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Abstract Synchronization between prefrontal (executive)

and posterior (association) cortices seems a plausible

mechanism for temporary maintenance of information.

However, while EEG studies reported involvement of

(pre)frontal midline structures in synchronization, func-

tional neuroimaging elucidated the importance of lateral

prefrontal cortex (PFC) in working memory (WM). Verbal

and spatial WM rely on lateralized subsystems (phono-

logical loop and visuospatial sketchpad, respectively), yet

only trends for hemispheric dissociation of networks sup-

porting rehearsal of verbal and spatial information were

identified by EEG. As oscillatory activity is WM load

dependent, we applied an individually tailored submaximal

load for verbal (V) and spatial (S) task to enhance

synchronization in the relevant functional networks. To

map these networks, we used high-density EEG and

coherence analysis. Our results imply that the synchronized

activity is limited to highly specialized areas that corre-

spond well with the areas identified by functional neu-

roimaging. In both V and S task, two independent networks

of theta synchronization involving dorsolateral PFC of

each hemisphere were revealed. In V task, left prefrontal

and left parietal areas were functionally coupled in gamma

frequencies. Theta synchronization thus provides the nec-

essary interface for storage and manipulation of informa-

tion, while left-lateralized gamma synchronization could

represent the EEG correlate of the phonological loop.
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Blaž Koritnik

blaz.koritnik@kclj.si

Grega Repovš
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Introduction

Working memory (WM) supports keeping of information

in mind and manipulating or ‘working with’ information

[1]. WM can be fractioned into a control system—the

central executive and two lateralized slave systems for

rehearsal of modality-specific information (phonological

loop for verbal and visuospatial sketchpad for spatial

information, respectively) [2].

To capture a number of phenomena unexplained by the

original model, Baddeley has later introduced the episodic

buffer, a system capable of binding information from the

subsidiary systems into unitary representation [3, 4]. As

synchronized oscillations are fundamental mechanism for

establishment of temporal relationship between neural

responses [7], the binding and integration of information

are best addressed by electrophysiological studies.

When the information in the environment is no longer

available and not yet stored in the long-term memory, the

process of holding information online requires syn-

chronously activated neural networks [5]. A measure of

continuous synchronization in a given frequency band

between the two signals is the electroencephalographic

(EEG) coherence [8–11]. High EEG coherence can be

interpreted as functional coupling between two anatomi-

cally separate regions, as it requires a constant phase

relationship between two signals [11]. Functional connec-

tivity can be assessed by comparing regional differences in

neural activation and this can be done in several frequency

bands by spectral decomposition of the EEG signal [12].

The main challenge of mapping functional networks by

scalp EEG lies in its low spatial resolution. Many elec-

trophysiological WM studies have been using scalp EEG

with International 10–20 System [5, 13, 14]. Synchro-

nization of large cortical areas from human observations

may simply be due to the low spatial resolution of scalp

EEG, as animal studies have shown oscillations involving

discrete active locations surrounded by areas of inhibition

[15].

There are also notable inconsistencies regarding the

evidence from functional neuroimaging and EEG studies.

Functional neuroimaging data are supporting the role of

dorsolateral prefrontal cortex (DLPFC) in executive func-

tions [16–19]. Conversely, many EEG studies reported the

involvement of frontal midline structures in synchroniza-

tion with posterior [14] and/or adjacent cortical areas [20,

21] suggesting their executive role in integrating informa-

tion between the subsystems.

Synchronization in theta (4–7 Hz) frequencies during

WM maintenance was first described by Sarthein et al. [5].

In the same study involving six participants, theta syn-

chronization was lateralized to the left hemisphere in

verbal task and to the right hemisphere in spatial task, but

these findings did not reach statistical significance [5].

Our aims were to reproduce and clarify some results

(spatial patterns, lateralization trends) obtained by previous

studies [5, 14, 20, 21] by employing similar methodology,

but increasing the number of participants, individually

tailoring the submaximal WM load (controlling for indi-

vidual differences in task difficulty) and notably increasing

spatial resolution by the use of high-density EEG. To map

the functional networks, we used high-density EEG and

coherence analysis.

