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Abstract In this study, we used an automated segmen-

tation of regions of interest and co-registration to diffusion

tensor imaging (DTI) images to investigate whether

microstructural abnormalities occur in gray structures of

the frontal-subcortical circuits in patients with amyotrophic

lateral sclerosis (ALS). Twenty-four patients with probable

or definite sporadic ALS and 22 healthy controls were

enrolled in the study. Thirteen out of 24 ALS patients and

all of the control subjects underwent a detailed neuropsy-

chological evaluation. DTI was performed to measure

mean diffusivity (MD) and fractional anisotropy in the

frontal cortex, caudate, putamen, globus pallidus, thalamus,

amygdala and hippocampus. MD values of ALS patients

were significantly higher in the frontal cortex (P = 0.023),

caudate (P = 0.01), thalamus (P = 0.019), amygdala

(P = 0.012) and hippocampus (P = 0.002) compared to

controls. MD of these structures significantly correlated to

a variable degree with neurological disability and neuro-

psychological dysfunctions. The increased MD values in

several cortical and subcortical gray structures and their

correlations with neuropsychological variables substantiate

a multisystemic degeneration in ALS and suggest that

dysfunctions of frontal–subcortical circuits could play a

pivotal role in frontal impairment and behavioral symp-

toms in ALS patients.
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Introduction

Amyotrophic lateral sclerosis (ALS) is caused by a degen-

eration of lower motor and pyramidal neurons [1], leading to

loss of voluntary muscle movements. The diagnosis of ALS

is based on clinical features, findings on electrodiagnostic

testing and exclusion of other health conditions. Although

ALS has traditionally been considered a paradigm of a pure

motor neuron disorder, previous pathological studies have

described extra-motor alterations [2, 3] as a potential con-

tributor of the disease. Several studies have demonstrated

dysfunctions of the non-motor cortex (prefrontal and tem-

poral cortices) [4, 5] and a widespread neuronal degeneration

in many subcortical gray matter (GM) structures (thalamus,

subthalamic nucleus and cerebellum) [6]. Therefore, the

presence of multisystemic neurodegenerative processes in

ALS may explain why many ALS patients display, along

with the typical motor deficits, neuropsychological dys-

functions. Diffusion tensor imaging (DTI) is one of the most

sensitive methods for detecting alterations of cerebral tissues

[7]. The diffusion behavior of water molecules can be eval-

uated via indices such as mean diffusivity (MD), which

measures the magnitude of diffusion, and fractional anisot-

ropy (FA), which quantifies the preferential direction of

water diffusion along fiber tracts, reflecting the degree of

alignment of cellular structures within white matter (WM)

[8]. The majority of previous DTI studies in ALS have

focused on the assessment of WM damage, especially of the

corticospinal tract [9–11] and corpus callosum [12–14]. Few

DTI studies have investigated alterations of cortical GM
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(precentral gyrus, inferior frontal gyrus, middle temporal

gyrus, temporal pole, postcentral gyrus, angular gyrus, su-

pramarginal gyrus) [15] and subcortical GM structures

(basal ganglia, thalamus) [16] in ALS patients using DTI.

However, in vitro studies [2, 3, 17–19] on ALS patients

have demonstrated a degeneration of GM structures that

are functionally implicated in frontal-subcortical circuits

[20], such as the frontal cortex, basal ganglia, thalamus,

hippocampus and amygdala. Consequently, the in vivo

investigation of these circuits could help clarify the path-

ophysiology of ALS-related cognitive impairment that is

still unclear.

The main objective of this study is to evaluate the

involvement of cortical and subcortical GM structures of

the frontal-subcortical circuits in ALS patients using DTI.

Our primary hypothesis is that DTI measurements in these

GM structures are different in patients with ALS than in

age-matched controls; the secondary hypothesis is that DTI

alterations correlate with clinical variables and frontal

dysfunctions.

