.49, 95% CI 0.54 to 4.11, p = 0.44, Fig. 3, (2)) and reported "much improved" had smaller a probability compared with the control group (RR = 0.90, 95% CI 0.64 to 1.27, p = 0.55, Fig. 3, (3)). These results had no significantly statistical difference, of which p values ranged from 0.44 to 0.84. We should interpreted the result cautiously because of the small number of included studies.

# **PDQ-39**

The Parkinson's disease Questionnaire (PDQ-39) data was available from four studies with 1622 participants included in this pool analysis. The control groups of four studies were LC. The effect of LCE group was slightly lower than that of LC group on improving quality of daily life (WMD = 0.62, 95% CI - 0.71 to 1.96, p = 0.36; heterogeneity, Chi<sup>2</sup> = 4.59, p = 0.20, I<sup>2</sup> = 35%; Fig. 4). This pool analysis did not have an obvious publication bias because the funnel plot was roughly symmetric for the PDQ-39 score (Fig. 6a).

#### Adverse events

We analyzed the adverse events (AEs) in detail. All studies with 1983 participants reported the total number of participants with AEs. The incidence of AEs was 80.4% in the LCE group and 66.8% in the control group. The result showed that the LCE group had a higher probability of AEs than the control group (RR = 1.26, 95%CI 1.02 to 1.57, p = 0.03;

| Study                 | Random sequence generation | Generation allocation concealment | Blinding | Incomplete outcome data | Selective reporting | Other source of bias | Total |
|-----------------------|----------------------------|-----------------------------------|----------|-------------------------|---------------------|----------------------|-------|
| Brooks, D. J 2005     | 1                          | 0                                 | 0        | 1                       | 1                   | ?                    | 3     |
| Fung, V. S. C 2009    | 1                          | 1                                 | 1        | 1                       | 1                   | 1                    | 6     |
| Stocchi, F 2010       | 1                          | 1                                 | 1        | 1                       | 1                   | 1                    | 6     |
| Lew, M. F.2011        | 1                          | 1                                 | 0        | 1                       | 1                   | ?                    | 4     |
| Tolosa, E 2014        | 1                          | 1                                 | 1        | 1                       | 1                   | ?                    | 5     |
| Hauser, Robert A 2009 | 1                          | 1                                 | 1        | 1                       | 1                   | 1                    | 6     |

1, low; 0, high; ?, unclear

|                                                                                                                                                                                               |                                         | LCE                                       |                                                           |                                            | LC                                         |                                      |                                                    | Mean Difference                                                                                                        |           | Mean Differe                 | ence           |    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------------|----|
| Study or Subgroup                                                                                                                                                                             | Mean                                    | SD                                        | Total                                                     | Mean                                       | SD                                         | Total                                | Weight                                             | IV, Fixed, 95% CI                                                                                                      |           | IV, Fixed, 95                | % CI           |    |
| fung 2009                                                                                                                                                                                     | -0.8                                    | 4.12                                      | 93                                                        | 0.1                                        | 3.96                                       | 91                                   | 18.2%                                              | -0.90 [-2.07, 0.27]                                                                                                    |           |                              |                |    |
| hauser 2009                                                                                                                                                                                   | -3                                      | 3.42                                      | 208                                                       | -2.3                                       | 3.36                                       | 215                                  | 59.4%                                              | -0.70 [-1.35, -0.05]                                                                                                   |           |                              |                |    |
| tolosa 2014                                                                                                                                                                                   | -2.2                                    | 2.33                                      | 46                                                        | -0.4                                       | 2.89                                       | 49                                   | 22.4%                                              | -1.80 [-2.85, -0.75]                                                                                                   |           |                              |                |    |
| Total (95% CI)                                                                                                                                                                                |                                         |                                           | 347                                                       |                                            |                                            | 355                                  | 100.0%                                             | -0.98 [-1.48, -0.48]                                                                                                   |           |                              |                |    |
| Heterogeneity: Chi <sup>2</sup> =                                                                                                                                                             | : 3.07, df                              | = 2 (P                                    | = 0.22                                                    | ); I <sup>2</sup> = 36                     | i%                                         |                                      |                                                    |                                                                                                                        | ⊢<br>-100 | -50 0                        | 50             | 10 |
| Test for overall effect                                                                                                                                                                       | : Z = 3.87                              | 7 (P = (                                  | 0.0001)                                                   | 1                                          |                                            |                                      |                                                    |                                                                                                                        | -100      |                              |                | 10 |
|                                                                                                                                                                                               |                                         |                                           |                                                           |                                            |                                            |                                      |                                                    |                                                                                                                        |           | Favours (LCE) Fav            | rours (LC)     |    |
|                                                                                                                                                                                               |                                         |                                           |                                                           |                                            |                                            |                                      |                                                    |                                                                                                                        |           | Favours [LCE] Fav            | rours (LC)     |    |
| )                                                                                                                                                                                             |                                         |                                           |                                                           |                                            |                                            |                                      |                                                    |                                                                                                                        |           | Favours [LCE] Fav            | ours (LC)      |    |
|                                                                                                                                                                                               |                                         | LCE                                       |                                                           |                                            | LC                                         |                                      |                                                    | Mean Difference                                                                                                        |           | Favours [LCE] Fav            |                |    |
|                                                                                                                                                                                               | Mean                                    | •                                         | Total                                                     |                                            | LC<br>SD                                   | Total                                | Weight                                             | Mean Difference<br>IV, Random, 95% Cl                                                                                  |           |                              | ence           |    |
| Study or Subgroup                                                                                                                                                                             | Mean                                    | LCE                                       |                                                           | Mean                                       |                                            | Total<br>91                          | Weight<br>21.3%                                    |                                                                                                                        |           | Mean Differ                  | ence           |    |
| Study or Subgroup<br>fung 2009                                                                                                                                                                | Mean<br>-3                              | LCE<br>SD                                 | Total                                                     | Mean                                       | SD                                         |                                      |                                                    | IV, Random, 95% Cl                                                                                                     |           | Mean Differ                  | ence           |    |
| <b>Study or Subgroup</b><br>fung 2009<br>hauser 2009                                                                                                                                          | Mean<br>-3<br>-7                        | LCE<br>SD<br>8.49                         | Total<br>93                                               | <u>Mean</u><br>-1.5                        | <b>SD</b><br>10.11                         | 91<br>215                            | 21.3%                                              | <b>IV, Random, 95% Cl</b><br>-1.50 [-4.20, 1.20]<br>-0.80 [-2.20, 0.60]                                                |           | Mean Differ                  | ence           |    |
| Study or Subgroup<br>fung 2009<br>hauser 2009<br>lew 2011                                                                                                                                     | Mean<br>-3<br>-7<br>-3.6                | LCE<br>SD<br>8.49<br>7.47                 | <b>Total</b><br>93<br>208                                 | <u>Mean</u><br>-1.5<br>-6.2                | <b>SD</b><br>10.11<br>7.19                 | 91<br>215                            | 21.3%<br>27.0%                                     | <b>IV, Random, 95% Cl</b><br>-1.50 [-4.20, 1.20]<br>-0.80 [-2.20, 0.60]                                                |           | Mean Differ                  | ence           |    |
| Study or Subgroup<br>fung 2009<br>hauser 2009<br>lew 2011<br>tolosa 2014                                                                                                                      | Mean<br>-3<br>-7<br>-3.6                | LCE<br>SD<br>8.49<br>7.47<br>9.18         | <b>Total</b><br>93<br>208<br>180                          | Mean<br>-1.5<br>-6.2<br>-3.3               | <b>SD</b><br>10.11<br>7.19<br>8.42         | 91<br>215<br>179<br>49               | 21.3%<br>27.0%<br>25.3%                            | V, Random, 95% Cl<br>-1.50 [-4.20, 1.20]<br>-0.80 [-2.20, 0.60]<br>-0.30 [-2.12, 1.52]                                 |           | Mean Differ                  | ence           |    |
| Study or Subgroup<br>fung 2009<br>hauser 2009<br>lew 2011<br>tolosa 2014                                                                                                                      | <u>Mean</u><br>-3<br>-7<br>-3.6<br>-3.9 | LCE<br>SD<br>8.49<br>7.47<br>9.18<br>4.08 | Total<br>93<br>208<br>180<br>46<br>527                    | <u>Mean</u><br>-1.5<br>-6.2<br>-3.3<br>1.1 | <b>SD</b><br>10.11<br>7.19<br>8.42<br>3.71 | 91<br>215<br>179<br>49<br><b>534</b> | 21.3%<br>27.0%<br>25.3%<br>26.3%<br><b>100.0</b> % | <b>IV, Random, 95% CI</b><br>-1.50 [-4.20, 1.20]<br>-0.80 [-2.20, 0.60]<br>-0.30 [-2.12, 1.52]<br>-5.00 [-6.57, -3.43] |           | Mean Differ<br>IV, Random, S | ence<br>95% Cl |    |
| Study or Subgroup         fung 2009         hauser 2009         lew 2011         tolosa 2014         Total (95% CI)         Heterogeneity: Tau <sup>2</sup> =         Test for overall effect | <u>Mean</u><br>-3<br>-7<br>-3.6<br>-3.9 | LCE<br>SD<br>8.49<br>7.47<br>9.18<br>4.08 | Total<br>93<br>208<br>180<br>46<br><b>527</b><br>0.31, df | <u>Mean</u><br>-1.5<br>-6.2<br>-3.3<br>1.1 | <b>SD</b><br>10.11<br>7.19<br>8.42<br>3.71 | 91<br>215<br>179<br>49<br><b>534</b> | 21.3%<br>27.0%<br>25.3%<br>26.3%<br><b>100.0</b> % | <b>IV, Random, 95% CI</b><br>-1.50 [-4.20, 1.20]<br>-0.80 [-2.20, 0.60]<br>-0.30 [-2.12, 1.52]<br>-5.00 [-6.57, -3.43] | -100      | Mean Differ                  | ence<br>55% CI | 10 |

