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Abstract
Multiple sclerosis (MS) is a progressive chronic autoimmune-mediated disease. Recently, long non-coding RNAs (lncRNAs) are
characterized to participate in the adjustment of immune responses. Here, we evaluated the expression levels of GSTT1-AS1 and
IFNG-AS1 lncRNAs and their targets (TNF and IFNG, respectively) in Iranian MS patients.

In this case-control study, 50 relapsing-remitting MS patients and 50 healthy subjects were recruited. Expressions of GSTT1-
AS1 and IFNG-AS1 lncRNAs, as well as TNF and IFNG genes, were assessed in their peripheral blood samples by SYBRGreen-
based Real-time quantitative PCR.

Expression levels of GSTT1-AS1 and IFNG-AS1 lncRNAs were both significantly downregulated (p values 0.032 and 0.013,
respectively). On the other hand, the expression of TNF and IFNG showed increased levels, however, did not reach statistical
significance after our analysis (p > 0.05). Spearman correlation analysis showed that GSTT1-AS1 had a significant positive
moderate correlation with IFNG-AS1 (r = 0.541, p < 0.0001), IFNG (r = 0.329, p = 0.001), and TNF (r = 0.204, p = 0.041).
Also, IFNG-AS1 revealed the same correlation with IFNG (r = 0.475, p < 0.0001) as well as TNF (r = 0.399, p < 0.0001).
Furthermore,GSTT1-AS1 (r = 0.313, p = 0.027) and (IFNG r = 0.478, p < 0.0001) demonstrated a significant positive correlation
with age at onset.

Briefly, the current study provided for the first time dysregulation of GSTT1-AS1 and IFNG-AS lncRNAs network in MS,
which highlights the significant role of epigenetic pathways in this autoimmune disorder. Larger sample size and further
investigation assays could shed light on the underlying mechanisms in this area of science.
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Introduction

Multiple sclerosis (MS) (OMIM 126200) is a progressive
chronic autoimmune-mediated disease, characterized by the
demyelination, chronic inflammation, and neurodegeneration
processes in the central nervous system (CNS). The underly-
ing immunopathogenic mechanisms of this disorder is yet
unknown. However, there is a large body of literature
supporting the role of perivascular infiltration of autoreactive
T cells which recognize and react against autoantigens [1, 2].
There are reports which demonstrate the significant increase
of MS rates especially in Iranian population [3].

Newly, accumulated evidence has displayed that defects in
CD4+ T helper cells may be involved in the MS process [4, 5].
CD4+ T helper cells can be grouped into Th1, Th2, and Th17
as well as follicular helper T cells, based on the production of
cytokines. The Th1 cell lineage is regarded as a subset of
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inflammatory CD4+ T cells mainly producing interferon gam-
ma (IFN-γ), an inflammation-related cytokine that partici-
pates protectively against autoimmune diseases, delayed-
type hypersensitivity, and intracellular microbes [6, 7].
Likewise, tumor necrosis factor (TNF) gene encodes for a
multifunctional proinflammatory cytokine, which has been
characterized to affect excitatory synaptic transmission and
mediates immunological and neural cytological roles [8–10].

Long non-codingRNAs (LncRNAs) constitute a distinct class
of non-coding RNAs with more than 200 nucleotides in length.
LncRNAs are substantially appreciated as key regulators of ge-
nome expression, and so far, only some of their functions have
been recognized [11, 12]. In some well-studied instances, their
active involvement in many aspects of neuronal diseases such as
neural degeneration or neurogenesis in both of central and pe-
ripheral nervous systems has been described [13, 14]. In addition,
dysregulation of some lncRNAs has been recently shown in
peripheral blood mononuclear cells of MS patients, suggesting
their possible role in MS development [14].

GSTT1-AS1 (lncRNA-CD244 in another words) is a lncRNA
by which CD244 was found to mediate the inhibition of IFNG
and TNF cytokine genes in tuberculosis pathogenesis [15]. It is
speculated that GSTT1-AS1 represses the transcription of TNF
and IFNG genes, by recruiting EZH2 enzyme complex to their
promoters, to facilitate H3K27 methylation that causes a repres-
sive transcriptional environment [16]. IFNG-AS1 (IFNG
Antisense RNA 1), also named Tmevpg1 (Theiler’s murine en-
cephalomyelitis virus persistence candidate gene 1), or NeST
(nettoie Salmonella pas Theiler’s) is another lncRNA initially
characterized as a candidate gene to control the Theiler’s virus
persistence [17, 18]. IFNG-AS1 is located adjacent to IFN-γ-
encoding gene, IFNG, in human. Currently, studies have eluci-
dated that IFNG-AS1 is determined to be a pivotal checkpoint
contributing IFNG expression [19, 20]. However, it is not yet
known whether IFNG-AS1 is involved in the pathogenesis of
MS. Besides, the relationship between GSTT1-AS1 and IFNG-
AS1 lncRNAs as well as TNF and IFNG is, to the best of our
knowledge, not studied in MS disorder.