Materials and methods

Subjects

Ten healthy (five men) right-handed (one ambidextrous),

participants (mean age: 34 years, range 25–41 years) were

recruited. Handedness was assessed by Edinburgh Hand-

edness Inventory. All subjects gave their informed written

consent. The study was approved by the National Medical

Ethics Committee of the Republic of Slovenia.

The Sternberg-like tasks

In the Sternberg task [22], the subject is asked to memorize

a list of items, for example, digits. After a certain time

period, the digit is presented to the subject, who has to

judge and indicate whether the stimulus did or did not

belong to the memorized list [22].

In our study, the subjects performed two Sternberg-like

tasks:

(1) V (verbal): The subjects were asked to keep in mind

a string of consonants.

(2) S (spatial): The subjects were asked to keep in mind

an order of positions.

In both tasks, the subjects had to maintain the order of

stimuli and report whether the probe was present in the

indicated position within the set. They responded to the

appearance of the probe by pressing left mouse button for

YES and right button for NO.

The Sternberg-like tasks also permit the manipulation of

WM load, which was tailored to each subject. After getting

familiar with the task, the subjects were asked to subjec-

tively determine the number of items they could keep in

mind with maximal effort. They were then given a sample

task, consisting of 10 trials. If the correct response rate was

below 100 %, we repeated the sample task with the same

number of items. If the correct response rate was 100 %,

the sample task was repeated with an additional item.
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If necessary, we further adjusted the number of items (up to

two times). The correct response rate of all averaged

sample trials (up to three) between 85 and 95 % was

accepted as submaximal load. The testing was performed

separately for V and S tasks.

Importantly, in Sternberg task the individual WM

processes (encoding, maintenance, retrieval and rest) are

clearly separated in time. We calculated task-related

coherences (TRCoH) by subtracting rest period coher-

ences from active maintenance coherences. In that way,

changes in coherence can be attributed to a specific

cognitive process—or active maintenance, while other

changes unrelated to the task are cancelled out.

Increasing WM load would increase the difference

between maintenance and rest, enhancing the functional

networks involved in active maintenance by exerting its

effect on TRCoH.

The tasks were organized in blocks of 20 trials and then

semi-randomized. There were four blocks per task and the

instructions appeared at the beginning of each block.

The monitoring of the behavioural testing was pro-

grammed in E-prime 2.0. Each event (item presentations,

appearance of a probe, motor response) was given a

specific marker that appeared in real time simultaneously

with the EEG signal. The motor responses were marked as

either correct or incorrect.

The tasks were programmed in E-prime 2.0 and pro-

jected on PC screen. At the end of the task, the subjects

were asked to complete a strategy questionnaire.

EEG recordings

128-channel EEG with Ag/AgCl- electrodes in 5-5 Inter-

national System (actiCAP) was recorded by Brain Products

Recorder (BrainAmp amplifiers) at sampling rate 500 Hz.

A reference-free montage was used. The resistance of

individual electrodes was kept below 5 kX. Built-in filters

were used during recording (low cut-off frequency at

0.016 Hz and high cut-off frequency at 250 Hz).

EEG analysis

Channels were visually inspected and any channels with

inappropriate resistance and/or artefacts were excluded

from further analysis (approximately 1–6/128 channels per

subject) to prevent contamination of other channels

through average reference computation. Next, the EEG

signal was re-referenced to the average reference.

EEG signal was divided in 4 s epochs of maintenance

periods to be compared with 4 s epochs of rest periods.

These periods are suitable for analysis in frequency

domain, as they are stationary and long enough to enable

the necessary frequency resolution.

We analysed the following frequency bands: theta

(4–8 Hz), alpha (8–12 Hz), beta 1 (12–20 Hz), beta 2

(20–30 Hz) and gamma (30–60 Hz). Here, we emphasize

the results in theta and gamma frequencies, which both

play a pivotal role in working memory.

Task-related power spectrum analysis

Power spectrum of the signal was computed with Welch

periodogram method using 256 samples wide Hamming

window and 50 % of overlapping between segments and

averaged for each task of a subject. The EEG signals of

each subject were normalized with their standard devia-

tions in order to minimize the inter-subject baseline dif-

ferences for grand average computation.

