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Abstract Stroke is the second leading cause of death and

the most common cause of adult disabilities among elder-

lies. It involves a complex series of mechanisms among

which, excitotoxicity is of great importance. Also, miRNAs

appear to play role in post-stroke excitotoxicity, and

changes in their transcriptome occur right after cerebral

ischemia. Recent data indicate that specific miRNAs such

as miRNA-223, miRNA-181, miRNA-125a, miRNA-125b,

miRNA-1000, miRNA-132 and miRNA-124a regulate

glutamate neurotransmission and excitotoxicity during

stroke. However, limitations such as poor in vivo stability,

side effects and inappropriate biodistribution in miRNA-

based therapies still exist and should be overcome before

clinical application. Thence, investigation of the effect of

application of these miRNAs after the onset of ischemia is

a pivotal step for manipulating these miRNAs in clinical

use. Given this, present review concentrates on miRNAs

roles in post-ischemic stroke excitotoxicity.
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Introduction

Stroke is the second leading cause of death, the second

most common cause of dementia and the most common

cause of adult disabilities among elderlies [1–3]. Globally,

it is responsible for nearly 5.5 million deaths every year,

with 44 million disability-adjusted life-years lost which

will increase up to 61 million in 2020 [2, 4]. Of this,

ischemic stroke accounts for approximately 73 to 86 %,

whereas hemorrhagic stroke is responsible for 8 to 18 % of

the cases [5].

Brain ischemia initiates a cascade of pathological events

that finally lead to irreversible neuronal damage [6]. It

involves a complex series of biological and molecular

mechanisms such as excitotoxicity, oxidative stress,

inflammation, ionic imbalance, blood–brain barrier dis-

ruption and apoptosis [7, 8]. Among these mechanisms,

excitotoxicity is notable. It is mainly a glutamate-mediated

specific type of neurotoxicity and is the overlooked link

between ischemic stroke and neuronal damage and cell

death [9]. It stems from excessive accumulation of exci-

tatory amino acids such as glutamate and leads to toxic

increases in intracellular calcium [7, 10] which mediates

neuronal damage in stroke [11].

miRNAs are small (*19 to 23 nucleotides) noncoding

endogenous molecules that bind messenger RNAs (mRNA)

and promote their degradation or repression of translation

[12]. They have been found to be responsible for neuronal

differentiation and development [6] and their role as

mediators of silencing of post-transcriptional gene in

pathological aspects of ischemic stroke has been proved

[13]. Changes in the microRNAs (miRNA) transcriptome

occur right after focal cerebral ischemia which indicates

miRNAs role in the pathological cascades of ischemic

stroke [13–15]. Alteration in miRNAs level after brain

ischemic injury was first noticed in focal brain and fore-

brain ischemia and recent studies have assessed the sig-

nificance of local changes in miRNA expression level

[12, 16]. Furthermore, microRNAs aberrant, both up and

down, regulation has been reported during cerebral
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ischemia and/or reperfusion [6, 17]. Also, it has been

shown that in the aging brain, miRNAs play a neuropro-

tective role and are effective in controlling synaptic func-

tion and plasticity [18].

Although accumulating evidence shows that trafficking

and phosphorylation of receptors have an important role in

glutamate receptor’s regulation during and after stroke, the

exact mechanisms behind remain poorly understood.

Recent data indicate that specific miRNAs regulate gluta-

mate receptors expression level [11, 19, 20] and excito-

toxicity during stroke [21]. Among these miRNAs, miR-

223, miR-181, miR-125a, miR-125b, miR-1000, miR-132

and miR-124a seem to play a role in glutamate receptors

and their associated proteins regulation in neurons and

astrocytes after an episode of stroke [11, 18, 19, 22, 23] and

thus can influence post-stroke excitotoxicity [21]. Apart

from excitotoxicity, changes in the miRNA transcriptome

right after cerebral ischemia would affect acute phase

molecular mechanisms linked to oxidative stress, inflam-

mation, blood–brain barrier breakdown, cytoskeletal

remodeling, metabolic changes, mitochondrial dysfunction,

and apoptosis all of which are associated with post-stroke

damage [13, 17].