Altogether, here we aimed to study the relative expression
levels of GSTT1-AS1 and IFNG-AS1 lncRNAs in addition to
their target coding genes (TNF and IFNG, respectively) in
Iranian MS patients.

Materials and methods

Subjects

The subjects of this case-control study included 50 unrelated
sporadic relapsing-remitting MS (RR-MS) patients (38 wom-
en and 12 men), as diagnosed and identified by MRI (mag-
netic resonance imaging) and 2017McDonald criteria [21] by
specialized neurologists. All patients were treated with
Interferon (IFN)-β therapy for at least 2 years (intramuscular
injection of CinnoVex 30 mcg [CinnaGen Co, Tehran, Iran]
once a week) and were recognized as IFN-β responders [22,
23]. Moreover, 50 sex- and age-matched healthy controls (37
women and 13 men) were involved. The blood samples were
gathered from MS Society of Iran and, in addition, some hos-
pitals in Tehran. All MS patients were, prior to this study,
HLA-typed. Therefore, HLA-DRB1*15 was ruled out due to
its major effect in MS predisposition[24].

Blood sampling

The present study was carried out on 5-ml peripheral blood
samples collected from the participants (MS patients and con-
trols). Blood samples of MS patients were obtained during
stable phase of disease. Samples were collected in K3-
EDTA tubes. All individuals gave their informed consent to
incorporate into this study. Then, a complete history of pa-
tients was acquired. Study design and the entire measurements
were approved by the Ethics Committee of Shahid Beheshti
University of Medical Sciences (SBUMS).

Table 1 Sequences of specific
primers designed for each gene Gene name Primer sequence Primer length Product length

B2M F: AGATGAGTATGCCTGCCGTG 20 104
R: CGGCATCTTCAAACCTCCA 19

IFNG F: GGCAAGGCTATGTGATTACAAGG 23 96
R:CATCAAGTGAAATAAACACA

CAACCC
26

IFNG-AS1 F: AGGAAGCTGGGTAATTGAATGC 22 94
R: CTTAGGAGGAGAATTTTGGGAGAG 24

TNF F: TCCACCCATGTGCTCCTCAC 20 97
R: TCTGGCAGGGGCTCTTGATG 20

GSTT1-AS1 F: CTTTTGCATAGAGACCATGACCAG 24 105
R: TGGATAATAAACCTGGGCTCAGC 23
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Quantitative real-time PCR assay

We extracted RNA from whole blood samples by using
GeneAll Hybrid-R™ blood RNA extraction kit (cat No.
305-101). Then, 150 ng of RNA was used to synthesize the
single strand cDNA through kit of Biosystems High-Capacity
cDNA Reverse Transcription (PN 4375575), according to the
manufacturer’s instruction. To design the specific primers,
Allele ID6 for × 64 windows software (Premier Biosoft,
Palo Alto, USA) was used (primer sequences and PCR
product length are shown in Table 1). B2M was applied as a
housekeeping gene in order to normalize the expression level
for all samples including lncRNAs and target coding genes.

SYBR Green-based Real-time quantitative PCR assay was
carried out, by Corbett Rotor Gene 6000 machine (Corbett
Life Science), in duplicates for all samples comprising house-
keeping gene, lncRNAs, and target genes in both groups of
MS patients and healthy controls. Afterwards, a mean value
was reported for each one. Routinely, the NTC (No Template
Control) sample was considered for each primer in each run
for method quality control and detection of contamination.

Statistical analysis

To examine the data obtained from participants, independent t
tests and one-way ANOVA test were both conducted. As well,

Pearson correlation coefficient was used to identify the corre-
lation level between the variables. The significance level was
determined as less than 5% (p ≤ 0.05). The analysis was ac-
complished via SPSS version 18 statistical package (Chicago,
IL, USA). Spearman correlation test was performed to evalu-
ate the correlations between relative expression levels of
GSTT1-AS1, IFNG-AS1, TNF, and IFNG.