Task-related coherence analysis

Coherence was calculated with mscohere function in Matlab,

using 256 samples long signal sections windowed with

Hamming window and 50 % overlapping. Paired coherence

values for each maintenance (correct trials only) and the

following rest period were collected in two vectors

CoHmaintenance and CoHrest. Each vector consisted of 566

coherence values per electrode pair, representing the sum of

all correct trials of all subjects. TRCoHmaintenance-rest was

calculated as a difference ofTRCoHmaintenance andTRCoHrest.

Statistical analysis of task-related coherence Non-para-

metric Wilcoxon rank-sum test was used to identify sig-

nificant differences in median values of CoHmaintenance and

CoHrest. The p values were computed for all electrode

pairs’ coherences resulting in set of p values for each task

and frequency band. The p value of the first percentile of

the p values distribution became the significance level a.
Such estimation of a from the data is an alternative to

Bonferroni correction for multiple comparisons; however,

it takes into account dataset properties [23]. The method

was first applied to individual subjects; however, when

inter-subject similarity was demonstrated, the data of all

subjects were combined and analysed as one dataset.

Inter-subject similarity The similarity of TRCoH

maintenance-rest patterns between subjects was estimated

separately for each task and frequency band using methods

from graph theory [33]. The networks were compared

according to node and connection similarity. For connec-

tion similarity, a binary matrix representing significant

electrode pairs’ coherences with ones and non-significant

coherences with zeros was constructed for each subject,

task and frequency band for positive values of

TRCoHmaintenance-rest. Significant and non-significant elec-

trode pairs’ coherences were estimated as described in the
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statistical analysis of task-related coherence. The pairwise

Hamming distances [33] between the binary matrices were

calculated. Random significant coherence patterns were

also generated, and the pairwise Hamming distances were

computed between the random and the real matrices. Dis-

tances between inter-subject TRCoH maintenance-rest patterns

and distances between TRCoH maintenance-rest and random

patterns for each task and frequency band were then

compared by using Wilcoxon test (the null hypothesis:

equal median distances of the two distance groups; alter-

native hypothesis: the inter-subject distances are lower than

subject-to-random patterns distances). The significance

under a = 0.05 would suggest higher than random inter-

subject similarity. For node similarity, we constructed and

compared node positions of significant electrode pairs’

connections. The procedure of defining significant and non-

significant electrode pairs’ coherences was the same as for

the connections similarity assessment; however, the con-

nections were represented by their unique nodes. The nodes

that were present in at least one significant connection were

represented by ones and the remaining nodes were repre-

sented by zeros. The rest of the procedure was the same as

for connections similarity assessment.

All the numerical analyses were performed in Matlab

R2009b, The Mathworks inc. Natick, Massachusetts,

U.S.A.

Results

Behavioural

The submaximal load for V and S tasks among subjects

was ranging from 5 to 7 items. The correct response rate of

subjects was 86 ± 4 % for V task and 83 ± 5 % for S task.

The strategy used for V task was uniform for all sub-

jects—subvocal rehearsal of the presented items. For S

task, the most common strategy among subjects was

drawing an imaginary line between the presented positions.

Electrophysiological

Inter-subject similarity

For all tasks, the inter-subject Hamming distances for

networks of connections were statistically significantly

smaller than the subject-to-random Hamming distances

(p values below 5.5 9 10-6) with the median distance

values from 0.0055 to 0.011 for inter-subject distance and

0.013 to 0.016 for subject-to-random difference depending

on task and frequency band. The median Hamming dis-

tances of the inter-subject node patterns vs. subject-to-

random patterns were comparable for all tasks and

frequency bands (0.4 vs. 0.5, respectively) with p values

below 0.006. The analysis shows some real inter-subject

similarity; however, comparison of networks with variable

node and connection numbers can be biased, regardless of

the method [33]. The analysis results and visual inspection

of individual network patterns showed the level of simi-

larity which allowed pooling of all input data into a single

block to be analysed together.

Theta (4–7 Hz) synchronization, desynchronization

and power spectrum

The derivations involved in theta synchronization for V

task (TRCoH with p values B4.1 9 10 -18) and S task

(TRCoH with p values B3.1 9 10-23) are represented in

Figs. 1a and 2a, respectively. TRCoH values were

0.040–0.136 for V and 0.051–0.156 for S task,

respectively.