Methods

Subjects

From February 2010 to May 2012, we enrolled 26 con-

secutive patients with sporadic ALS and 23 age-matched

healthy controls. Two of the patients and one of the healthy

controls showed structural abnormalities (such as vascular

lesions) upon conventional magnetic response imaging

(MRI) and were, therefore, not included in the study. The

data of the remaining 24 patients (13 males and 11 females;

mean age 61.7 ± 11.4 years, range 42–88, median 62;

disease duration 23.0 ± 18.5 months, range 10–76, median

12; 15 with limb onset, four with bulbar onset and five with

limb and bulbar onset) and 22 age-matched healthy con-

trols (10 males and 12 females; mean age

60.1 ± 9.8 years; range 41–82; median 59.5) were ana-

lyzed. All participants gave written informed consent,

which was approved by the ethical committee of the Uni-

versity ‘‘Magna Graecia’’ of Catanzaro, Italy.

Clinical assessments

Clinical diagnosis of ALS was made by one of the authors

who was blinded to the MRI results. A detailed medical

history and clinical examination were conducted in all

patients. The patients were classified as follows: 14 as defi-

nite ALS and 10 as probable ALS according to the revised El

Escorial research diagnostic criteria [21]. We considered as

exclusion criteria the presence of multifocal motor neurop-

athy and paraneoplastic neuropathy, using nerve conduction

studies. The disease severity was evaluated using the ALS

functional rating scale-revised (ALSFRS-R) [22].

Cognitive functions were evaluated in 13 out of 24 ALS

patients (seven males and six females; mean age

59.9 ± 13.5 years, range 42–88, median 61; disease

duration 25.3 ± 18.2 months, range 12–65, median 24)

and in all of control subjects by the following tests: Mini

Mental State Examination (MMSE) [23]; Beck Depression

Inventory-II (BDI-II) [24]; Rey Auditory Verbal Learning

Test-Immediate Recall (RAVLT-IR); Rey Auditory Verbal

Learning Test-Delayed Recall (RAVLT-DR) [25]; Con-

trolled Oral Word Association Test (COWAT) [26];

Modified Card Sorting Test (MCST) [27] and Frontal

Assessment Battery (FAB) [28].

The cognitive evaluation of 11 ALS patients (six males

and five females; mean age 63.8 ± 8.4 years, range 48–78,

median 65; disease duration 20.4 ± 19.5 months, range

10–76, median 12) was not included in the study: the motor

disabilities (severe dysarthria and upper limbs weakness) of

these patients affected neuropsychological scores and did

not allow us to perform reliable tests.

MRI protocol and image processing

Subjects were examined using a 3-Tesla MR750 GE MRI

scanner with an eight channel head coil. All participants

underwent the same MRI protocol, including conventional

T1-weighted, T2-weighted and FLAIR scanning. Whole-

brain 3D T1-weighted SPGR (BRAVO) images were

obtained in the sagittal plane with a voxel size of

1 9 1 9 1 mm3. Diffusion-weighted volumes were

acquired using spin-echo planar imaging (matrix size

128 9 128; 80 axial slices, voxel size 2 9 2 9 2 mm3, 2

NEX) with 27 isotropically distributed orientations for the

diffusion-sensitizing gradients at a b value of

1.000 s 9 mm2 and four b = 0 images. Image processing

was performed with FSL 5.0 (http://www.fmrib.ox.ac.uk/fsl/)

using a protocol described previously [29]. After correction

for image distortions and head motion, a diffusion tensor

model was fit at each voxel, generating FA and MD maps.

For registering DTI data to the T1-weighted anatomic image,

we calculated a full-affine (correlation ratio cost function)

transformation between FA maps and brain-extracted

whole-brain volumes from T1-weighted images. The cal-

culated transformation matrix was then applied to the MD

maps with identical resampling options.

