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Abstract Brainstem degeneration in Parkinson’s disease

(PD) may explain the occurrence of many non-motor

symptoms in this condition. Purposes of the present work

were to investigate brainstem function in PD through a

battery of vestibular-evoked myogenic potentials (VEMP)

allowing a comprehensive brainstem exploration and to

correlate VEMP findings with symptoms related to brain-

stem involvement. Cervical (cVEMP), masseter (mVEMP)

and ocular (oVEMP) VEMPs were investigated in 24 PD

patients and compared with those recorded in 24 age-

matched controls. Presence of symptoms ascribable to

brainstem dysfunction, such as daytime sleepiness, REM

sleep behavior disorder and depression, was investigated

through Epworth Sleepiness Scale, Parkinson’s Disease

Sleep Scale, REM Sleep Disorder Screening Questionnaire

(RBD-SQ) and Geriatric Depression Scale. Postural insta-

bility was additionally assessed through mini-BESTest.

The frequency of alteration of VEMPs in patients was

83.3 % when considering the whole set and 41.7 % for

cVEMP, 66.7 % for mVEMP and 45.8 % for oVEMP. This

was significantly different from controls, with absence

being the prevalent alteration in PD. A significant inverse

correlation between the number of altered VEMPs and

mini-BESTest and a direct correlation with RBD-SQ were

found. The VEMP battery under study allowed the identi-

fication of brainstem dysfunctions in PD patients, which

correlated with clinical tests suggestive of postural and

REM sleep disorders. VEMPs might represent a valuable

tool of brainstem assessment in PD.

Keywords Parkinson’s disease � Brainstem � Vestibular-

evoked myogenic potentials � REM sleep behavior

disorder � Postural instability

Introduction

Brainstem involvement represents a key passage in the

pathological spreading of Parkinson’s disease [1]: it occurs

early, often precedes degeneration of substantia nigra

neurons and is associated with the presence of non-motor

symptoms such as sleep disorders and depression [2].

These features are likely the result of both direct brainstem

lesions and of its misconnections with higher structures. A

mismodulation of physiological stimuli processing, which

may involve brainstem–subcortical connections, has been

suggested by neurophysiological studies and, in turn, may

reflect specific symptoms of the disease [3]. Among

neurophysiological methods, vestibular-evoked myogenic

potentials (VEMPs) are an expression of central oligosy-

naptic volleys which pathways lay at different levels of the

brainstem. So far, three typologies of VEMPs have been

characterized: the cervical VEMP (cVEMP) corresponds to

the vestibulo-collic reflex and is mediated by an ipsilateral

disynaptic pathway involving the medial vestibulospinal

tract and the XI cranial nerve nucleus [4]. The masseter

VEMP (mVEMP) corresponds to the vestibulo-masseteric

reflex [5–7] and is mediated by a disynaptic crossed and

bilateral connection between the vestibular complex and

the trigeminal nerve nuclei [8–10]. The ocular VEMP

(oVEMP) represents the vestibulo-ocular reflex and is
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mediated by a disynaptic crossed pathway linking the

Vestibular Nuclei (VN) to the III cranial nerve nucleus, via

the medial longitudinal fasciculus [11]. These VEMPs have

been successfully used already, singularly or in combina-

tion, in neurological disorders involving the brainstem

[12]. In PD, cVEMPs only have been investigated with the

main focus on relationships of central vestibular excit-

ability with clinical signs of postural instability [13] or

therapeutic intervention [14].

We hypothesized that the application of a battery of

VEMPs (cVEMP, mVEMP and oVEMP) may be able to

indirectly assess brainstem function along its whole exten-

sion. Accordingly, here we (a) assessed cVEMPs, mVEMPs

and oVEMPs in a cohort of patients with established PD;

(b) compared frequency of VEMP alterations between PD

and matched controls; (c) correlated VEMP findings with

clinical features of PD and symptoms ascribable to brain-

stem involvement. We conclude that this VEMP battery is a

quick and easy way of investigation of brainstem in PD and

correlates with simple tests of balance and sleep.

Materials and methods

Participants

Twenty-four patients with established idiopathic PD (14

males and 10 females; aged 66.2 ± 6.8 years; disease

duration 6.1 ± 3.4 years) and 24 healthy controls (15 males

and 9 females aged 61.9 ± 10.3 years) were enrolled. All

patients had no past or present history of vestibular disorders,

hearing loss, muscular and osteoarticular cervical conditions.