Among these changes, excitotoxicity is an important

trigger of tissue damage in both focal experimental, and

clinical ischemia. Furthermore, glutamate receptors are the

key mediators of death during excitotoxic injury. Besides

as noted above, microRNAs play an important role in the

etiology and pathophysiology of post-stroke excitotoxicity

and [23, 24] these small regulatory RNAs will allow the

assessment of their application as promising therapeutic

targets to reduce the ischemic penumbra volume, post-is-

chemic brain damage and neurological dysfunction

[25, 26]. As shown in Table 1, this review focuses on

miRNAs function and their roles in post-ischemic stroke

excitotoxicity.

miRNAs: a novel therapeutic target in stroke
medicine and the problems ahead

miRNAs could be considered a major therapeutic break-

through in stroke medicine [6, 27] for two main reasons:

(1) a single miRNA can control and influence many target

genes, and (2) they can be inhibited both in vitro and

in vivo [15].

In the CNS miRNAs can be manipulated by several

methods [28]. Systemic delivery of modified oligonu-

cleotides through either intravenous injection or cere-

brospinal fluid infusion is one of the methods of miRNA

manipulation. Sense, antisense miRNAs and artificial

miRNAs have been used in mammalians with different

effects on targets [29]. Lately, miRNA sponge, aimed to a

specific miRNA, has been manipulated as an alternative to

antisense oligonucleotides. These sponges could be deliv-

ered using viral vectors to allow for stable inhibition of

specific, disease-related miRNAs [30]. Blood brain barrier

(BBB) is a major problem to any therapy which involves

systemic delivery of oligonucleotides. However, rabies-

virus peptide solves this problem and helps oligonu-

cleotides to cross the BBB and target neurons [29]. Viral

methods also exist and are more target specific and avoid

the problems of systemic delivery of oligonucleotides,

however, toxicity-related problems and immunogenicity

limit their clinical applications [28].

The use of miRNA technology to treat excitotoxic

neuronal injury is also being pursued. Because a large

number of miRNAs change between 3 h and 3 days after

ischemic insult to the brain, expression of miRNAs has

been also observed to change with reperfusion the early use

of miRNA-based therapies could change the course of the

disease [29, 31]. Thence, limitations such as poor in vivo

stability, side effects including toxicity and immuno-

genicity and inappropriate biodistribution in miRNA-based

therapies still exist and should be overcome before clinical

application [28, 32].

Also, approved and appropriate animal models are

important to validate miRNA drugs’ efficacy and unfortu-

nately most animal models cannot completely recapitulate

some aspects of human diseases such as stroke which limits

the clinical usage of these models [33].

Role of miRNAs in glutamate-induced
excitotoxicity in ischemic stroke

Excitotoxicity is the central missing link between ischemic

insult in stroke and neuronal death [34–37]. Glutamate

receptors have been hypothesized to play a major role in

excitotoxicity-induced neuronal death in neurodegenera-

tion and stroke [37, 38]. Following the activation of glu-

tamate receptors during an ischemic insult, intracellular

Ca2? load increases, which in turn, activates Ca2?-depen-

dent enzymes such as proteases, lipases, phosphatases and

endonucleases [34], increases reactive nitrogen and oxygen

species, disrupts cell membrane and mitochondria, induces

fragmentation of DNA and initiates cell death cascades

[34, 39].