Anatomic T1-weighted images were processed with the

segmentation tool FIRST 5.0 integrated within the FSL

software. For each subject and each hemisphere, the fol-

lowing regions were identified: caudate, putamen, globus

pallidus, thalamus, hippocampus, amygdala, frontal cortex.

Results of regions of interest (ROI) segmentation were

superimposed on anatomic images and visually inspected
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by a trained radiologist to exclude misregistration or

erroneous ROI identification. The segmented regions

defined the binary masks where mean values of MD and

FA were calculated for each individual.

Statistical analysis

The difference in sex distribution between patients with

ALS and control subjects was evaluated with v2 test. The

differences in continuous clinical and imaging variables

between the study groups were assessed using two-tailed,

two-sample t test. Pearson’s correlation analysis was used

to evaluate the relationship between DTI parameters and

clinical and cognitive parameters. Statistical analysis for

clinical and imaging data was performed with Statistical

Package for Social Science Software (SPSS, version 12.0,

Chicago, IL, USA) for Windows. Consistent with the pri-

mary and secondary hypotheses, the P value corrected for

multiple comparisons (Bonferroni correction) was set to

\0.025 for identifying significant differences in MD and

FA between the groups and for evaluating significant cor-

relations of DTI alterations with clinical variables (disease

duration and ALSFRS-R score) and frontal dysfunctions

(MCST and FAB scores).

Results

Clinical features

The sex (v2 = 0.55) and age (P = 0.60) distributions did not

differ between groups. In ALS patients, we evaluated the

degree of motor disability with ALSFRS-R (score 27.4 ± 6.3,

range 17–39, median 28). When we compared the group of 13

ALS patients with cognitive evaluation and control subjects,

we found no significant differences in sex (v2 = 0.63), age

(P = 0.60), education (P = 0.15), MMSE (8.9 ± 4.0 vs.

10.8 ± 3.5, P = 0.17), RAVLT-DR (5.9 ± 3.4 vs.

7.9 ± 2.7, P = 0.076), or BDI-II (12.6 ± 7.1 vs. 8.0 ± 6.5,

P = 0.055), and significant differences in RAVLT-IR

(34.3 ± 11.4 vs. 41.0 ± 6.6, P = 0.035), COWAT

(17.6 ± 9.6 vs. 26.3 ± 9.2, P = 0.012), MCST (4.4 ± 1.8

vs. 5.9 ± 0.3, P = 0.001) and FAB (13.3 ± 3.4 vs.

15.6 ± 1.8, P = 0.016). The patients with cognitive assess-

ment did not statistically differ from those without cognitive

assessment in terms of demographics and clinical features.

Diffusion tensor imaging

Table 1 shows DTI mean values. No left versus right

asymmetry of DTI measures was found in either controls or

ALS patients. Therefore, data from the left and right sides

in each group were averaged for all the subsequent group

comparisons. MD was significantly higher in patients than

in controls in the frontal cortex (P = 0.023), caudate

(P = 0.01), thalamus (P = 0.019), hippocampus

(P = 0.002) and amygdala (P = 0.012). No significant

differences were found in MD values of the putamen or

globus pallidus. No significant differences in FA values

were found in any of the structures investigated.

Correlation analyses between the clinical features of 24

ALS patients and MD values (Table 2) revealed a signifi-

cant positive correlation between disease duration and MD

of the caudate (r = 0.56, P = 0.004), and thalamus

(r = 0.48, P = 0.02) and frontal cortex (r = 0.49,

P = 0.01). The ALSFRS-R score correlated negatively

with the MD of the thalamus (r = -0.47, P = 0.02),

amygdala (r = -0.48, P = 0.02) and frontal cortex

(r = -0.62, P = 0.001).