Participants were evaluated in the morning, patients in ON

phase, to minimize potential EMG artifacts due to the lack of

dopaminergic control, on motor symptoms. The study pro-

tocol was approved by the local ethical committee (ID prot.

N. 987, 19/09/2011) and all subjects gave their written

informed consent prior to inclusion in the study.

Clinical evaluation

Patients underwent thorough clinical examination with the

administration of the Unified Parkinson Disease Rating

Scale (UPDRS) and Hoehn and Yahr scale (H&Y).

Symptoms ascribable to brainstem dysfunction were

assessed through a battery of the following self-adminis-

tered tests: Epworth Sleepiness Scale (ESS), for detection

of excessive daily somnolence in PD [15]; Parkinson’s

Disease Sleep Scale (PDSS) that evaluates a wide range of

nocturnal symptoms affecting the general quality of sleep

in PD [16]; REM Sleep Behavior Disorder Screening

Questionnaire (RBD-SQ), which has high sensitivity and

specificity in PD [17]; Geriatric Depression Scale (GDS),

and finally, the Mini Balance Evaluation Systems Test

(Mini-BESTest), for detection of balance disorders and

postural instability [18].

VEMP assessment

All subjects underwent bilateral recording of cVEMP,

mVEMP and oVEMP from the active sternocleidomastoid

(SCM), masseter (MM) and inferior oblique (IOM) muscles,

respectively. EMG responses were recorded through surface

electrodes positioned on the target muscles in a belly-to-

tendon montage, as detailed elsewhere [4, 6, 11]. Recordings

were performed in a quiet room, with participants com-

fortably sitting on a chair with supports for neck, head and

arms. Subjects were instructed to contract target muscles

steadily at 30–50 % of their maximal voluntary contraction,

with the aid of a visual feedback. Rectified and unrectified

EMG activity was recorded (CED 1902 quadsystem

amplifier), amplified (95000), filtered (5–5,000 Hz) and

sampled (10 kHz) within a temporal window of 200 ms

(50 ms pre-stimulus), using an analog/digital converter

(CED 1401power) with Signal 5.0 software on a PC. Ves-

tibular stimulation was induced via click stimuli (300–500,

0.1 ms, 5 Hz, 140 dB SPL) produced by an attenuator (CED

3505 HP) driven by software (CED Signal 5.0 script for

VEMP) and released either to the right or left ear through

calibrated stereophonic earphones (TDH-49P earphones,

Telephonics). For each VEMP the following parameters

were measured: (a) onset and peak latency of the first wave

(i.e., p13 for the cVEMP, p11 for the mVEMP and n10 for

the oVEMP) and peak latency of the second wave (i.e., n23

for the cVEMP and p15 for the oVEMP), on averaged un-

rectified EMG; the n15 wave of the mVEMP was not

assessed as it is undetectable in normal hearing people [7];

(b) interside peak latency difference between the first waves;

(c) absolute amplitudes either for a single peak (p11) or

peak-to-peak (p13/n23 and n10/p15); (d) corrected ampli-

tude (background muscle activation/absolute amplitude),

which was normalized, for comparisons with controls [19];

(e) amplitude asymmetry ratio [20].

Criteria for abnormality were set as follows: (a) peak

latencies above 2.5 SD of control values; (b) corrected

amplitudes below 2.5 SD of controls; (c) absence of the

response. Severity of abnormalities was scored increas-

ingly according to detection of no alteration, delay,

amplitude reduction, or absence of the response. A mean

score ± SD was then calculated for each single VEMP as

well as for the whole VEMP battery (total VEMP score).

Statistical analysis

Statistical analysis was performed using SPSS 16.0 for

Windows (Chicago, IL, USA). Results were expressed as
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mean ± SD or frequencies. Pearson’s v2 test and Mann–

Whitney U test were used for comparisons between groups

and Bonferroni’s correction for multiple comparisons

applied, where appropriate. Correlations between clinical

and VEMP findings were performed calculating the

Spearman’s correlation coefficient. Statistical significance

was set at p\ 0.05.

Results

Clinical findings

Twelve out of 24 patients (50 %) had tremor-dominant

disease, 10 (41.6 %), rigid-dominant form and 2 (8.4 %)

exhibited a postural-instability gait-difficulty phenotype.

Patients had consistent response to dopaminergic treatment

and no signs of fluctuations, dyskinesias, wearing-off or

other symptoms attributable to prolonged use of L-DOPA.

As summarized in Table 1, mean H&Y was 2.4 ± 0.7, with

9 patients above H&Y = 2.5. None of the patients had

cognitive impairment or dementia assessed through MMSE.