Fig. 2 Forest plot of effect sizes for UPDRS II (a) and UPDRS III (b)

heterogeneity,  $Tau^2 = 0.06$ ,  $Chi^2 = 58.00$ , p < 0.00001,  $I^2 = 91\%$ ; Fig. 5a).

The number of discontinuation due to AEs was 102 in the LCE group with 983 participants, and 76 in the control group with 1000 participants. In the subgroup analysis for the discontinuation due to AEs, the proportion of the LCE group was superior to the control group (RR = 1.36, 95%CI 1.02 to 1.80, p = 0.03; heterogeneity, Chi<sup>2</sup> = 2.19, p = 0.82, I<sup>2</sup> = 0%; Fig.

5b). The funnel plot was not completely symmetrical for the number of discontinuation due to AEs, so it suggested some certain publication bias (Fig. 6b).

We did further analysis about single adverse events. The risk of nausea, diarrhea, dyskinesia, dizziness, and urine abnormality was 23.0%, 12.9%, 5.9%, 10.6%, and 13.6% in LCE group compared with 13.0%, 6.7%, 4.5%, 8.0%, and 3.0% in control group. The results showed that the risk of

|                                 | LCE            |                     | Contr       |         |                           | Risk Ratio          | Risk Ratio                             |
|---------------------------------|----------------|---------------------|-------------|---------|---------------------------|---------------------|----------------------------------------|
| Study or Subgroup               | Events         | Total               | Events      | Total   | Weight                    | M-H, Random, 95% Cl | M-H, Random, 95% CI                    |
| 1 total                         |                |                     |             |         |                           |                     |                                        |
| brooks 2005                     | 60             | 83                  | 70          | 94      | 16.3%                     | 0.97 [0.81, 1.16]   | 1                                      |
| hauser 2009                     | 170            | 208                 | 172         |         | 60.1%                     | 1.02 [0.93, 1.12]   | <b>–</b>                               |
| Subtotal (95% CI)               |                | 291                 |             | 309     | 76.4%                     | 1.01 [0.93, 1.10]   | •                                      |
| Total events                    | 230            |                     | 242         |         |                           |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> | = 0.00; Chi    | <sup>2</sup> = 0.25 | i, df = 1 ( | P = 0.6 | 1); I <sup>2</sup> = 0%   |                     |                                        |
| Test for overall effec          | :t: Z = 0.25 ( | P = 0.8             | 0)          |         |                           |                     |                                        |
| 2 very much im                  | proved         |                     |             |         |                           |                     |                                        |
| brooks 2005                     | 10             | 83                  | 4           | 94      | 0.4%                      | 2.83 [0.92, 8.69]   | +                                      |
| hauser 2009                     | 20             | 208                 | 21          | 215     | 1.5%                      | 0.98 [0.55, 1.76]   |                                        |
| Subtotal (95% CI)               |                | 291                 |             | 309     | 1.9%                      | 1.49 [0.54, 4.11]   | -                                      |
| Total events                    | 30             |                     | 25          |         |                           |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> | = 0.35; Chi    | <sup>2</sup> = 2.70 | ), df = 1 ( | P = 0.1 | 0); I <sup>2</sup> = 639  | 6                   |                                        |
| Test for overall effec          | t: Z = 0.77 (  | P = 0.4             | 4)          |         |                           |                     |                                        |
| 3 much improve                  | ed             |                     |             |         |                           |                     |                                        |
| brooks 2005                     | 25             | 83                  | 39          | 94      | 3.1%                      | 0.73 [0.48, 1.09]   |                                        |
| hauser 2009                     | 88             | 208                 | 88          | 215     | 10.1%                     | 1.03 [0.82, 1.30]   | +                                      |
| Subtotal (95% CI)               |                | 291                 |             | 309     | 13.3%                     | 0.90 [0.64, 1.27]   | <b>•</b>                               |
| Total events                    | 113            |                     | 127         |         |                           |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> | = 0.03; Chi    | <sup>2</sup> = 2.23 | 3, df = 1 ( | P = 0.1 | 4); I <sup>2</sup> = 559  | 6                   |                                        |
| Test for overall effec          | et: Z = 0.59 ( | P = 0.5             | 5)          |         |                           |                     |                                        |
| 4 improved                      |                |                     |             |         |                           |                     |                                        |
| brooks 2005                     | 25             | 83                  | 27          | 94      | 2.5%                      | 1.05 [0.66, 1.66]   | +-                                     |
| hauser 2009                     | 62             | 208                 | 63          | 215     | 6.0%                      | 1.02 [0.76, 1.37]   | +                                      |
| Subtotal (95% CI)               |                | 291                 |             | 309     | 8.4%                      | 1.03 [0.80, 1.31]   | <b>•</b>                               |
| Total events                    | 87             |                     | 90          |         |                           |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> | = 0.00; Chi    | <sup>2</sup> = 0.01 | , df = 1 (  | P = 0.9 | 1); I <sup>2</sup> = 0%   |                     |                                        |
| Test for overall effec          | t: Z = 0.21 (  | P = 0.8             | 4)          |         |                           |                     |                                        |
| Total (95% Cl)                  |                | 1164                |             | 1236    | 100.0%                    | 1.01 [0.94, 1.08]   | •                                      |
| Total events                    | 460            |                     | 484         |         |                           |                     |                                        |
| Heterogeneity: Tau <sup>2</sup> | = 0.00; Chi    | <sup>2</sup> = 6.11 | , df = 7 (  | P = 0.5 | 3); I² = 0%               |                     | 0.01 0.1 1                             |
| Test for overall effect         | t: Z = 0.21 (  | P = 0.8             | 4)          |         | 100                       |                     | 0.01 0.1 1<br>Favours (LCE) Favours (c |
|                                 |                |                     | -           |         | 0.80), I <sup>2</sup> = ( |                     | FAVOUIS ILUEL FAVOUIS IC               |

**Fig. 3** Forest plot of effect sizes for CGI; CGI, clinical global impression

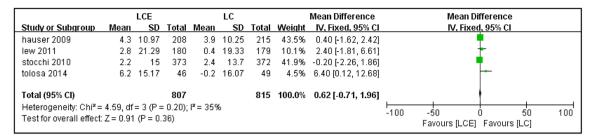



Fig. 4 Forest plot of effect sizes for PDQ-39; PDQ-39, Parkinson's Disease Questionnaire

those single AEs in the LCE group was greater than that in the control group (Fig. 5c). Among them, there is significant statistical difference in the results of risk analysis of nausea and diarrhea (p < 0.0001 and p = 0.0009), and risk analysis of nausea, diarrhea, and dizziness revealed good homogeneity ( $I^2 = 0\%$ , 20%, and 0%). The result reported that the LCE group was more likely to have nausea, diarrhea, dyskinesia, dizziness, and urine abnormality than the control group.