Following cerebral ischemic episode, changes in the

miRNA transcriptome indicate miRNAs role in the

pathological events such as excitotoxicity which ensue the

episode and might affect the disease outcome

[12, 13, 17, 21, 31]. miRNAs affect post-transcriptional

gene expression by interaction, repression or degradation,

with their target mRNAs [40]. Although many studies have

reported the suppressive role of miRNAs, some have also
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suggested their inductive role in post-translational level of

gene expression [40–42].

miRNAs are also thought to be neuroprotective in stroke

[43–45] and among them, glutamate receptors-specific

miRNAs such as miR-223, miR-1000 and miR-125b are

interesting targets for this purpose [11, 18, 22, 46].

Neuroprotective role of miR-223 in ischemic stroke
by targeting glutamate receptors

Due to its various functions in the cell, miR-223 is important

[47]. It is also expressed in central nervous system (CNS) and

has been shown to be neuroprotective by targeting a-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) recep-

tor subunitGluR2andN-methyl-D-aspartate (NMDA) receptor

subunit NR2B. Indeed, miR-223-mediated change in NMDA

and AMPA function and composition controls neuronal exci-

tatory response to glutamate in hippocampus [11]. Evidence

shows that miR-223 is upregulated following the middle

cerebral artery occlusion in a rat model of stroke [31, 48, 49].

Moreover, miR-223 expression is increased in circulating

blood samples of patients with acute ischemic stroke and the

severity and volume of infarct were lesser in patients who had

more expression of miR-223 [21, 31]. Evidence shows that

overexpression of miR-223 attenuates neuronal loss after

excitotoxic insult [11] and its silencing is paralleled with

increasing in GluR2 and NR2B subunits which subsequently

increases miniature excitatory post-synaptic currents

(mEPSCs) amplitude and decay time and enhances NMDA-

mediatedCa2? influx and results in nitric oxide production and

excitotoxicity. This finally increases neuronal cell death fol-

lowingmiddle cerebral artery stroke in hippocampus or global

brain ischemia (Table 1) [11, 22, 50]. Therefore, it appears that

miR-223 direct delivery to the neuronal cell could be a novel

therapeutic strategy to reduce excitotoxicity and neuronal cell

death after ischemic stroke [51].

miR-1000-mediated neuroprotection by limiting
post-stroke glutamate excitotoxicity

There is very limited information about miR-1000 and its

role in post-stroke excitotoxicity. The glutamate transporter

expression in vesicles (VGlut) is controlled presynaptically

by miR-1000 in an activity-dependent fashion. This trans-

porter retains glutamate in synaptic vesicles. It has been

shown that genetically knocked down miR-1000 results in

glutamate excitotoxicity and early-onset neuronal damage

and death (Table 1) [18]. So, misregulation of miR-1000

after ischemic stroke may worsen excitotoxic damage in the

damaged brain tissue of the affected patients. Whether the

expression of this miRNA changes during ischemic stroke

is not yet well understood and more studies are needed to

evaluate its role in post-ischemic stroke excitotoxicity.

miR-125b exacerbates post-stroke excitotoxicity

miR-125 family includes 125a, 125b1 and 125b2 members

and their overexpression has been found to have a prolif-

erative effect on cells and diminish the apoptosis rate by

Table 1 Summary of miRNAs and their relevant targets in post-ischemia excitotoxicity

miRNA Target element(s) Effects on target

element(s)

miRNA’s post-stroke

expression level

Possible influence

in post-stroke

excitotoxicity

References

miR-223 NR2B of NMDA and GluR2

of AMPA receptors

Downregulation Upregulation Decrease Dharap et al. [31], Harraz

et al. [11], Jeyaseelan et al.