Results

Clinical information of all participants is given in Table 2. MS
patients and healthy controls were evaluated in three separate
ways: the results of total participants (regardless of their age
and sex), sex-related results (male or female), and age-linked
results (> 30, 30–40, and 40 ˂ years). The whole group of pa-
tients was then compared with healthy subjects and independent-
ly analyzed for age and sex.

Relative expression level of GSTT1-AS1 LncRNA

Statistical analysis revealed a significant downregulation
in GSTT1-AS1 lncRNA expression in total MS patients
(p = 0.032) and total female subgroup as well as the
subgroup of females 40 ˂ years (p values 0.045 and

Table 2 Clinical and
demographic information of RR-
MS patients and healthy controls

Variables MS patients Controls

Female/male [no. (%)] 38 (76%)/12 (24%) 37 (74%)/13 (26%)

Age (mean ± SD, years) 36.2 ± 2.7 35.3 ± 2.4

Age range (years 17–55 22–60

Age of onset (mean ± SD, years) 31.41 ± 2.8 –

Relapsing-remitting course (no. %) 100 (100%) –

Duration (mean ± SD, years) 4.58 ± 3.2 –

EDSS (mean ± SD) 3.07 ± 2.5 –

EDSS Expanded Disability Status Scale of Kurtzke

Table 3 The relative expression
ratio of GSTT1-AS1 in age- and
sex-based subgroups

GSTT1-AS1
expression

Control no. MS patient no. Expression ratio Sd p value 95% CrI

Total 50 50 0.7139 − 0.15 0.032 [− 1.7, − 0.34]
Male 13 12 1.1312 0.62 0.45 [− 1.7, 0.98]
Female 37 38 0.5482 − 0.4 0.045 [− 2.26, − 0.42]
< 30 Male 0 1 – – – –

Female 10 6 1.6638 − 4.9 0.892 [− 6.1, 6.1]
30–40 Male 2 5 1.1643 – – –

Female 5 15 0.4913 1.32 0.12 [− 6.6, 1.7]
> 40 Male 11 6 1.1669 0.383 0.238 [− 9.04, 1.08]

Female 22 17 0.4166 − 0.47 0.0005 [− 3.17, − 0.8]

Neurol Sci (2019) 40:801–811 803



0.0005, respectively) versus healthy controls (relative
expression ratios are demonstrated in Table 3).

Relative expression level of IFNG-AS1 LncRNA

Table 4 displays the results of total IFNG-AS1 expression
level in RR-MS patients in comparison with the healthy group
as well as those based on the age and sex of the participants.
IFNG-AS1 lncRNA expression is significantly decreased in
almost half of all categories, including total (p = 0.0.13), male

(p = 0.03), female (p = 0.049), and women > 40 years (p =
0.037) MS patients compared to healthy subjects.

Relative expression level of TNF gene

TNF expression inMS patients in all categories was upregulated.
Nonetheless, these discrepancies did not reach a significant level.
Themost considerable differencewas formale patients> 40years
(sevenfold expression ratio compared with controls), while was
not statistically significant. Table 5 indicates the TNF relative
expression ratio in age- and sex-based subgroups.

Table 4 The relative expression
ratio of IFNG-AS1 in age- and
sex-based subgroups

IFNG-AS1
Expression

Control no. MS patient no. Expression ratio Sd p value 95% CrI

Total 50 50 0.4464 − 0.38 0.013 [− 1.73, − 0.43]
Male 13 12 0.4674 − 0.32 0.03 [− 2.6, − 0.02]
Female 37 38 0.4543 − 0.3 0.049 [− 1.7, − 0.25]
< 30 Male 0 1 – – – –

Female 10 6 0.6694 − 3.9 0.843 [− 5.04, 5.3]
30–40 Male 2 5 0.4049 – – –

Female 5 15 1.2557 1.99 0.145 [− 5.8, 2.1]
> 40 Male 11 6 0.5344 − 0.51 0.06 [− 3.4, 0.56]

Female 22 17 0.4546 − 0.45 0.037 [− 1.8, − 0.06]

Table 5 The relative expression
ratio of TNF in age- and sex-
based subgroups

TNF expression Control no. MS patient no. Expression ratio Sd p value 95% CrI

Total 50 50 1.1349 − 0.26 0.303 [− 0.43, 1.4]
Male 13 12 1.9886 − 0.42 0.409 [− 1.5, 4.8]
Female 37 38 1.323 − 0.01 0.434 [− 0.61, 1.3]
< 30 Male 0 1 – – – –