# Discussion

### Summary of evidence

Our meta-analysis found that LCE therapy improve the UPDRS I and UPDRS II score compared with traditional drug therapy in early PD patients. However, there was no obvious difference in CGI scores. What's more, the result showed that LCE therapy was not as effective as LC therapy with PDQ-39 as the outcome measure. LCE therapy also increased the risk of total AEs, nausea, diarrhea, dyskinesia, dizziness, urine abnormality, and discontinuation risk when compared with traditional therapy. Most of our results are in line with clinical observations in the published paper [21-24]. The results demonstrated that patients who received LCE therapy could evidently show improvement on activities of daily living and motor symptoms. This part of our result is the same with a pooled analysis of phase III studies with entacapone [25]. According to the pool analysis of CGI, this study has shown that LCE provided equivalent benefits to those obtained with separately administered levodopa/DDCI and entacapone tablets or levodopa/carbidopa tablets. Improvement in motor scores may have driven the changes observed in the PDQ-39 and may have been temporized by the presence of AEs [18]. The AEs that produced by stalevo tablets should be of more concern. Specially, the risk of urine abnormal in LCE group was observed to almost three times as likely as that in control group (p = 0.08).

#### Interpretation of the results

LCE provided the greatest symptomatic benefit for PD than LC [23]. One meta-analysis suggested that LCE could

improve activities of daily living and motor symptoms in PD patients [26]. We found LCE could significantly improve the UPDRS II and UPDRS III scores compared with LC in early Parkinson patients, consistent with previous results. In our meta-analysis, LCE did not show improvement in CGI scores, which may be explained by a small amount of included studies. The statistical power of this analysis is low. We look forward to further experimental studies to refine our results. One probable reason why LCE participants had a slightly worsening in PDQ-39 scores was that using PDQ-39 scores could be relative insensitivity to change of this measure, as has been suggested in early Parkinson patients [18]. The other probable reason was that the high-frequency presence of AEs caused a lower PDQ-39 scores compared with traditional therapy. The incidence of AEs was 80.4% in the LCE group and 66.8% in the control group. Discontinuation risk was 10.4% in the LCE group and 7.9% in the control group. The stalevo treatment with a more common in AEs was not unexpected, as it occurred in previous studies with entacapone. The increase in AEs was a result of enhanced dopaminergic activity [21, 22, 24]. Urine abnormality was the most common AE in the LCE group, but it was a benign event associated with the color of the metabolites of entacapone excreted in urine.

#### Limitations

A number of limitations of this study should be considered. First, meta-analyses combining evidence from several highquality RCTs generally considered the highest level of evidence for effects of interventions. However, due to the limited number of studies included in this meta-analysis, the risk of overestimation of intervention effects cannot be excluded [27, 28]. Thus, we did not conduct a subgroup analysis of the effect of different doses of LCE on the treatment of motor complications in early PD patients. In addition, most of the studies included in this meta-analysis are about the comparison of LCE and LC; only one is about the difference between LCE and L/D/E. Consequently, further large, well-designed RCTs that evaluate the long-term balance of benefit and harm, comparing LCE with L/D/E, are urgently needed. Second, we compared the p value and  $I^2$  value of the results of multiple groups and found heterogeneity in some studies. However, due to the insufficient sample size, we did not conduct further

**Fig. 5** Forest plot of total AEs (a), discontinuation due to AEs

(**b**), and single AEs (**c**)

#### а

|                                   | LCE        |          | contr      | ol      |            | Risk Ratio          | Risk Ratio                      |
|-----------------------------------|------------|----------|------------|---------|------------|---------------------|---------------------------------|
| Study or Subgroup                 | Events     | Total    | Events     | Total   | Weight     | M-H, Random, 95% Cl | M-H, Random, 95% Cl             |
| brooks 2005                       | 45         | 83       | 34         | 94      | 13.9%      | 1.50 [1.07, 2.09]   |                                 |
| fung 2009                         | 61         | 93       | 51         | 91      | 16.7%      | 1.17 [0.93, 1.48]   | -                               |
| hauser 2009                       | 170        | 208      | 130        | 215     | 19.5%      | 1.35 [1.19, 1.53]   | +                               |
| lew 2011                          | 146        | 180      | 98         | 179     | 18.9%      | 1.48 [1.27, 1.72]   | +                               |
| stocchi 2010                      | 348        | 373      | 336        | 372     | 20.7%      | 1.03 [0.99, 1.08]   | •                               |
| tolosa 2014                       | 20         | 46       | 19         | 49      | 10.2%      | 1.12 [0.69, 1.82]   |                                 |
| Total (95% CI)                    |            | 983      |            | 1000    | 100.0%     | 1.26 [1.02, 1.57]   | ◆                               |
| Total events                      | 790        |          | 668        |         |            |                     |                                 |
| Heterogeneity: Tau <sup>2</sup> = | = 0.06; Ch | i² = 58. | 00, df = 5 | (P < 0. | .00001); P | ²= 91%              |                                 |
| Test for overall effect           | Z= 2.14    | (P = 0.0 | )3)        |         |            |                     | Favours [LCE] Favours [control] |

# b

|                                   | LCE       |          | contr                   | ol    |        | Risk Ratio         | Risk Ratio                      |    |
|-----------------------------------|-----------|----------|-------------------------|-------|--------|--------------------|---------------------------------|----|
| Study or Subgroup                 | Events    | Total    | Events                  | Total | Weight | M-H, Fixed, 95% Cl | CI M-H, Fixed, 95% CI           |    |
| brooks 2005                       | 4         | 83       | 3                       | 94    | 3.7%   | 1.51 [0.35, 6.55]  | 5]                              |    |
| fung 2009                         | 7         | 93       | 7                       | 91    | 9.4%   | 0.98 [0.36, 2.68]  | 3]                              |    |
| hauser 2009                       | 24        | 208      | 17                      | 215   | 22.1%  | 1.46 [0.81, 2.64]  | 4] <b>+-</b>                    |    |
| lew 2011                          | 26        | 180      | 24                      | 179   | 31.8%  | 1.08 [0.64, 1.80]  | oj —                            |    |
| stocchi 2010                      | 38        | 373      | 24                      | 372   | 31.8%  | 1.58 [0.97, 2.58]  | 3] +                            |    |
| tolosa 2014                       | 3         | 46       | 1                       | 49    | 1.3%   | 3.20 [0.34, 29.63] | 3]                              |    |
| Total (95% CI)                    |           | 983      |                         | 1000  | 100.0% | 1.36 [1.02, 1.80]  | •                               |    |
| Total events                      | 102       |          | 76                      |       |        |                    |                                 |    |
| Heterogeneity: Chi <sup>2</sup> = | 2.19, df= | 5 (P =   | 0.82); I <sup>2</sup> : | = 0%  |        |                    |                                 | 10 |
| Test for overall effect           | Z = 2.11  | (P = 0.0 | 03)                     |       |        |                    | Favours [LCE] Favours [control] | 10 |