Nineteen out of 24 patients (79.2 %) had at least one score

susceptible of a sleep disturbance. Among these, 12 (50 %)

marked scores above the cut-off for ESS, 7 (29.2 %) above

the cut-off for RBD and 4 (16.7 %) had low mean PDSS

scores. Moreover, 9 patients (37.5 %) had high scores on the

GDS, ascribable to some degree of depression and 9 patients

(37.5 %) had low scores on Mini-BESTest, indicating the

presence of postural instability. Patients and controls did not

differ significantly by age and gender.

VEMP alterations

Figure 1 shows the VEMP battery recorded in a represen-

tative control subject and in a PD patient. Averaged raw

parameters are shown in Table 2. After Bonferroni correc-

tion for multiple comparisons, no difference in latencies was

detected for all VEMPs between patients and controls. In

patients, amplitudes were significantly smaller for mVEMPs

(p = 0.0001), borderline for oVEMPs (p = 0.01) and nor-

mal for cVEMPs. When the whole battery was considered,

VEMPs were significantly more altered in patients than

controls (p = 0.0003). In particular, in the PD group, 4/24

(16.6 %) subjects had a normal VEMP battery, 10/24

(41.7 %) had one altered VEMP, 3/24 (12.5 %) had two

altered VEMPs and 7/24 (29.2 %) had all three VEMPs

abnormal. By comparison, frequencies in the control group

were 18/24 (75 %), 5/24 (20.8 %), 1/24 (4.2 %) and 0,

respectively. Considering each VEMP separately (Fig. 2),

the rate of abnormality in patients was 41.7, 66.7 and 45.8 %

for cVEMP, mVEMP and oVEMP, respectively, compared

with 4.2, 16.7 and 12.5 % in controls (all p\0.01). No

significant differences were seen in patients, between uni-

lateral and bilateral alteration for each VEMP: in particular,

the cVEMP was altered unilaterally in six patients (25 %)

and bilaterally in 4 patients (16.7 %); the oVEMP showed

unilateral and bilateral alterations in 5 (20.8 %) and six

patients (25 %), respectively. The mVEMP was altered

unilaterally in 6 patients (25 %) and bilaterally in 9

(37.5 %), following right stimulation, and unilaterally in 9

patients (37.5 %) and bilaterally in 5 patients (20.8 %) fol-

lowing left stimulation. Taking the whole VEMP set, pat-

terns of alterations were the following: delay 6.9 %, low

amplitude 2.8 %, absence 41.7 % with significantly higher

proportion of absent responses (p\ 0.01); in controls,

alterations were equally distributed (delay 4.2 %, low

amplitude 2.8 % and absence 4.2 %). Patterns of alterations

recorded in each single VEMP are shown in Table 3.

Patients significantly differed from controls also in the

extent of alterations: the total VEMP score in patients was

8.13 ± 6.28 versus 1.79 ± 3.99 in controls (p = 0.0001).

Mean scores for each single VEMP are reported in Table 3.

Clinical–neurophysiological correlations

The number of altered VEMPs correlated inversely with Mini-

BESTest scores (rho = -0.458; p = 0.024) and directly with

RBD-SQ scores (rho = 0.633; p = 0.001) (Fig. 3). Total

VEMP scores also significantly correlated with RBD-SQ

(rho = 0.665; p = 0.0004). This was still significant for

cVEMP (rho = 0.694; p = 0.0001) and oVEMP

(rho = 0.427 and p = 0.04) but not for mVEMP. No signif-

icant correlations were found with age, disease duration,

LEDD, H&Y stage, UPDRS, GDS and PDSS scores.

Table 1 Demographic and clinical features of patients with Parkin-

son’s disease

Characteristics Mean ± SD [IC 95 %]

Gender (M/F) 14/10

Age (years) 66.2 ± 6.8 [63.2–69.0]

Duration of disease (years) 6.1 ± 3.4 [4.7–7.5]

LEDD (mg) 490.8 ± 210.1 [400–581.7]

Hoehn and Yahr 2.4 ± 0.7 [2.2–2.7]

Total UPDRS 32 ± 12.7 [26.5–37.5]

UPDRS III 13.6 ± 6.6 [11–16.7]

Mini-BESTest 21.2 ± 4.6 [19.2–23.2]

ESS 8.6 ± 4.6 [6.3–10.3]

PDSS 103.6 ± 23.1 [96–115.5]

GDS 8.4 ± 4.8 [6.3–10.4]

RBD-SQ 4.3 ± 2 [3.5–5.8]

