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Abstract Amyotrophic lateral sclerosis (ALS) is pro-

gressive and fatal neurodegenerative disorder with upper

and lower motor neuron signs. There are no biomarkers to

track disease progression. To address this issue, we

investigated regions in which fractional anisotropy (FA)

values derived from diffusion weighted images correlated

with both disease severity and duration in ALS patients.

Fourteen patients with ALS were enrolled in this study.

Voxel-based analysis revealed volume of interests (VOIs)

showing significant correlation. Finally, Spearman rank

correlation coefficient was assessed between FA value in

each VOI and disease severity or duration. In the VOI of

left supplementary motor area (SMA), FA value signifi-

cantly correlated with disease severity and duration both

(disease severity, rho = 0.59, p = 0.025; disease duration,

rho = -0.69, p = 0.006). The present finding suggested

the possibility that the abnormality in motor-related region

including SMA could be a candidate for a biomarker to

track disease progression.
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Introduction

Amyotrophic lateral sclerosis (ALS) is progressive and

fatal neurodegenerative disorder with TAR-DNA binding

protein-43 (TDP-43) inclusion bodies in neurons, which

affects upper and lower motor neurons [1]. The revised El

Escorial criteria has been accepted as a tool for a clinical

diagnosis, and required upper and lower motor neuron

sign [2]. However, quite a few patients pathologically

diagnosed as ALS showed only lower motor neuron sign

during the whole course of disease [3]. Furthermore, there

are no biomarkers to track disease progression. To

directly address these issues, state-of-the-art magnetic

resonance imaging (MRI) techniques have been applied

for diagnosis of ALS and assessment of disease progres-

sion, such as diffusion weighted images (DWI). The

fractional anisotropy (FA) is derived from DWI, and is an

index of the degree of directionality of water diffusivity.

A voxel-based meta-analysis revealed the significant FA

reduction in corticospinal tract in ALS patients [4]. FA

values in the widespread brain region including corti-

cospinal tract and frontal lobe significantly correlated

with disease severity [5–7]. We hypothesized that the

region showing FA correlation with both disease severity

and duration could be a more useful biomarker to track

disease progression because these two factors are derived

from two different sources (i.e. physical examination or

interview). To test this hypothesis, we investigated where

FA values correlated with both disease severity and

duration in ALS patients.
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Materials and methods

Subjects

Fourteen patients with ALS [9 men and 5 women, age

64.5 ± 9.2 (mean ± SD)] were diagnosed according to the

revised El Escorial criteria for possible, probable-labora-

tory-supported, probable or definite ALS, and enrolled in

this study. Clinical characteristics of these subjects are

summarized in Table 1. Informed consent was obtained

from all participants under protocols approved by the local

ethical committee.

MRI acquisition and analysis

The present study was performed using a 3.0 T MRI (GE,

Milwaukee, WI, USA) with a standard head coil. DWI

were acquired with 6 diffusion gradient directions using

echo-planar single-shot spin-echo sequence. Scan param-

eters were as follows: b value, 1000 s/mm2; FOV,

240 mm; matrix, 128 9 128; TR, 9500 ms; TE, 82.3 ms;

flip angle 90�; slice thickness, 4.0 mm. In-plane resolution

of reconstructed images were 1.9 9 1.9 mm, respectively.

Images were corrected for Eddy current-induced dis-

tortions and head motion using the Eddy current correction

routine in FSL. Non-brain tissue was removed from the

images using the brain extraction tool in the FMRIB soft-

ware library. After brain extraction, diffusion tensor com-

ponents for each brain pixel were calculated, and FA maps

were determined for each subject using the DTIFIT routine

in FSL to fit the diffusion tensor model. B0 maps were

registered to the Montreal Neurological Institute (MNI-

152: 2 9 2 9 2 mm3) template using a 12-parameter

affine transformation (FLIRT) and the resulting transfor-

mation was then applied to the FA maps to register them to

MNI space. These images were smoothed using

8 9 8 9 8 mm3 kernel [8]. SPM5 (http://www.fil.ion.ucl.

ac.uk/spm/software/spm5/) were used to identify the

regions showing the significant correlation. The regions

were considered significant for both a voxel-level threshold

of p\ 0.001 and cluster-level threshold of p\ 0.05. The

sphere-shaped volumes of interest (VOI) were generated

with a radius of 5 mm and center at the highest t value

voxel in each region detected by SPM analysis using WFU

Pickatlas [9]. Finally, Spearman rank correlation coeffi-

cient was assessed between FA value in each VOI and

ALSFRS-R or disease duration with IBM SPSS Statistics

version 21(IBM Corp., Armonk, NY, USA).

Results

Significant negative correlationwas found betweenFAvalue

and disease duration in left and middle supplementary motor

area (SMA; Table 2; Fig. 1a, b). There were no regions

which showed significant positive correlation (Table 2). In

contrast, significant positive correlation was found between

FA value and ALSFRS-R in right cerebellum (IX, X), right

posterior medulla, left anterior medulla including pyramid

and left middle cerebellar peduncle (Table 3). No regions

were found which showed significant negative correlation

between FA value and ALSFRS-R (Table 3).