# С

| Cturks on Culturesum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tatal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | contr                                                                                                                                                                                                                                                                                            |                                                                                                                                             | Mainht                                                                                                                                                                                             | Risk Ratio                                                                                                                                                                                                                                                                                                                                                                         | Risk Ratio                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Study or Subgroup<br>1 nausea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Events                                                                                                                                                                                                                                                                                           | Total                                                                                                                                       | weight                                                                                                                                                                                             | M-H, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                | M-H, Random, 95% Cl                                           |
| brooks 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                | 94                                                                                                                                          | 3.7%                                                                                                                                                                                               | 4 70 10 70 0 051                                                                                                                                                                                                                                                                                                                                                                   |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                    | 1.70 [0.73, 3.95]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| fung 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                | 91                                                                                                                                          | 3.4%                                                                                                                                                                                               | 1.54 [0.62, 3.79]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| hauser 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29                                                                                                                                                                                                                                                                                               | 215                                                                                                                                         | 6.6%                                                                                                                                                                                               | 1.96 [1.30, 2.95]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| lew 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 13                                                                                                                                                                                                                                                                                               | 179                                                                                                                                         | 5.1%                                                                                                                                                                                               | 2.37 [1.28, 4.38]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| stocchi 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71                                                                                                                                                                                                                                                                                               | 372                                                                                                                                         | 7.7%                                                                                                                                                                                               | 1.60 [1.24, 2.08]                                                                                                                                                                                                                                                                                                                                                                  | -                                                             |
| tolosa 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                | 49                                                                                                                                          | 1.3%                                                                                                                                                                                               | 1.60 [0.28, 9.13]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                        | 27.9%                                                                                                                                                                                              | 1.75 [1.44, 2.12]                                                                                                                                                                                                                                                                                                                                                                  | •                                                             |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 226                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 130                                                                                                                                                                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00; Chi <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>2</sup> = 1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | , df = 5 (                                                                                                                                                                                                                                                                                       | P = 0.8                                                                                                                                     | 8); I <sup>2</sup> = 0%                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| Test for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| 2 diarrhoea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| brooks 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                                                                                                                                                                                                                                                                                | 94                                                                                                                                          | 2.8%                                                                                                                                                                                               | 0.97 [0.34, 2.77]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| fung 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                | 91                                                                                                                                          | 2.1%                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| hauser 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4<br>6                                                                                                                                                                                                                                                                                           | 215                                                                                                                                         | 3.4%                                                                                                                                                                                               | 1.22 [0.34, 4.41]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                |                                                                                                                                             |                                                                                                                                                                                                    | 3.10 [1.26, 7.66]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| lew 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22                                                                                                                                                                                                                                                                                               | 179                                                                                                                                         | 5.8%                                                                                                                                                                                               | 1.36 [0.81, 2.26]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| stocchi 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28                                                                                                                                                                                                                                                                                               | 372                                                                                                                                         | 6.6%                                                                                                                                                                                               | 2.35 [1.55, 3.57]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| tolosa 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                | 49                                                                                                                                          | 0.5%                                                                                                                                                                                               | 5.32 [0.26, 107.93]                                                                                                                                                                                                                                                                                                                                                                |                                                               |
| Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                        | 21.2%                                                                                                                                                                                              | 1.82 [1.28, 2.60]                                                                                                                                                                                                                                                                                                                                                                  | ▼                                                             |
| Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 67                                                                                                                                                                                                                                                                                               |                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  | P = 0.2                                                                                                                                     | 8); I² = 209                                                                                                                                                                                       | %                                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| 3 dyskinesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| brooks 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                | 94                                                                                                                                          | 1.9%                                                                                                                                                                                               | 2.27 [0.58, 8.77]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| fung 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                | 91                                                                                                                                          | 0.9%                                                                                                                                                                                               | 4.89 [0.58, 41.07]                                                                                                                                                                                                                                                                                                                                                                 |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16                                                                                                                                                                                                                                                                                               | 215                                                                                                                                         | 4.3%                                                                                                                                                                                               | 0.71 [0.34, 1.49]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| hauser 2009<br>Jow 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  |                                                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                    |                                                               |