For V and S tasks, there was also a similar pattern of

decrease of theta TRCoH between interhemispheric pre-

frontal pairs of electrodes (Figs. 1b, 2b), again with similar

absolute coherence values (0.005–0.117 for V and

0.007–0.131 for S task, respectively).

The greatest changes in theta power spectrum for V task

were observed between electrodes FCC1h, FZ and FCC2h,

corresponding to frontal midline regions (Fig. 1c), and

between electrodes CPP2h and CPZ for S task, corre-

sponding to centroparietal regions (Fig. 2c).

Gamma (30–60 Hz) synchronization

Synchronization in gamma frequency range in V task

(p\ 4.6 9 e-7) was found among left lateral frontal

derivations, left central derivations and left parietal

derivations. In S task (p\ 6.1 9 e-6), the task-related

gamma synchronization was occurring bilaterally over

centroparietal regions with TRCoH = 0.013–0.045. The

desynchronization in gamma band was wide-spread,

including most derivations.

In the gamma power spectrum, there was an increase in

gamma power in the bilateral fronto-temporoparietal

regions and a decrease in the midline region.

Discussion

The spatial and process-specific characteristics

of theta synchronization

The spatial pattern of theta synchronization

In both V and S tasks (Figs. 1a, 2a), there was a clear,

almost identical spatial pattern of theta synchronization.
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The electrodes F3 and F4 in 10–20 International System in

most subjects correspond to a part of DLPFC on medial

frontal gyrus, while the anatomical centre of DLPFC is

more anterior and inferior [23], so there is a good reason to

believe that most connections occur within DLPFC and

between ventral LPFC and DLPFC.

When reporting high coherence among anatomically

adjacent areas, the biggest methodological concern would

be neuronal activity spreading from truly engaged regions

to adjacent regions by means of volume conduction [24].

However, as power increases and their gradients were

independently positioned with respect to the areas of

increased synchronization (Figs. 1a, 1c; 2a, 2c), the

increases in coherence that are due to volume conduction

can reliably be ruled out. Also, the use of average reference

could inflate coherence, yet it would not exert any effect on

TRCoH [9].

Unexpectedly, we demonstrated a decrease in theta

synchronization between prefrontal midline electrodes.

This is finding is in disagreement with other scalp EEG
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Fig. 1 a, b, c The spatial patterns of synchronization, desynchro-

nization and power spectrum for V task in theta (4–7 Hz) frequency

band. Grand average (GA) of all subjects. Theta synchronization

among derivations corresponding to DLPFC and adjacent cortex (a),

theta desynchronization between prefrontal midline regions (b) and a

frontal midline increase in theta power (c)
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studies [14, 15, 20, 21], but it resonates well with fMRI

connectivity studies, as the medial prefrontal cortex was

shown to be anticorrelated with WM task [27]. While task-

related changes undoubtedly occur in frontal midline

structures, their specific role in WM processes less clear.

For example, some data from functional neuroimaging

suggest that activation of these regions in fact reflects a

state of preparedness for selecting motor response based on

the information held online [34]. Gevins et al. concluded

that ACC is involved in complex tasks that require constant

attention [25]. Functional neuroimaging study has found a

double dissociation—a greater engagement of ACC as a

function of task difficulty with no change in DLPFC acti-

vation and greater engagement of DLPFC with increasing

WM demand with no change in ACC activation [35].

Although in the present study we found marked theta

power changes for V task in frontal midline regions, as

demonstrated previously [25, 26], coherence analysis
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Fig. 2 a, b, c The spatial patterns of synchronization, desynchro-

nization and power spectrum for S task in theta (4–7 Hz) frequency

band. Grand average (GA) of all subjects. Theta synchronization

among derivations corresponding to DLPFC and adjacent cortex (a),

theta desynchronization between prefrontal midline regions (b) and a

centroparietal midline increase in theta power (c). Note the similar,

almost identical spatial patterns in V task
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provided no evidence that prefrontal midline structures

take part in theta synchronization—and thus in binding or

integration of the information between the WM

subsystems.