Correlation analyses between neuropsychological test

scores of 13 ALS patients and MD measures revealed

several negative correlations (Table 3). The MCST scores

Table 1 DTI mean values in ALS patients (n = 24) and controls

(n = 22)

Location Groups MD (mean ± SD)a FA (mean ± SD)

Caudate ALS 0.98 ± 0.27 0.24 ± 0.04

Control 0.83 ± 0.06 0.24 ± 0.02

P value 0.01* ns

Putamen ALS 0.79 ± 0.07 0.27 ± 0.05

Control 0.75 ± 0.07 0.26 ± 0.02

P value ns ns

Globus pallidus ALS 0.83 ± 0.05 0.43 ± 0.05

Control 0.81 ± 0.06 0.42 ± 0.04

P value ns ns

Thalamus ALS 0.96 ± 0.12 0.32 ± 0.02

Control 0.90 ± 0.05 0.33 ± 0.02

P value 0.019* ns

Hippocampus ALS 1.11 ± 0.17 0.18 ± 0.01

Control 0.98 ± 0.07 0.19 ± 0.01

P value 0.002* ns

Amigdala ALS 0.89 ± 0.11 0.19 ± 0.01

Control 0.82 ± 0.04 0.20 ± 0.01

P value 0.012* ns

Frontal cortex ALS 1.10 ± 0.16 0.20 ± 0.01

Control 1.01 ± 0.06 0.20 ± 0.01

P value 0.023* ns

DTI diffusion tensor imaging, ALS amyotrophic lateral sclerosis, MD

mean diffusivity, FA fractional anisotropy, SD standard deviation
a 910-3 mm2/s

* Significant P value, corrected for multiple comparisons with cut-off

set to \0.025 for primary hypothesis, which includes MD and FA of

structures of frontal-subcortical circuits
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correlated with the MD values of the caudate (r = -0.71,

P = 0.007; Fig. 1), hippocampus (r = -0.81, P \ 0.001),

amygdala (r = -0.66, P = 0.015; Fig. 1) and frontal

cortex (r = -0.78, P = 0.002; Fig. 1). The FAB scores

correlated with the MD values of the caudate (r = -0.64,

P = 0.017; Fig. 1), hippocampus (r = -0.81, P = 0.001),

amygdala (r = -0.77, P = 0.002; Fig. 1) and frontal

cortex (r = -0.69, P = 0.009; Fig. 1).

Discussion

In the present study, we evaluated brain areas implicated in

frontal-subcortical circuits, such as the frontal cortex, basal

ganglia, thalamus, hippocampus and amygdala. In general,

brain pathological processes that modify tissue integrity

reduce the barriers that restrict the movement of water

molecules. As a consequence, MD increases and FA

decreases [30].

ALS patients showed significant increases of MD val-

ues compared to healthy controls in the cortical (frontal

cortex and hippocampus) and subcortical (caudate, thala-

mus and amygdala) GM structures, without significant

differences in FA values. FA is not a satisfactory marker

to evaluate alterations of GM, while it is more effective

for analyzing WM [8]. FA is intrinsically higher in white

matter than in gray matter, where water diffusion shows

less directional dependence [31]. The low amount of

anisotropic structures (i.e., WM fibers) in the considered

ROIs may contribute to making FA a less sensitive

indicator of neurodegeneration than MD in these GM

structures.

The degeneration of the frontal cortex found in our

ALS patients has been widely demonstrated by precedent

neuroimaging studies [15, 32, 33], suggesting a contin-

uum between ALS and frontotemporal dementia (FTD).

Also DTI abnormalities observed in the caudate and

thalamus of our patients support the results from previ-

ous in vitro pathological investigations [2, 3] and in vivo

imaging studies [16, 34], suggesting involvement of

these subcortical structures in ALS. Finally, we showed a

microstructural damage of the hippocampus and amyg-

dala, using an advanced DTI technique, confirming

precedent pathological studies [17, 18]. High MD values

may be the consequence of underlying pathological

changes that may include the presence of ubiquitin-

immunoreactive neural inclusions [19, 35] and patho-

logical TDP-43 lesions [36, 37]. We speculate that dif-

fuse neurodegeneration of these cortical and subcortical

regions, including hippocampus, basal ganglia and

amygdala, may modify tissue integrity and contribute to

the damage of structural barriers at cellular and sub-

cellular levels, increasing the local diffusivity of water

molecules [38].