| lew 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                               | 179                                                                                                                                         | 3.4%                                                                                                                                                                                               | 0.58 [0.23, 1.44]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| lew 2011<br>stocchi 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                               | 372                                                                                                                                         | 4.3%                                                                                                                                                                                               | 2.09 [1.00, 4.39]                                                                                                                                                                                                                                                                                                                                                                  |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 373<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  | 372<br>49                                                                                                                                   | 4.3%<br>2.2%                                                                                                                                                                                       | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]                                                                                                                                                                                                                                                                                                                                            |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10<br>3                                                                                                                                                                                                                                                                                          | 372                                                                                                                                         | 4.3%                                                                                                                                                                                               | 2.09 [1.00, 4.39]                                                                                                                                                                                                                                                                                                                                                                  | <br>◆                                                         |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21<br>8<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 373<br>46<br>983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>3<br>45                                                                                                                                                                                                                                                                                    | 372<br>49<br><b>1000</b>                                                                                                                    | 4.3%<br>2.2%<br><b>17.0</b> %                                                                                                                                                                      | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b>                                                                                                                                                                                                                                                                                                                | •                                                             |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21<br>8<br>58<br>0.31; Chi <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 373<br>46<br>983<br><sup>2</sup> = 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>3<br>45<br>'8, df = 5                                                                                                                                                                                                                                                                      | 372<br>49<br><b>1000</b>                                                                                                                    | 4.3%<br>2.2%<br><b>17.0</b> %                                                                                                                                                                      | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b>                                                                                                                                                                                                                                                                                                                | •                                                             |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>8<br>58<br>0.31; Chi <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 373<br>46<br>983<br><sup>2</sup> = 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10<br>3<br>45<br>'8, df = 5                                                                                                                                                                                                                                                                      | 372<br>49<br><b>1000</b>                                                                                                                    | 4.3%<br>2.2%<br><b>17.0</b> %                                                                                                                                                                      | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b>                                                                                                                                                                                                                                                                                                                | •                                                             |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Sulutotal (95% Cl)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>4 dizziness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21<br>8<br>58<br>0.31; Chi <sup>a</sup><br>Z = 1.09 (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>3<br>45<br>'8, df = 5<br>8)                                                                                                                                                                                                                                                                | 372<br>49<br><b>1000</b><br>(P = 0.                                                                                                         | 4.3%<br>2.2%<br><b>17.0</b> %<br>06); I <sup>2</sup> = 54                                                                                                                                          | 2.09 (1.00, 4.39)<br>2.84 (0.80, 10.06)<br><b>1.42 (0.76, 2.68)</b>                                                                                                                                                                                                                                                                                                                | •                                                             |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: 2<br>4 dizziness<br>brooks 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>8<br>58<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (i<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>3<br>45<br>'8, df = 5<br>8)<br>3                                                                                                                                                                                                                                                           | 372<br>49<br><b>1000</b><br>(P = 0.<br>94                                                                                                   | 4.3%<br>2.2%<br><b>17.0</b> %<br>06); I <sup>2</sup> = 54<br>1.5%                                                                                                                                  | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1%                                                                                                                                                                                                                                                                                                          | •                                                             |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>troog 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>8<br>58<br>0.31; Chi <sup>a</sup><br>Z = 1.09 (1<br>3<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2<br>83<br>93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10<br>3<br>'8, df = 5<br>8)<br>3<br>6                                                                                                                                                                                                                                                            | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91                                                                                             | 4.3%<br>2.2%<br><b>17.0</b> %<br>06); I <sup>≥</sup> = 54<br>1.5%<br>2.5%                                                                                                                          | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1%<br>1.13 [0.23, 5.46]<br>0.82 [0.26, 2.58]                                                                                                                                                                                                                                                                       | •<br>•                                                        |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21<br>8<br>0.31; Chi <sup>a</sup><br>Z = 1.09 (1<br>3<br>5<br>18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 373<br>46<br>983<br>°= 10.7<br>P = 0.2<br>83<br>93<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10<br>3<br>'8, df = 5<br>8)<br>3<br>6<br>11                                                                                                                                                                                                                                                      | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215                                                                                      | 4.3%<br>2.2%<br><b>17.0%</b><br>06); I <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%                                                                                                                   | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>4%<br>1.13 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]                                                                                                                                                                                                                                           | •<br>•                                                        |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21<br>8<br>0.31; Chi <sup>7</sup><br>Z = 1.09 (1<br>3<br>5<br>18<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2<br>83<br>93<br>208<br>180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>3<br>'8, df = 5<br>8)<br>3<br>6<br>11<br>13                                                                                                                                                                                                                                                | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179                                                                               | 4.3%<br>2.2%<br><b>17.0%</b><br>06); I <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%                                                                                                           | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1.62 [0.76, 2.68]<br>1.82 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]                                                                                                                                                                                                       | •<br>•                                                        |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 21<br>8<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (0<br>3<br>5<br>18<br>17<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 373<br>46<br>983<br>* = 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>3<br>'8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46                                                                                                                                                                                                                                          | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179<br>372                                                                        | 4.3%<br>2.2%<br><b>17.0</b> %<br>06); I <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%                                                                                                  | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1%<br>1.13 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]                                                                                                                                                                                                 |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21<br>8<br>0.31; Chi <sup>7</sup><br>Z = 1.09 (1<br>3<br>5<br>18<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 373<br>46<br>983<br>*= 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>373<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>3<br>'8, df = 5<br>8)<br>3<br>6<br>11<br>13                                                                                                                                                                                                                                                | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49                                                                  | 4.3%<br>2.2%<br>17.0%<br>06); I <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%<br>0.7%                                                                                                  | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.32 [0.23, 5.46]<br>0.82 [0.26, 2.54]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.20, 22.71]                                                                                                                                                                                        |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21<br>8<br>58<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (1<br>3<br>5<br>18<br>17<br>59<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 373<br>46<br>983<br>* = 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10<br>3<br>45<br>8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1                                                                                                                                                                                                                                | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179<br>372                                                                        | 4.3%<br>2.2%<br><b>17.0</b> %<br>06); I <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%                                                                                                  | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1%<br>1.13 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]                                                                                                                                                                                                 |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 21<br>8<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (0<br>3<br>5<br>18<br>17<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 373<br>46<br>983<br>*= 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>373<br>46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10<br>3<br>'8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46                                                                                                                                                                                                                                          | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49                                                                  | 4.3%<br>2.2%<br>17.0%<br>06); I <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%<br>0.7%                                                                                                  | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.32 [0.23, 5.46]<br>0.82 [0.26, 2.54]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.20, 22.71]                                                                                                                                                                                        |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21<br>8<br>58<br>0.31; Chiř<br>Z = 1.09 (J<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chiř                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 373<br>46<br>983<br>*=10.7<br>P=0.2<br>83<br>93<br>208<br>180<br>373<br>46<br>983<br>*=1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>3<br>45<br>8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1<br>1<br>80<br>4, df = 5 (j                                                                                                                                                                                                     | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000                                                                 | 4.3%<br>2.2%<br>17.0%<br>06); I² = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>0.7%<br>20.7%                                                                                                             | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1%<br>1,13 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.20, 22.71]<br><b>1.31 [0.99, 1.72]</b>                                                                                                                                               |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>8<br>58<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (l<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chi <sup>2</sup><br>Z = 1.89 (l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 373<br>46<br>983<br>*=10.7<br>P=0.2<br>83<br>93<br>208<br>180<br>373<br>46<br>983<br>*=1.