LEDD Levodopa equivalent daily dose, UPDRS Unified Parkinson’s

disease rating scale, Mini-BESTest Mini balance evaluation systems

test, ESS Epworth sleepiness scale, PDSS Parkinson’s disease sleep

scale, GDS Geriatric depression scale, RBD-SQ REM sleep behavior

disorder screening questionnaire
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Discussion

This study demonstrated that a VEMP battery, composed

of cVEMP, mVEMP and oVEMP, allowed distinguishing

significantly between patients with established PD and

healthy controls. The frequency of cVEMP abnormalities

in PD is in line with that found elsewhere [13]. By contrast,

as far as we know, no studies exploring mVEMP and

oVEMP in PD exist; therefore, no comparison is possible.

Considering that in PD, cVEMP amplitude is ameliorated

by L-DOPA administration [14] and that our patients were

examined in ON phase, a potential higher rate of VEMP

alterations would have missed in our study. Few of our

controls also exhibited VEMP alterations, which can be
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Fig. 1 Cervical (cVEMP), masseter (mVEMP) and ocular (oVEMP)

VEMPs recorded from sternocleidomastoid (SCM), masseter (MM)

and inferior oblique (IOM) muscles in control and PD subjects. In the

control subject, cVEMP appears as an ipsilateral p13/n23 wave,

mVEMP appears as a bilateral and symmetric p11 wave followed by

an n21 wave and oVEMP as a contralateral n10/p15 wave. In the

patient, oVEMPs and mVEMPs are absent and amplitude of cVEMP

is reduced. Arrows indicate the time of stimulus delivery

Table 2 VEMP values

(mean ± SD) in controls and in

patients with Parkinson’s

disease

For each VEMP, data obtained

from left and right stimulations

have been put together and

calculated as one. Mean ± SD

values were obtained from

patients and controls with

preserved VEMPs (see Table 3)
a Mann–Whitney U test

VEMP VEMPs parameters Controls PD patients p valuea

oVEMP p10 onset (ms) 7.4 ± 0.82 7.55 ± 1.45 0.98

p10 peak (ms) 8.96 ± 0.95 9.21 ± 1.35 0.57

n15 peak (ms) 13.1 ± 0.93 13.7 ± 1.77 0.18

p10/15 corrected amplitude 1.31 ± 0.93 0.78 ± 0.45 0.01

p10 interside peak difference (ms) 0.69 ± 0.96 0.6 ± 0.9 0.7

Amplitude ratio asymmetry 25.9 ± 13.05 11.99 ± 13.52 0.22

mVEMP p11 onset (ms) 9.14 ± 1.23 9.5 ± 1.53 0.07

p11 peak (ms) 11.95 ± 1.02 12.49 ± 1.88 0.11

p11 corrected amplitude (lV) 0.44 ± 0.19 0.32 ± 0.17 \0.001

p11 interside peak difference (ms) 0.66 ± 0.43 0.69 ± 0.57 0.79

Amplitude ratio asymmetry 18.81 ± 16.97 20.17 ± 16.44 0.65

cVEMP p13 onset (ms) 8.97 ± 1.54 8.98 ± 1.84 0.19

p13 peak (ms) 12.67 ± 1.26 12.78 ± 1.57 0.89

N23 peak (ms) 20.4 ± 1.52 20.32 ± 2.6 0.33

p13/n23 corrected amplitude (lV) 1.05 ± 0.44 0.98 ± 0.48 0.42

p13 interside peak difference (ms) 0.99 ± 0.94 1.45 ± 1.54 0.33

Amplitude ratio asymmetry 19.34 ± 16.83 30.78 ± 18.51 0.06

998 Neurol Sci (2015) 36:995–1001

123



explained by the well-known age-related effects on

VEMPs, attributed to a progressive reduction of peripheral

receptors as well as of excitability of nuclear vestibular

neurons with age [21]. In agreement with previous studies

on cVEMPs in PD, absent responses and low amplitudes

were the prevalent patterns of alteration detected in our

patients. These findings are consistent with cVEMP

abnormalities described in Alzheimer’s disease [22]. In

neurodegenerative disorders, loss of neurons within the

brainstem as well as impairment of interneuron connec-

tions may account for the higher rate of decrease or loss of

the reflex response. A paradigm of the possible underlying

mechanism may come from studies on multiple sclerosis

patients in which delay is replaced by absence of signal,
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Fig. 2 Proportion of controls and patients with cVEMP, mVEMP and oVEMP alterations