Table 1 Clinical characteristics of ALS patients

Diagnosis Onset form Sex (M/F) Age (year) Disease duration (month) ALSFRS-R

2 definite 2 limb 1/1 61 ± 4.5 20 ± 1.5 40.5 ± 1.5

2 probable 1 bul, 1 limb 1/1 70 ± 2.0 32 ± 18.5 40.5 ± 1.5

4 probable (lab) 1 bul, 1 trunk, 2 limb 4/0 60 ± 3.4 8 ± 2.1 39 ± 2.1

6 possible 3 bul, 2 limb, 1 PLS 3/3 65 ± 5.5 15 ± 6.0 43 ± 1.4

Mean ± standard error

ALS amyotrophic lateral sclerosis, ALSFRS-R amyotrophic lateral sclerosis functional rating scale revised, bul bulbar palsy, F female, M man

Table 2 The clusters which present correlation of FA value with disease duration

Region Coordinates Cluster size Cluster level p value Zmax

x y z

Positive correlation No regions

Negative correlation Lt. supplementary motor area -10 16 54 32 0.049 4.11

Bilateral supplementary motor area 2 -2 60 94 0.002 3.82

Lt left
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Furthermore, we examined whether FA value correlated

with disease duration and ALSFRS-R both in each VOI. In

the left SMA VOI, FA value significantly correlated with

disease duration and ALSFRS-R both (disease duration,

rho = -0.69, p = 0.006; ALSFRS-R, rho = 0.59,

p = 0.025; Fig. 1c, d).

Discussion

We identified the region in which FA value correlated

with disease duration and ALSFRS-R both in the left

SMA. The present finding suggested the possibility that

the abnormality in motor-related region could reflect

Fig. 1 Fractional anisotropy (FA) value in volume of interest (VOI)

in the supplementary motor area (SMA) correlated with disease

severity and duration. a, b The VOI in the left SMA in the axial

(a) and sagittal view (b). The sphere-shaped VOI was identified as the

region where FA value correlated with a revised amyotrophic lateral

sclerosis functional rating scale (ALSFRS-R) and disease duration

both. c, d Rank correlations between FA value and ALSFRS-R (c), or
disease duration (d) in the left SMA VOI. Significant correlations

were observed, respectively (rho = -0.59, p = 0.025; rho = -0.69,

p = 0.006). The vertical axis depicted FA value, and the horizontal

axis depicted ALSFRS-R (c) or disease duration (d)

Table 3 The clusters which present correlation of FA value with ALSFRS-R

Region Coordinates Cluster size Cluster level p value Zmax

x y z

Positive correlation Rt. cerebellum (IX, X) 4 -44 -40 225 \0.001 4.14

Rt. posterior medulla

Lt. anterior medulla including pyramid -2 -32 -54 198 \0.001 4.09

Lt. middle cerebellar peduncle -22 -50 -42 87 0.003 3.80

Negative correlation No regions

ALSFRS-R amyotrophic lateral sclerosis functional rating scale revised, lt left, rt right
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disease progression. Several lines of evidence have

supported the notion that the abnormality in the SMA is

involved in ALS pathology. ALS patients showed

decreased activity in the SMA in the sensorimotor net-

work identified in resting state functional MRI compared

to healthy volunteers [10]. Furthermore, cortical thinning

was reported in the right SMA in ALS [11]. These

results were not surprising because the key protein of

ALS, TDP-43, was common to frontotemporal lobar

degeneration (FTLD)-TDP and ALS was considered as a

same spectrum disorders of FTLD-TDP [12]. It is pos-

sible that the potential abnormality of frontal lobe was

detected in our study.

Keil and colleagues reported that FA value in the

right SMA correlated not with ALSFRS-R but with

disease duration [13]. The other study found significant

correlation between FA value and ALSFRS in the pre-

frontal cortex including SMA [6]. Their results, based on

only a voxel-level analysis, supported our finding,

however, each study found separate correlation (i.e.

significant correlation between FA value and disease

duration or disease severity). In contrast, less-biased

VOI centered at the highest t value voxel allowed for

identification of the region which reflected disease

duration and severity both, even though the VOI was

derived from a voxel-based analysis. Detailed condition

was different among studies, such as ALS patients (i.e.

we included ‘‘possible’’ ‘‘laboratory-supported’’ ‘‘proba-

ble’’ and ‘‘definite’’ patients), disease duration, severity,

MRI machine and analysis software. Therefore, other

studies detected different regions which presented sig-

nificant association between FA value and disease

duration or severity [6, 7, 13, 14].

In terms of a biomarker, cerebrospinal fluid (CSF) is

another candidate [15]. As suggested previously [16], the

integration of multimodal methods including MRI and CSF

was expected to allow for development of more reliable

biomarkers, which could be adjusted for clinical informa-

tion and genetic data.

Our results raised further question on how low FA value

in the SMA was caused and contributed to pathophysiology

of ALS. Given glutamate-induced excitotoxicity [1], we

speculated that neurons in the SMA were damaged by

excitatory projection, and reduced integration of fibers

originated from SMA. Further studies are required to

determine whether FA value is related to glutamate con-

centration in the SMA.
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