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10<br>3<br>45<br>8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1<br>1<br>80<br>4, df = 5 (j                                                                                                                                                                                                     | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000                                                                 | 4.3%<br>2.2%<br>17.0%<br>06); I² = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>0.7%<br>20.7%                                                                                                             | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1%<br>1,13 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.20, 22.71]<br><b>1.31 [0.99, 1.72]</b>                                                                                                                                               |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect :<br>5 Urine abnormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>8<br>58<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (l<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chi <sup>2</sup><br>Z = 1.89 (l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>373<br>46<br>983<br><sup>2</sup> = 1.34<br>P = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>3<br>45<br>(8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1<br>1<br>80<br>(, df = 5 (<br>6)                                                                                                                                                                                               | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9                                                      | 4.3%<br>2.2%<br>17.0%<br>06);  ² = 54<br>1.5%<br>2.5%<br>4.4%<br>7.0%<br>0.7%<br>20.7%<br>3);  ² = 0%                                                                                              | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.32 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]                                                                                                                                                                    |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect :<br>5 Urine abnormal<br>brooks 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21<br>8<br>58<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (l<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chi <sup>2</sup><br>Z = 1.89 (l<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 373<br>46<br>983<br>*= 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>373<br>46<br>983<br>*= 1.34<br>P = 0.0<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>3<br>45<br>78, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1<br>1<br>80<br>5, df = 5 (<br>6)<br>4                                                                                                                                                                                          | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94                                                | 4.3%<br>2.2%<br>17.0%<br>06);   <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%<br>0.7%<br>20.7%<br>3);   <sup>2</sup> = 0%                                                              | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1.42 <b>[0.76, 2.68]</b><br>1%<br>1.30 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.29, 4.72]<br>1.31 <b>[0.99, 1.72]</b>                                                                                                                    |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>5 Urine abnormal<br>brooks 2005<br>hauser 2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21<br>8<br>58<br>0.31; Chiř<br>Z = 1.09 (l<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chiř<br>Z = 1.89 (l<br>4<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 373<br>46<br>983<br>* = 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>983<br>* = 1.34<br>P = 0.0<br>83<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10<br>3<br>45<br>(8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1<br>1<br>80<br>(, df = 5 ()<br>6)<br>4<br>7                                                                                                                                                                                    | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br><b>1000</b><br>P = 0.9<br>94<br>215                           | 4.3%<br>2.2%<br>17.0%<br>06);  ² = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%<br>20.7%<br>3);  ² = 0%<br>1.9%<br>4.2%                                                                              | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>4%<br>1.13 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.82, 3.49]<br>1.30 [0.82, 3.49]<br>1.28 [0.89, 1.83]<br>2.13 [0.20, 22.71]<br><b>1.31 [0.29, 4.39]</b><br>1.13 [0.29, 4.39]<br>11.52 [5.44, 24.37]                                                                              |                                                               |
| lew 2011 stocchi 2010 tolosa 2014 Subtotal (95% CI) Total events Heterogeneity: Tau <sup>2</sup> = Test for overall effect : <b>4 dizziness</b> brooks 2005 fung 2009 hauser 2009 lew 2011 stocchi 2010 tolosa 2014 Subtotal (95% CI) Total events Heterogeneity: Tau <sup>2</sup> = Test for overall effect : <b>5 Urine abnormal</b> brooks 2005 hauser 2009 lew 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21<br>8<br>58<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (J<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chi <sup>2</sup><br>Z = 1.89 (J<br>4<br>78<br>12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2<br>83<br>90<br>373<br>46<br>983<br><sup>2</sup> = 1.34<br>P = 0.0<br>83<br>208<br>83<br>46<br>983<br>180<br>373<br>46<br>983<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>3<br>45<br>8, df = 5<br>8)<br>3<br>6<br>11<br>1<br>13<br>46<br>1<br>1<br>1<br>3<br>46<br>1<br>3<br>46<br>1<br>3<br>46<br>5<br>(<br>6)<br>4<br>7<br>10                                                                                                                                      | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br><b>1000</b><br>P = 0.9<br>94<br>215<br>179                    | 4.3%<br>2.2%<br><b>17.0%</b><br>06);   <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>0.7%<br>20.7%<br>3);   <sup>2</sup> = 0%<br>1.9%<br>4.2%<br>3.9%                                       | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.43 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.13 [0.29, 4.39]<br>11.52 [5.44, 24.37]<br>1.152 [5.44, 24.37]                                                                                                                      |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>hauser 2009<br>hauser 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>5 Urine abnormal<br>brooks 2005<br>hauser 2009<br>lew 2011<br>stocchi 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21<br>8<br>58<br>0.31; Chiř<br>Z = 1.09 (l<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chiř<br>Z = 1.89 (l<br>4<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 373<br>46<br>983<br>*=10.7<br>P=0.2<br>83<br>983<br>46<br>983<br>*=1.33<br>P=0.0<br>83<br>208<br>180<br>373<br>208<br>180<br>373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10<br>3<br>45<br>(8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1<br>1<br>80<br>(, df = 5 ()<br>6)<br>4<br>7                                                                                                                                                                                    | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94<br>215<br>179<br>372                           | 4.3%<br>2.2%<br>17.0%<br>06); I <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>7.0%<br>0.7%<br>20.7%<br>20.7%<br>30; I <sup>2</sup> = 0%<br>1.9%<br>4.2%<br>3.2%                                     | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br><b>1.42 [0.76, 2.68]</b><br>1.42 <b>[0.76, 2.68]</b><br>1%<br>1.30 [0.23, 5.46]<br>0.82 [0.26, 2.56]<br>1.30 [0.26, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.29, 2.71]<br><b>1.31 [0.99, 1.72]</b><br>1.13 <b>[0.29, 4.39]</b><br>11.52 [5.44, 24.37]<br>1.19 [0.52, 2.69]<br>4.19 [1.60, 10.99]                                           |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>5 Urine abnormal<br>brooks 2005<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21<br>8<br>58<br>0.31; Chi <sup>2</sup><br>Z = 1.09 (J<br>3<br>5<br>18<br>17<br>59<br>2<br>104<br>0.00; Chi <sup>2</sup><br>Z = 1.89 (J<br>4<br>78<br>12<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2<br>83<br>90<br>373<br>46<br>983<br><sup>2</sup> = 1.34<br>P = 0.0<br>83<br>208<br>83<br>46<br>983<br>180<br>373<br>46<br>983<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83<br>83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10<br>3<br>45<br>8, df = 5<br>8)<br>3<br>6<br>11<br>13<br>46<br>1<br>80<br>4, df = 5 ((<br>6)<br>4<br>7<br>10<br>5                                                                                                                                                                               | 372<br>49<br><b>1000</b><br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br><b>1000</b><br>P = 0.9<br>94<br>215<br>179                    | 4.3%<br>2.2%<br><b>17.0%</b><br>06);   <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>0.7%<br>20.7%<br>3);   <sup>2</sup> = 0%<br>1.9%<br>4.2%<br>3.9%                                       | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.43 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.13 [0.29, 4.39]<br>11.52 [5.44, 24.37]<br>1.152 [5.44, 24.37]                                                                                                                      |                                                               |
| lew 2011 stocchi 2010 tolosa 2014 Subtotal (95% CI) Total events Heterogeneity: Tau <sup>2</sup> = Test for overall effect : <b>4 dizziness</b> brooks 2005 trung 2009 lew 2011 stocchi 2010 tolosa 2014 Subtotal (95% CI) Total events Heterogeneity: Tau <sup>2</sup> = Test for overall effect : <b>5 Urine abnormal</b> brooks 2005 hauser 2009 lew 2011 stocchi 2010 stotchi 2010 stotch | $21 \\ 8 \\ 58 \\ 0.31; Chi2 \\ Z = 1.09 (0) \\ 3 \\ 5 \\ 18 \\ 17 \\ 59 \\ 2 \\ 104 \\ 0.00; Chi2 \\ Z = 1.89 (0) \\ 4 \\ 78 \\ 12 \\ 21 \\ 115 \\ 115 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 373<br>46<br>983<br>*= 10.7<br>P = 0.2<br>83<br>983<br>*= 1.34<br>P = 0.0<br>83<br>208<br>*= 1.34<br>P = 0.0<br>83<br>208<br>180<br>373<br>844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10 3<br>45 58, df = 5 68<br>8)<br>3 6<br>11<br>13 46<br>1<br>1<br>3 46<br>1<br>1<br>3 46<br>1<br>1<br>3 46<br>5<br>(<br>0)<br>4<br>7<br>7<br>0<br>5<br>26                                                                                                                                        | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94<br>215<br>179<br>372<br>860                    | 4.3%<br>2.2%<br>17.0%<br>06);  ² = 54<br>1.5%<br>2.5%<br>4.6%<br>7.0%<br>0.7%<br>20.7%<br>3);  ² = 0%<br>1.9%<br>4.2%<br>3.2%<br>13.2%                                                             | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.43 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.152 [5.44, 24.37]<br>1.152 [5.44, 24.37]<br>1.19 [0.53, 2.68]<br>4.19 [1.60, 10.99]<br>2.97 [0.88, 10.01]                                                     |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>5 Urine abnormal<br>brooks 2005<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>Subtotal (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 21 \\ 8 \\ 58 \\ 0.31; Chi^2 \\ Z = 1.09 (0) \\ 3 \\ 5 \\ 18 \\ 17 \\ 59 \\ 2 \\ 104 \\ 0.00; Chi^2 \\ Z = 1.89 (0) \\ 4 \\ 78 \\ 12 \\ 21 \\ 115 \\ 1.29; Chi^2 \\ 1.29;$ | 373<br>46<br>983<br>*= 10.7.<br>983<br>208<br>180<br>373<br>46<br>983<br>*= 1.34<br>P = 0.2<br>83<br>208<br>180<br>373<br>208<br>180<br>373<br>844<br>*= 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 3<br>45 58, df = 5<br>8, df = 5<br>11<br>13<br>46<br>6<br>6)<br>4<br>7<br>10<br>5<br>26<br>6, df = 3                                                                                                                                                                                          | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94<br>215<br>179<br>372<br>860                    | 4.3%<br>2.2%<br>17.0%<br>06);  ² = 54<br>1.5%<br>2.5%<br>4.6%<br>7.0%<br>0.7%<br>20.7%<br>3);  ² = 0%<br>1.9%<br>4.2%<br>3.2%<br>13.2%                                                             | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.43 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.152 [5.44, 24.37]<br>1.152 [5.44, 24.37]<br>1.19 [0.53, 2.68]<br>4.19 [1.60, 10.99]<br>2.97 [0.88, 10.01]                                                     |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect :<br>4 dizziness<br>brooks 2005<br>fung 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect :<br>5 Urine abnormal<br>brooks 2005<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>Subtotal (95% CI)<br>Total events<br>Heterogeneily: Tau <sup>2</sup> =<br>Test for overall effect :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 21 \\ 8 \\ 58 \\ 0.31; Chi^2 \\ Z = 1.09 (0) \\ 3 \\ 5 \\ 18 \\ 17 \\ 59 \\ 2 \\ 104 \\ 0.00; Chi^2 \\ Z = 1.89 (0) \\ 4 \\ 78 \\ 12 \\ 21 \\ 115 \\ 1.29; Chi^2 \\ 1.29;$ | 373<br>46<br>983<br>*= 10.7.<br>983<br>208<br>180<br>373<br>46<br>983<br>*= 1.34<br>P = 0.2<br>83<br>208<br>180<br>373<br>208<br>180<br>373<br>844<br>*= 20.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 3<br>45 58, df = 5<br>8, df = 5<br>11<br>13<br>46<br>6<br>6)<br>4<br>7<br>10<br>5<br>26<br>6, df = 3                                                                                                                                                                                          | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94<br>215<br>179<br>372<br>860<br>(P = 0.         | 4.3%<br>2.2%<br>17.0%<br>06);  ² = 54<br>1.5%<br>2.5%<br>4.6%<br>7.0%<br>0.7%<br>20.7%<br>3);  ² = 0%<br>1.9%<br>4.2%<br>3.2%<br>13.2%<br>0001);  ² =                                              | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.42 [0.76, 2.68]<br>1%<br>130 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.152 [5.44, 24, 37]<br>1.152 [5.44, 24, 37]<br>1.152 [5.44, 24, 37]<br>1.19 [0.53, 2.68]<br>4.19 [1.60, 10.99]<br>2.97 [0.88, 10.01] |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>(mg 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>5 Urine abnormal<br>brooks 2005<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $21 \\ 8 \\ 58 \\ 0.31; Chi2 \\ Z = 1.09 (0) \\ 3 \\ 5 \\ 18 \\ 17 \\ 59 \\ 2 \\ 104 \\ 0.00; Chi2 \\ Z = 1.89 (0) \\ 4 \\ 78 \\ 12 \\ 21 \\ 115 \\ 1.29; Chi2 \\ Z = 1.75 (0) \\ 2 \\ 1.75 (0) \\ 1.29; Chi2 \\ 2 \\ 1.75 (0) \\ 1.29; Chi2 \\ 1.2$                                                                                                                                                                                                                                                        | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>P = 0.2<br>83<br>93<br>208<br>180<br>373<br>46<br>983<br><sup>2</sup> = 1.34<br>P = 0.0<br>83<br>208<br>180<br>373<br>844<br><sup>2</sup> = 20.3<br>P = 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10<br>3<br>45<br>8, df = 5<br>8)<br>3<br>6<br>11<br>1<br>1<br>3<br>46<br>1<br>1<br>1<br>80<br>( df = 5<br>(<br>6)<br>4<br>7<br>10<br>5<br>26<br>6, df = 3<br>8)                                                                                                                                  | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94<br>215<br>179<br>372<br>860<br>(P = 0.         | 4.3%<br>2.2%<br>17.0%<br>06);  ² = 54<br>1.5%<br>2.5%<br>4.6%<br>7.0%<br>0.7%<br>20.7%<br>3);  ² = 0%<br>1.9%<br>4.2%<br>3.2%<br>13.2%                                                             | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.43 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.69 [0.82, 3.49]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.152 [5.44, 24.37]<br>1.152 [5.44, 24.37]<br>1.19 [0.53, 2.68]<br>4.19 [1.60, 10.99]<br>2.97 [0.88, 10.01]                                                     |                                                               |
| lew 2011 stocchi 2010 tolosa 2014 Subtotal (95% CI) Total events Heterogeneity: Tau <sup>2</sup> = Test for overall effect: : 4 dizziness brooks 2005 fung 2009 hauser 2009 lew 2011 stocchi 2010 btolosa 2014 Subtotal (95% CI) Total events Heterogeneity: Tau <sup>2</sup> = Test for overall effect: : 5 Urine abnormal brooks 2005 lew 2011 stocchi 2010 Subtotal (95% CI) Total events Heterogeneity: Tau <sup>2</sup> = Test for overall effect: : Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 21\\ 8\\ 58\\ 0.31; Chi^2\\ Z=1.09 (l\\ 3\\ 5\\ 18\\ 17\\ 59\\ 2\\ 104\\ 0.00; Chi^2\\ Z=1.89 (l\\ 4\\ 78\\ 12\\ 21\\ 1.29; Chi^2\\ Z=1.75 (l\\ 630\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 373<br>46<br>983<br>= 10.7<br>83<br>93<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>46<br>983<br>208<br>180<br>983<br>46<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>983<br>208<br>180<br>973<br>208<br>83<br>208<br>83<br>208<br>844<br>209<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208                                                                                                                                                                                                                                                                                                  | 10 3<br>45 5<br>8, df = 5<br>8, df = 5<br>8, df = 5<br>1 1<br>80<br>0<br>6, df = 5<br>10<br>5<br>26<br>6, df = 3<br>80<br>3<br>3<br>46<br>1<br>80<br>5<br>5<br>10<br>5<br>10<br>5<br>10<br>5<br>10<br>5<br>10<br>5<br>10<br>5<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10        | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94<br>215<br>179<br>372<br>860<br>(P = 0.<br>4860 | 4.3%<br>2.2%<br>17.0%<br>06);   <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%<br>20.7%<br>3);   <sup>2</sup> = 0%<br>1.9%<br>4.2%<br>3.9%<br>3.2%<br>13.2%<br>00001);   <sup>2</sup> = | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.43 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.152 [5.44, 24.37]<br>1.152 [5.44, 24.37]<br>1.152 [5.44, 24.37]<br>1.19 [0.53, 2.69]<br>4.19 [1.60, 10.99]<br>2.97 [0.88, 10.01]<br>85%                                            |                                                               |
| lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>4 dizziness<br>brooks 2005<br>(mg 2009<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>tolosa 2014<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>5 Urine abnormal<br>brooks 2005<br>hauser 2009<br>lew 2011<br>stocchi 2010<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: :<br>Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 21 \\ 8 \\ 58 \\ 0.31; Chi^2 \\ Z = 1.09 (0 \\ 3 \\ 5 \\ 18 \\ 17 \\ 59 \\ 2 \\ 104 \\ 0.00; Chi^2 \\ Z = 1.89 (0 \\ 4 \\ 78 \\ 12 \\ 21 \\ 115 \\ 1.29; Chi^2 \\ Z = 1.75 (0 \\ 630 \\ 0.14; Chi^2 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 373<br>46<br>983<br><sup>2</sup> = 10.7<br>983<br><sup>2</sup> = 10.7<br>83<br>93<br>208<br>180<br>983<br><sup>2</sup> = 1.34<br>P = 0.0<br>83<br>208<br>180<br>P = 0.0<br>83<br>208<br>180<br>P = 0.2<br>46<br>180<br>208<br>180<br>P = 0.2<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>83<br>208<br>84<br>84<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>844<br>208<br>847<br>208<br>844<br>208<br>844<br>208<br>847<br>847<br>847<br>847<br>847<br>847<br>847<br>84 | 10 3<br>8, df = 5<br>8)<br>3 6<br>11<br>13<br>46<br>1<br>1<br>13<br>46<br>1<br>1<br>3<br>46<br>1<br>1<br>3<br>46<br>5<br>(<br>6)<br>4<br>7<br>10<br>5<br>(<br>6)<br>3<br>4<br>7<br>10<br>5<br>(<br>6)<br>3<br>4<br>6<br>7<br>10<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 372<br>49<br>1000<br>(P = 0.<br>94<br>91<br>215<br>179<br>372<br>49<br>1000<br>P = 0.9<br>94<br>215<br>179<br>372<br>860<br>(P = 0.<br>4860 | 4.3%<br>2.2%<br>17.0%<br>06);   <sup>2</sup> = 54<br>1.5%<br>2.5%<br>4.4%<br>4.6%<br>7.0%<br>20.7%<br>3);   <sup>2</sup> = 0%<br>1.9%<br>4.2%<br>3.9%<br>3.2%<br>13.2%<br>00001);   <sup>2</sup> = | 2.09 [1.00, 4.39]<br>2.84 [0.80, 10.06]<br>1.42 [0.76, 2.68]<br>1.43 [0.23, 5.46]<br>0.82 [0.26, 2.58]<br>1.30 [0.65, 2.60]<br>1.28 [0.89, 1.83]<br>2.13 [0.0, 22.71]<br>1.31 [0.99, 1.72]<br>1.152 [5.44, 24.37]<br>1.152 [5.44, 24.37]<br>1.152 [5.44, 24.37]<br>1.19 [0.53, 2.69]<br>4.19 [1.60, 10.99]<br>2.97 [0.88, 10.01]<br>85%                                            | 0.001 0.1 1 0 100<br>Favours [experimental] Favours [control] |