Regarding the correlation that we found between

disease duration and MD values of the frontal cortex,

thalamus and caudate, and between ALSFRS-R and MD

values of the frontal cortex, thalamus and amygdala, our

study supports the view that ALS is a degenerative

multi-systemic pathology. In agreement with some pre-

vious results [32, 39, 40], our correlation analysis

showed that a microstructural damage of frontal cortex

was significantly related to disease duration and dis-

ability. Moreover, we found that MD values of several

subcortical structures were related with disease duration

(i.e., thalamus and caudate) and disability (i.e., thalamus

and amygdala). These results are a further evidence of a

Table 2 Correlation between MD values and clinical features in ALS

patients (n = 24)

Location Disease duration ALSFRS-R

r P value r P value

Caudate 0.56 0.004* -0.38 0.07

Putamen 0.30 0.15 0.34 0.10

Globus pallidus 0.43 0.04 -0.06 0.79

Thalamus 0.48 0.02* -0.47 0.02*

Hippocampus 0.31 0.14 -0.45 0.03

Amygdala 0.17 0.43 -0.48 0.02*

Frontal cortex 0.49 0.01* -0.62 0.001*

DTI diffusion tensor imaging, ALS amyotrophic lateral sclerosis, MD

mean diffusivity, ALSFRS-R ALS Functional Rating Scale-Revised,

r correlation coefficient

* Significant P value, corrected for multiple comparisons with cut-off

set to \0.025 for secondary hypothesis, which includes disease

duration and ALSFRS-R

Table 3 Correlation between MD values and neuropsychological test

scores in ALS patients (n = 13)

Location MCST FAB

r P value r P value

Caudate -0.71 0.007* -0.64 0.017*

Putamen -0.54 0.06 -0.39 0.19

Globus pallidus -0.30 0.32 -0.02 0.94

Thalamus -0.57 0.038 -0.44 0.13

Hippocampus -0.81 \0.001* -0.81 0.001*

Amygdala -0.66 0.015* -0.77 0.002*

Frontal cortex -0.78 0.002* -0.69 0.009*

MD mean diffusivity, ALS amyotrophic lateral sclerosis, MCST

modified card sorting test, FAB frontal assessment battery, r correla-

tion coefficient

* Significant P value, corrected for multiple comparisons with cut-off

set to \0.025 for secondary hypothesis, which includes MCST and

FAB
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possible role of extra-motor subcortical degeneration as

marker of disease progression in ALS.

We hypothesize that the microstructural alterations of

these extra-motor structures might have implications on the

pathophysiology of behavior changes and cognitive

impairment found in ALS [4, 41, 42], through a dysfunction

of frontal-subcortical circuits. Each of these circuits shares a

common structure, linking specific areas of the frontal cortex

(dorsolateral, anterior cingulated and orbitofrontal cortex) to

the striatum, basal ganglia and thalamus (closed-loops) [20].

In particular, the dorsolateral circuit mediates executive

functions, and the orbitofrontal circuit is involved in emo-

tional and behavioral inhibition. Both circuits have afferent

and efferent connections with the amygdala, which play an

important role in functional integration [43]. Although each

frontal-subcortical circuit constitutes a closed loop of ana-

tomically segregated dedicated neurons, ‘‘open’’-loop ele-

ments are incorporated into the functional connectivity of

Fig. 1 Correlations between performances at the neuropsychological

tests (MCST, and FAB) and MD of the frontal cortex, amygdala and

caudate in patients with ALS. For illustrative purposes, the left

column shows the reconstructions of the GM structures in a single

healthy control (the ROIs are superimposed onto the T1-weighted

images). The right column shows the scatterplots of the correlations;

MD values are reported on the x-axis, frontal functions scores are

reported on the y-axis (r correlation coefficient, P = p value,

corrected for multiple comparisons with cut-off set to \0.025)
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these circuits [44]. The connections with other cortical

structures (e.g., parietal and temporal cortices) and other

deep nuclei (e.g., amygdala and hippocampus) [45] are

dedicated to memory and language.