Synchronization occurs between the executive cortex

and areas involved in temporary storage of information as

reported previously [5]. Specifically, our spatial pattern of

synchronization suggests the functional coupling between

DLPFC and ventral LPFC. The dorsal subdivision is more

active with higher class operations [28, 29] or when the

task demands greater executive control. There are specu-

lations that dorsal and ventral subdivisions are hierarchi-

cally organized, with information passing from ventral to

dorsal LPFC, where it is additionally processed [17]. Our

data imply that integration of information between ventral

LPFC and DLPFC takes place in the form of theta

synchronization.

The process-specific characteristics of theta

synchronization

We found no evidence of task-related lateralization in theta

synchronization, although the strategies described by sub-

jects were highly congruent with concepts of phonological

loop and visuospatial sketchpad. These findings imply that

theta synchronization does not play part in the specific

rehearsal mechanism, but is instead involved in processes

that are common to both spatial and phonological rehear-

sal—the executive control, consistent with the literature

[30–32].

What is the specific function of this executive control

and how does theta synchronization reflect the functional

cooperation between the WM subsystems?

One plausible explanation would be that theta syn-

chronization supports the integration of information

between central executive and its modality-independent

storage, the episodic buffer. So far, the biological imple-

mentation of the episodic buffer has remained obscured.

Very interestingly, Baddeley has hypothesized the syn-

chronous nervous firing as a mechanism of its action and

frontal lobes as its anatomical location [3].

The spatial and process-specific characteristic

of gamma synchronization

As reported previously [6], task-related increases in gamma

power were found over the extensive areas of frontal,

parietal and temporal cortices. In the quoted study [6], only

left hemisphere electrodes were placed. Our results show

that gamma power is increased bilaterally. Task-related

gamma synchronization in V task was, however, left lat-

eralized. Only few derivations reached the statistical sig-

nificance of the first percentile of distribution, the threshold

used for theta synchronization. When considering the third

percentile of distribution (p\ 4.6 9 e-7), the functional

network was revealed among the electrodes overlying left

frontal cortex, left frontocentral region and left parietal

cortex. As opposed to these findings, in the S task the

gamma synchronization occurred bilaterally over cen-

troparietal regions.

A closer look at the spatial pattern of gamma synchro-

nization reveals two clusters of short-range connections.

One of the two clusters is involving the electrodes over-

lying left DLPFC and Broca’s area, while the other cluster

with especially rich connections is centred on the electrode

P3, which in most individuals overlies the left inferior

parietal region [23]. These regions correspond well with

the areas involved in subvocal rehearsal and phonological

storage identified by fMRI studies [36, 37]. Both its spatial

and process-specific characteristics thus suggest that the

functional network in gamma frequency band could rep-

resent the electrophysiological correlate of the phonologi-

cal loop by functionally coupling the areas engaged in

phonological rehearsal and storage.

The interaction between theta and gamma

frequencies

Although theta and gamma synchronization seem to cor-

respond to different WM processes, in V task they also

involve common cortical areas. The topology of functional

networks in theta and gamma frequencies, however, exhi-

bits distinct properties. While theta synchronization enga-

ges longer, mainly anterior to posterior connections, the

functional network in gamma frequency band exhibits local

clustering and short, mainly transverse paths among the

nodes within each cluster. These patterns are consistent

with the view that the lower frequencies preferably estab-

lish synchronization over longer distances, while higher

frequencies are important for local precision of functional

networks [7].

Also, it has been proposed that theta rhythm could

represent a neural code in which gamma oscillations are

represented in the different phase of the theta cycle,

enabling parallel memory processes in the same neural

network [38]. Moreover, a mathematical model was con-

structed that confirmed that the oscillatory buffer model in

theta and gamma frequencies can account for the variety of

data on the Sternberg task [38].

Conclusions

The high-density EEG has provided a closer look on

the landscape of synchronized regions surrounded by

areas of inhibition. These detailed spatial patterns of
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synchronization are a contribution of our high-density EEG

study and imply that the synchronized activity is limited to

highly specialized areas. In theta synchronization, two

coherent networks involving DLPFC and adjacent cortex,

specifically engaged in active maintenance of modality-

free information were elucidated. In gamma synchroniza-

tion, another functional network was revealed, coupling the

areas involved in phonological rehearsal and storage. Thus,

an important step has been made towards the electro-

physiological correlates of the episodic buffer and the

phonological loop.
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