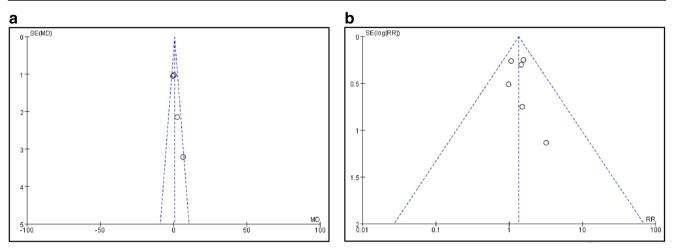



Fig. 6 Bias assessment plot for the effect on PDQ-39 (a) and discontinuation due to AEs (b)

subgroup analysis. This indicated that our results may be biased. Third, all the trials were carried out in Europe, Australia, USA, and so on. There are insufficient data on the Asian and Africa. It would inevitably be valuable to know whether the initial treatment of PD is discrepancy in different regions. Forth, only English-language studies were included. This is another defect that limited the generalization of the findings potentially. In spite of these limitations, our meta-analysis also had possessed some advantages. First, all of the included trials were well designed and were considered to have a low risk of bias and provided promising evidences. Second, we simply analyzed the efficacy of LCE in patients with early PD, while previous meta-analysis was to analyze the efficacy of LCE in the whole stage of PD patients, so this meta-analysis provided more clear opinions for the treatment of early PD patients.

## Implications for future research

A major goal of PD research is the development of diseasemodifying drugs that slow or stop the underlying neurodegenerative process [2]. Levodopa, as the gold standard for the treatment of PD, is associated with the development of motor complications. So a drug that combined entacapone (as an inhibitor of the COMT) with levodopa and carbidopa has recently emerged to reduce the side effects of using levodopa alone. However, although many studies have been conducted to explore the therapeutic effect of LCE on PD patients, few studies have been conducted on the efficacy and safety of early PD patients, so more RCTs are needed to confirm our results in the future.