[48], Tan et al. [49]

miR-1000 VGlut receptor Downregulation Not assessed Decrease Verma et al. [18]

miR-125b NR2A of NMDA receptor Upregulation Upregulation Increase Sepramaniam et al. [46], von

Engelhardt et al. [55]

miR-124 Astroglial GLT1/EAAT2 Upregulation Upregulation Decrease Morel et al. [58], Ouyang

et al. [12], Sun et al. [62]

miR-181a Astroglial GLT1/EAAT2 Prevents

downregulation

In hippocampus and

ischemic core:

upregulation

In dentate gyrus and

penumbra:

downregulation

Decrease Moon et al. [69], Ouyang

et al. [12]

GluA2/GluR2

Of AMPA receptors

Downregulation Not assessed Saba et al. [20]

miR-132 NR2A and NR2B of NMDA

and GluR1 of AMPA

receptors

Upregulation Upregulation Increase Kaur et al. [23], Kawashima

et al. [81]
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proapoptotic genes downregulation [52]. Among these

miRNAs, miR-125b is of increasing importance in the

CNS. Although miR-125b is commonly expressed in brain

and is upregulated during neurogenesis and neuronal dif-

ferentiation [53], evidence shows that miR-125b overex-

pression in neurons leads to thinner spines and decreases

mEPSCs amplitude [54]. Studies also suggest that NMDA

receptors (NR2A) are the direct targets of this miRNA in

hippocampal neurons and its overexpression or knock

down results in NR2A up and down regulation, respec-

tively (Table 1) [11, 22, 54]. On the other hand, the anal-

ysis of stroke patients shows that miR-125b manifests its

maximum expression level within the acute phase of stroke

in humans and it can be of diagnostic value [46]. So, it can

be inferred from the studies that overexpression of miR-

125b which occurs after ischemic stroke can upregulate

NR2ARs, which promote cell death in mature cultures

[55], and exacerbate post-stroke excitotoxicity. Further

studies are needed to elucidate miR-125b diagnostic and

therapeutic values in post-ischemic stroke excitotoxicity.

miR-124 effects on astroglial glutamate receptors
control post-ischemic stroke excitotoxicity

miR-124 is selectively expressed in the CNS and its con-

centration is one hundred times higher in the CNS than

other body tissues and is considered the most abundant

CNS miRNA [56–58]. miR-124 has a key role in neuronal

differentiation and function [6] and its aberrant expression

contributes to pathological conditions of the CNS [59].

Evidence shows that neuronal exosomal miR-124a can

control astroglial glutamate type I transporter/excitatory

amino acid transporters 2 (GLT1/EAAT2) expression in

astrocytes. It has been shown that transfer of this miRNA to

astrocytes from neuronal exosomes increases GLT1/

EAAT2 expression by altering the translation of GLT1

mRNA to its protein. This process is likely to be indirect is

mediated through other factors in astrocytes. GLT1/EAAT2

is one of the important mechanisms of astrocyte protection

against excitotoxicity which is mediated by rapid removal

of excess glutamate from synaptic sites [58, 60].

Although findings about the role of miR-124 in stroke is

controversial [61–63], some studies show that the expres-

sion level of miR-124 increases in ischemic penumbra in

comparison to non-ischemic territory of middle cerebral

artery occlusion model of mice and this miRNA is pro-

tective in neurons against the brain injury in experimental

stroke models (Table 1) [59, 62, 64]. Also, it has been

demonstrated that miR-124 could be detected in plasma

after stroke and could be of diagnostic value [17, 65].

Therefore, it is highly plausible that miR-124 upregulation

in penumbra can increase GLT1/EAAT2 expression in

astrocytes and decrease glutamate levels in synapse and

excitotoxicity and thus can be considered as a potential

novel target for cerebral ischemia neuronal injuries.

miR-181 affects post-ischemic stroke excitotoxicity
through astrocytes

The miR-181 family includes four members (miR-181a,

miR-181b, miR-181c, and miR-181d) [60]. These family

members, specifically miR-181a and miR-181b, are abun-

dantly found in the brain [66] and their uncontrolled

expression has been found to be responsible for some of

important brain diseases [60]. miR-181 is one of the

miRNAs whose level changes in the ischemic brain [67].