Female 10 6 1.1887 − 3.7 0.68 [− 5.01, 6.06]
30–40 Male 2 5 1.4699

Female 5 15 1.8222 2.08 0.435 [− 5.5, 3.5]
> 40 Male 11 6 7.3023 − 1.7 0.51 [− 3.74, 7.4]

Female 22 17 2.4438 0.4 0.293 [− 0.5, 1.8]

Table 6 The relative expression
ratio of IFNG in age- and sex-
based subgroups

IFNG expression Control no. MS patient no. Expression ratio Sd p value 95% CrI

Total 50 50 1.3978 0.04 0.52 [− 0.33, 0.69]
Male 13 12 1.5149 1.02 0.962 [− 0.8, 0.92]
Female 37 38 1.3394 − 0.3 0.53 [− 0.33, 0.96]
< 30 Male 0 1 – – – –

Female 10 6 1.7006 − 2.59 0.792 [− 4.4, 5.1]
30–40 Male 2 5 2.0325 – – –

Female 5 15 2.5461 1.87 0.819 [− 3.9, 2.9]
> 40 Male 11 6 1.4321 0.98 0.59 [− 1.3, 0.8]

Female 22 17 1.5279 − 0.5 0.59 [− 0.69, 1.15]
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Relative expression level of IFNG gene

Table 6 reveals the expression level of IFNG in patients and
controls. All subgroups in relation to age- and sex-matched
healthy subjects showed upregulated expression, but these
changes were not statistically significant.

Correlation analysis between LncRNAs and target
genes with expanded disability status scale (EDSS)

As seen in Fig. 1, TNF and IFNG expression levels
both showed a significant and moderate correlation with
EDSS (r = − 0.28, p = 0.049; and r = − 0.382, p = 0.006,
respectively), while the correlations for GSTT1-AS1 and
IFNG-AS1 with EDSS was not statistically significant
(data not shown).

Correlation analysis between LncRNAs and target
genes with disease duration

The correlation between all lncRNAs and target genes with
disease duration did not reach a statistical significance (data
not shown).

Correlation analysis between LncRNAs and target
genes with age at onset

Correlation analysis results showed that there is a signif-
icant correlation between expression levels of GSTT1-AS1
(r = 0.313, p = 0.027) and IFNG (r = 0.478, p˂0.0001)
with age at onset of MS disease (Fig. 2). The correlation
of other lncRNAs and genes with age at onset was not
significant (not shown).
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Correlations between expression levels of LncRNAs
and target genes

Spearman correlation analysis between the expression levels
of lncRNAs and target genes is illustrated in Fig. 3, as de-
scribed below:

For GSTT1-AS1

There was a significant and positive weak correlation with
TNF (r = 0.204, p = 0.041) in patients.

For IFNG-AS1

Significant and positive correlations were obtained with
GSTT1-AS1 (r = 0.541, p ˂ 0.0001) and TNF (r = 0.399,
p˂ 0.0001).

For IFNG

There was a significant and positive moderate correlation with
two studied lncRNAs,GSTT1-AS1 (r = 0.329, p ˂ 0.0001) and
IFNG-AS1 (r = 0.475, p ˂ 0.0001). Moreover, the correlation
with TNF was not significant (r = 0.19, p = 0.058) (not
shown).

Discussion

In the current study, we presented downregulation of GSTT1-
AS1 and IFNG-AS1 lncRNAs and upregulation of their coding
targets TNF and IFNG in whole blood of MS patients. The
importance of such different ia l expressions and
dysregulations would be embedded in the pathogenesis of
MS and emphasizes their role as potential biomarkers for dif-
ferent stages of disease course or treatment response [11]. In
addition, finding the interaction between lncRNAs and their
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targets can provide us with potential new therapeutic avenues
for future measurements.

IFN-β therapy has been extensively used over decades as a
first-line treatment for RR-MS. Its beneficial effects in MS
are, in part, owing to the inhibition of CD4+ T cell prolifera-
tion and modulation of proinflammatory cytokines expres-
sion, which are all necessary for the development of inflam-
mation [25]. A large number of studies have examined the
cytokines’ production in MS, but results have been extremely
inconsistent and most studies, even those with a longitudinal
study design, have utilized a cross-sectional approach to eval-
uate remission samples with samples collected during or
shortly before relapse and controls [26–31]. Expression of