# Conclusions

This is the first meta-analysis to determine the efficacy and safety of levodopa/carbidopa/entacapone (LCE) in early Parkinson patients with Hoehn-Yahr (H&Y) less than three. Current meta-analysis has proved that LCE is more effective than other Parkinson's drugs in the treatment of early PD, but it has more adverse reactions than other drugs. However, one factor affecting the validity of findings is that the number of studies included in this meta-analysis is very limited.

Author contribution Liao Xiaoli, Wu Nianyue, and Liu Dongfeng contributed equally. Data for each study were extracted independently by two researchers (Wu and Liu). If there is any ambiguity, consult a third investigator (Liao). Similarly, three researchers made similar contributions to the writing of the manuscript. Wu and Liu completed the preliminary manuscript. Liao is responsible for the final revision.

**Funding information** This study is supported by the Sichuan Science and Technology Program (No. 18PTDJ0117 and 2018ZDYF0569).

## Compliance with ethical standards

Conflict of interest None.

Ethical approval None.

# References

- Hirsch EC, Jenner P, Przedborski S (2013) Pathogenesis of Parkinson's disease. Mov Disord 28(1):24–30. https://doi.org/10. 1002/mds.25032
- Kalia LV, Lang AE (2015) Parkinson's disease. Lancet 386(9996): 896–912. https://doi.org/10.1016/s0140-6736(14)61393-3
- Chen Y, Shen J, Ke K, Gu X (2020) Clinical potential and current progress of mesenchymal stem cells for Parkinson's disease: a systematic review. Neurol Sci 1:11. https://doi.org/10.1007/s10072-020-04240-9
- Gaenslen A, Berg D (2010) Early diagnosis of Parkinson's disease. Int Rev Neurobiol 90:81–92. https://doi.org/10.1016/s0074-7742(10)90006-8
- Ossig C, Reichmann H (2015) Treatment strategies in early and advanced Parkinson disease. Neurol Clin 33(1):19–37. https://doi. org/10.1016/j.ncl.2014.09.009
- 6. Brooks DJ (2008) Optimizing levodopa therapy for Parkinson's disease with levodopa/carbidopa/entacapone: implications from a

clinical and patient perspective. Neuropsychiatr Dis Treat 4(1):39-47

- Cotzias GC, Papavasiliou PS, Gellene R (1969) Modification of Parkinsonism—chronic treatment with L-dopa. N Engl J Med 280:337–345
- Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272. https://doi.org/10.1016/s1474-4422(16)30230-7
- Gordin A, Kaakkola S, Teravainen H (2004) Clinical advantages of COMT inhibition with entacapone—a review. J Neural Transm (Vienna) 111(10–11):1343–1363. https://doi.org/10.1007/s00702-004-0190-3
- Fung VSC, Herawati L, Wan Y, Boyle R, Hughes A, Lueck C et al (2009) Quality of life in early Parkinson's disease treated with levodopa/carbidopa/entacapone. Mov Disord 24(1):25–31. https://doi. org/10.1002/mds.21878
- Poulopoulos M, Waters C (2010) Carbidopa/levodopa/entacapone: the evidence for its place in the treatment of Parkinson's disease. Core Evid 5:1–10
- Tveiten OV, Skeie GO, Haugarvoll K, Muller B, Larsen JP, Tysnes OB (2013) Treatment in early Parkinson's disease: the Norwegian ParkWest study. Acta Neurol Scand 128(2):107–113. https://doi. org/10.1111/ane.12055
- Espay AJ, Pagan FL et al (2017) Optimizing extended-release carbidopa/levodopa in Parkinson disease: consensus on conversion from standard therapy. Neurol Clin Pract 7:86–93
- 14. Abbruzzese G (2008) Optimising levodopa therapy. Neurol Sci 29: 377–379. https://doi.org/10.1007/s10072-008-1051-x
- Zambito Marsala S, Vitaliani R, Volpe D, Capozzoli F, Baroni L, Belgrado E, Borsato C, Gioulis M, Marchini C, Antonini A (2013) Rapid onset of efficacy of rasagiline in early Parkinson's disease. Neurol Sci 34:2007–2013. https://doi.org/10.1007/s10072-013-1437-2
- Getz SJ, Levin B (2017) Cognitive and neuropsychiatric features of early Parkinson's disease. Arch Clin Neuropsychol 32(7):769–785. https://doi.org/10.1093/arclin/acx091
- Lew MF, Somogyi M, McCague K, Welsh M (2011) Immediate versus delayed switch from levodopa/carbidopa to levodopa/ carbidopa/entacapone: effects on motor function and quality of life in patients with Parkinson's disease with end-of-dose wearing off. Int J Neurosci 121(11):605–613. https://doi.org/10.3109/00207454. 2011.598982
- Hauser RA, Panisset M, Abbruzzese G, Mancione L, Dronamraju N, Kakarieka A, Grp F-SS (2009) Double-blind trial of levodopa/ carbidopa/entacapone versus levodopa/carbidopa in early Parkinson's disease. Mov Disord 24(4):541–550. https://doi.org/ 10.1002/mds.22343

- Stocchi F, Rascol O, Kieburtz K, Poewe W, Jankovic J, Tolosa E, Barone P, Lang AE, Olanow CW (2010) Initiating levodopa/ carbidopa therapy with and without entacapone in early Parkinson disease: the STRIDE-PD study. Ann Neurol 68(1):18–27. https:// doi.org/10.1002/ana.22060
- Tolosa E, Hernández B, Linazasoro G, López-Lozano JJ, Mir P, Marey J, Kulisevsky J (2014) Efficacy of levodopa/carbidopa/ entacapone versus levodopa/carbidopa in patients with early Parkinson's disease experiencing early wearing-off: a randomised, double-blind trial. Journal of neural transmission (vienna, austria : 1996) 121(4):357–366. https://doi.org/10.1007/s00702-013-1114-x
- Brooks DJ, Agid Y, Eggert K, Widner H, Ostergaard K, Holopainen A (2005) Treatment of end-of-dose wearing-off in parkinson's disease: stalevo (levodopa/carbidopa/entacapone) and levodopa/DDCI given in combination with Comtess/Comtan (entacapone) provide equivalent improvements in symptom control superior to that of traditional levodopa/DDCI treatment. Eur Neurol 53(4):197–202. https://doi.org/10.1159/000086479
- Larsen JP, Worm-Petersen J, Siden A, Gordin A, Reinikainen K, Leinonen M (2003) The tolerability and efficacy of entacapone over 3 years in patients with Parkinson's disease. Eur J Neurol 10(2): 137–146
- Myllyla VV, Kultalahti ER, Haapaniemi H, Leinonen M (2001) Twelve-month safety of entacapone in patients with Parkinson's disease. Eur J Neurol 8(1):53–60
- Poewe WH, Deuschl G, Gordin A, Kultalahti ER, Leinonen M (2002) Efficacy and safety of entacapone in Parkinson's disease patients with suboptimal levodopa response: a 6-month randomized placebo-controlled double-blind study in Germany and Austria (Celomen study). Acta Neurol Scand 105(4):245–255
- Kuoppamaki M, Vahteristo M, Ellmen J, Kieburtz K (2014) Pooled analysis of phase III with entacapone in Parkinson's disease. Acta Neurol Scand 130(4):239–247. https://doi.org/10.1111/ane.12278
- Yi ZM, Qiu TT, Zhang Y, Liu N, Zhai SD (2018) Levodopa/ carbidopa/entacapone versus levodopa/dopa-decarboxyiase inhibitor for the treatment of Parkinson's disease: systematic review, meta-analysis, and economic evaluation. Ther Clin Risk Manag 14: 709–719. https://doi.org/10.2147/tcrm.S163190
- 27. Rosendaal FR, Reitsma PH (2014) Meta-analysis. J Thromb Haemost 12(7):1009. https://doi.org/10.1111/jth.12616
- Thorlund K, Imberger G, Walsh M, Chu R, Gluud C, Wetterslev J et al (2011) The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis—a simulation study. PLoS One 6(10):e25491. https://doi.org/10.1371/ journal.pone.0025491

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.