Evidence shows that following both global and focal

ischemia miR-181a expression is upregulated and decrea-

ses in the penumbra and hippocampal dentate gyrus which

are ischemia-resistant areas of the brain (Table 1)

[16, 60, 67, 68]. These up and down regulations are asso-

ciated with neuronal cell death in hippocampal CA1 and

neuronal survival in dentate gyrus after ischemic injury,

respectively [60]. Besides, anti-miR-181a diminishes

infarct size in focal and hippocampal CA1 neuronal loss in

global cerebral ischemia [60, 67, 69]. Thus, it seems to be a

key mediator in the evolution of stroke-induced injury and

its outcome [70].

It has been shown that direct delivery of anti-miR-181a

to astrocytes is associated with increased Bcl-2, an

important anti-apoptotic protein level which decreases

oxidative stress and preserves GLT-1 receptors on astro-

cytes. This increases astrocytic glutamate uptake and limits

excitotoxicity (Table 1) [69]. These changes have been

found be cell-specific and do not happen in neurons after

ischemia-like injuries in animal models [60].

Interestingly, studies have shown that GluA2/GluR2

subunit of AMPA receptors is also miR-181a target

[23, 71, 72]. Upon miR-181a expression in neurons GluA2

surface expression and mEPSC frequency significantly

decrease and neurons that overexpress this miRNA have

fewer and smaller spines which proves miR-181a func-

tional role in the synapse [20]. There are no data that show

the relationship of miR-181a-related changes of AMPA

receptors and excitotoxicity. Also, due to the different

effects of miR-181 in neurons vs. astrocytes, future studies

should assess the possible role of miR-181 in cell type

specific responses and whether this miRNA influences

post-stroke excitotoxicity by affecting glutamate receptors

or not. Furthermore, although pretreatment with anti-miR-

181a has been tried in some studies, investigation of the

effect of application of this astrocyte-enriched miRNA

after the onset of ischemia is a pivotal step for manipu-

lating this idea in clinical use.
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miR-132’s controversial role in post-ischemic
stroke excitotoxic damage

MiR132 is a neuron-specific miRNA and its expression is

enriched in the brain [73, 74]. It is mandatory for the proper

development, morphogenesis and function of neurons and

its dysregulation results in several neurological disorders. It

has been lately classified as a ‘neurimmiR’, which acts

within and between the neural and immune systems in

which via targeting acetylcholinesterase, it reduces brain

inflammation and increases acetylcholine [75–78]. This

miRNA is specifically expressed in active synapses and its

knock down causes impaired synapse formation. So, it

plays a role in the long term activation of synapse and

participates in memorization processes [79, 80].

The role of miR-132 in neuronal death has not yet well

understood and some studies indicated that brain-derived

neurotrophic factor overexpression during cerebral

ischemic attacks, upregulates expression of miR-132

through the MAPK/ERK1/2 pathway in cultured cortical

neurons, which in turn induces the expression of NR2A and

NR2B subunits of NMDA and GluR1 subunit of AMPA

receptors. Hence, the use of miR-132 antagomir in this case

may have neuroprotective effects by suppressing glutamate

receptor expression, thereby reducing excitotoxicity

(Table 1) [23, 81].

Conclusion

miRNAs have emerged as mediators of post-transcriptional

silencing of genes in ischemic stroke pathogenesis and

pathology. These components exert their effects through

changing the transcriptional level of glutamate receptors

which are important in post-ischemic stroke excitotoxicity.

A growing body of evidence shows that specific miRNAs

such as miR-223, miR-181, miR-125a, miR-125b, miR-

1000, miR-132 and miR-124a regulate glutamate receptors

expression level and excitotoxicity during stroke.

Thus, these miRNAs may also be applied to positively

affect stroke outcomes through modulating excitotoxicity.

This suggests novel strategies in the treatment of ischemic

stroke pathological cascade. However, until now, none of

the presented miRNAs and their targets has been proved in

the context of ischemic stroke treatment. Besides, the lack

of the standardized technology used in different experi-

mental platforms of ischemic stroke mandates the need for

more studies in the future.
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