Table 3 Distribution of single VEMP abnormalities in controls and in patients with Parkinson’s disease

VEMP OVEMP MVEMP CVEMP

Subjects Patients Controls Patients Controls Patients Controls

Total number (%) of subjects

with abnormal VEMP

11/24 (45.8 %) 3/24 (12.5 %) 16/24 (66.7 %) 4/24 (16.7 %) 10/24 (41.7 %) 1/24 (4.2 %)

Pattern of abnormalitya n = 11 n = 3 n = 16 n = 4 n = 10 n = 1

Delay only 2 (18.2 %) 3 (100 %) 1 (6.2 %) 0 2 (20 %) 0

Absence only 9 (81.8 %) 0 14 (87.5 %) 3 (75 %) 7 (70 %) 0

Low amplitude 0 0 1 (6.2 %) 1 (25 %) 1 (10 %) 1 (100 %)

VEMP scoreb (mean ± SD) 1.92 ± 2.52 0.13 ± 0.34 4.67 ± 4.11 1.58 ± 4.04 1.54 ± 2.29 0.08 ± 0.40

% values calculated on the number of patients with abnormal VEMP, taken as 100 %. VEMP score calculated for each VEMP recording in every

subject, labeling alterations as follows: normal = 0, delay = 1, low amplitude = 2, absence = 3
a Pearson’s v2

b Mann–Whitney U test

Fig. 3 Main correlations between alteration of VEMPs and RBD-SQ and Mini-BESTest scores
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when the damage leads to a block of synaptic transmission

[12].

Although vestibular nuclei are not reported as being

directly affected by the pathological process in PD [1], a

hypothesis is that their function can be altered in PD. On

one hand, the presence of D2 receptors on vestibular neu-

rons [23] as well as the influence of L-DOPA on cVEMP

amplitude [14] suggests a modulatory role for the dopa-

minergic system on vestibular function. On the other hand,

disruption of vestibular interconnections with brainstem

structures [24, 25], which are affected by the PD process

[1], may have a role in VEMP impairment in PD. Finally, a

possible role for an abnormal vestibular function at

peripheral level should also be considered. In this regard,

peripheral vestibular alterations in PD have been excluded

[26] although their presence can be associated with pos-

tural abnormalities, such as lateral trunk flexion [27]. In our

cohort, a role for peripheral vestibular alteration is not

likely as it was excluded before enrolment.

VEMPs are thought to play a role in postural stabiliza-

tion of the head during gait. In this respect, the significant

correlation found between VEMP alterations and Mini-

BESTest scores suggests that brainstem may represent a

site in which a neural misprocessing, responsible for pos-

tural instability in PD, may occur. The finding that

abnormalities of the trigemino-cervical reflex are linked to

postural alteration in PD [28] is in line with this assump-

tion. In PD, balance impairment has been linked to a failure

in non-dopaminergic high-order processing of incoming

sensory inputs for adequate motor responses and to

impairment in attention, which is another important feature

in PD [29]. However, postural instability may also reflect a

dysfunction in low-level postural sensory integration, in

which reciprocal connections between the pedunculopon-

tine nucleus (PPN), the mesencephalic reticular formation

and VN seem to play a central role [30].

A significant correlation was also found between VEMP

alterations and RBD-SQ, which is a screening test for REM

sleep behavior disorder (RBD). Cholinergic and monoam-

inergic dysregulations in PPN, locus subcoeruleus/sub-

coeruleus complex, periacqueductal gray matter and

pontine tegmentum have been accounted for RBD in PD

[31]. In particular, impairment of PPN cholinergic neurons

linked to brainstem areas, including the VN, is considered

responsible for muscle tone dysregulation in RBD [31].

With regard to the monoaminergic system, its association

with RBD in humans has been proved by a lesser radio-

logically detectable locus coeruleus/subcoeruleus complex

in PD patients with RBD [25]. We speculate that miscon-

nections in networks involving the vestibular complex, all

the aforementioned areas and, possibly, other brainstem

nuclei, may underlie the association between VEMP

alterations and high scores on the RBD-SQ.

In conclusion, our study demonstrated that VEMP

battery is impaired in patients with PD and this correlates

with postural instability and RBD. This adds insights to

the relationship between disruption of brainstem con-

nections and presence of non-motor symptoms which

occur especially at earliest stages of the disease. The

emerged results prompt further studies to test the use-

fulness of VEMPs also at earlier stages of the disease,

when recognition of mechanisms leading to the disease is

poorer but some non-motor symptoms have already

occurred.
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