IFNG and TNF is regulated through various epigenetic ele-
ments, including methylation, histone acetylation, and non-
coding RNAs [32, 33]. It was previously showed that
CD244 signaling during active tuberculosis infection can ex-
ploit GSTT1-AS1 lncRNA and histone-modifying enzymes to
regulate effector functions of CD244+CD8+ T cells (Fig. 4)
[15]. Indeed, CD244 provokes the expression of GSTT1-AS1
via creating a permissive transcriptional environment at the
GSTT1-AS1 gene locus that results in loss of repressive his-
tone mark, H3K27Me3. In turn, GSTT1-AS1 interestingly ap-
pears to physically interact with a polycomb protein, EZH2.
This interaction consequently mediates the EZH2 recruitment
to TNF and IFNG loci. Moreover, it is thought that this could
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trimethylate H3K27 at promoters of TNF and IFNG toward
repressive chromatin status and suppression of TNF and IFNG
expression [15, 34, 35]. Our findings support this hypothesis
and suggest that GSTT1-AS1 might have interaction with
chromatin and mediate the targeted recruitment of repressive
histone-modifying elements in epigenetic control of transcrip-
tional silencing inMS patients. Therefore, the inverse relation-
ship between expression levels of GSTT1-AS1 lncRNA
(downregulated) and the TNF and IFNG target genes (both
upregulated) in MS patients of our study could be explained
by this hypothesis, though for the two target genes, this in-
crease was not significant after our analysis. Importantly, ele-
vated expression levels of TNF and IFNG can contribute to the
inflammatory responses and trigger cell death as well as tissue
degeneration found in various autoimmune diseases [36, 37].
In harmony with our results, previous studies have shown
higher IFN-γ production in stimulated cells of MS patients
during or just prior to relapse [26, 29, 30, 38]. Particularly,
in two of these studies, the difference in IFN-γ between MS
patients and healthy controls did not reach statistical signifi-
cance [29, 38]. These findings, however, are in contrast with

Van Oosten work who showed no evidence of different stim-
ulated production of IFN-γ in peripheral blood mononuclear
cells (PBMCs) between relapse and remission samples [39].
Such differences might be, in part, due to the diversity of
cross-sectional analysis method and sample size, which both
may account for the failure to reach a significant difference.

IFNG-AS1 is characterized to cooperate with T-bet to
stimulate the transcription of IFNG by effector Th1 cells
[16]. This lncRNA associates with the WDR5 (Fig. 5), a
component of histone H3K4 methyl transferase complex,
and recruits this complex to create H3K4-methylation marks
at the IFNG promoter as well as intronic regions to facilitate
transcription [40]. While recently researchers have
established that lncRNA IFNG-AS1 could change the epige-
netic marking of IFNG encoding chromatin and induce
IFNG transcription [19, 20, 40], other researchers have ob-
tained the contrary results [18]. We observed a significant
decrease in IFNG-AS1 expression in MS patients, but, to our
surprise, the expression of IFNG was upregulated. In accor-
dance with our data, a study performed by Li et al. [41]
reported that IFNG-AS1 expression in PBMCs of primary

Fig. 4 Schematic model illustrating mechanism of action of GSTT1-AS1
lncRNA [15, 16]. Orientation of transcription is indicated by green arrows
bellow. GSTT1-AS1 associates with EZH2 cargo and both connect to the

target mRNAs. Locations of H3K27Me epigenetic marks which suppress
the transcription of target genes are showed
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immune thrombocytopenia (ITP), as an autoimmune disease,
was lower than in healthy controls. They speculated that
IFNG-AS1 can promote IFNG transcription, and that IFNG
over-expression negatively regulates the expression of
IFNG-AS1. It seems that the same applies to our data and
we may suggest that significant decrease in IFNG-AS1 and
insignificant increase of IFNG could be mechanisms for
avoiding excessive IFNG expression [41]. Again, in Li
study, the upregulation of whole blood IFNG concentration
in active ITP patients did not reach the statistical signifi-
cance. It may be that findings of our work and other studies,
related to lncRNAs and targets, can be explained, in part, by
their sample size limitation and heterogeneity of autoim-
mune disorders such as MS and ITP.

Of note, we assessed the expression levels of the
abovementioned lncRNAs and target genes in IFN-β respond-
er MS patients to exclude the effects of numerous drugs and to
assimilate the group of our patients and to unify the results;

however, a limitation of our study can be that we did not
include non-responder MS patients.

Briefly, the current study provided for the first time dysregu-
lation of GSTT1-AS1 and IFNG-AS lncRNAs network in MS,
which highlights the significant role of epigenetic pathways.
Larger sample size and further investigation assays could shed
light on the underlying mechanisms in this area of science.
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