Previous DTI studies have already highlighted micro-

structural damage of the frontal WM tracts that link the

subcortical nuclei to the frontal cortex (e.g., anterior corpus

callosum [12, 13], uncinate fasciculus [12, 46–48], pre-

frontal WM regions [12, 49, 50] and bilateral frontal WM/

cingulate gyrus [48, 51]). These precedent results support

our observations, because we demonstrated the involve-

ment of both subcortical gray nuclei and the frontal cortex

in ALS patients.

According to recent studies that pointed out the features

of cognitive impairment in ALS [52, 53], our patients

showed a significant difference with respect to control

subjects in terms of verbal fluency (COWAT scores) [54,

55] and frontal functions (MCST and FAB scores) [56, 57].

In particular, the MCST and FAB tests were used to

evaluate cognitive and behavioral domains under the con-

trol of the frontal lobes (executive functions, behavioral

regulation and response initiation) [58].

Furthermore, the negative correlations between the

measures of the frontal functions (MCST and FAB scores)

and MD values of the frontal cortex, caudate and amygdala

suggest that dysfunctions of frontal-subcortical circuits

could have a pivotal function in ALS-related disinhibition

and dysexecutive syndrome [59].

Using voxel-based morphometry (VBM), recent studies

[60, 61] showed a relationship between cortical density and

cognitive/behavioral dysfunctions in ALS, establishing that

cortical atrophy in ALS is highly dependent on cognitive

changes [60] and demonstrating a neural damage (anterior

cingulate cortex and right inferior frontal gyrus) in a limbic

prefrontal network [61]. In our study, we used an automated

segmentation of ROIs and coregistration to DTI images to

investigate not cortical density changes, but the presence of

microstructural abnormalities in subcortical structures,

namely basal ganglia, thalamus, hippocampus and amyg-

dala. The correlation between MD values and the measures

of the frontal functions confirms the hypothesis of micro-

structural damage that involve not only the frontal cortex,

but also the deep nuclei of the frontal-subcortical networks.

This hypothesis of dysfunction within frontal-subcorti-

cal circuits of ALS patients was confirmed in the case of

the limbic system, in a recent fMRI-study [62]. Relative to

healthy controls, ALS patients showed greater activation in

several prefrontal areas (ventral and dorsal anterior cin-

gulated cortex and dorsolateral prefrontal cortex) and

altered connectivity between left amygdala and prefrontal

cortex. Moreover, the authors reported that altered con-

nectivity of the left amygdala and supplementary motor

area was related to greater disease severity in ALS patients,

substantiating limbic-motor interface abnormalities in

ALS.

There is disagreement about memory deficits in ALS.

Studies of cognition have shown that memory impairments

in patients with ALS usually involve immediate recall [55,

63]. Deficits in delayed recall are highly variable [53, 55].

According to these precedent studies, we found significant

differences only in RAVLT-IR scores, and not in RAVLT-

DR scores.

Given that mood disturbances, such as depression, could

have affected the results of neuropsychological tests, we

compared BDI-II mean scores of ALS patients and control

group, but we found no significant differences. These

results are consistent with recent reports [64–66] that claim

that prevalence rates of depression are low in ALS and

exclude an influence of depression on tests that evaluate the

frontal functions.

Furthermore, alongside the dysexecutive symptoms, apathy

appears to be a common behavioral abnormality in ALS

patients [67, 68]; recent neuroimaging studies suggest that

apathy could be correlated with a disruption of cortical-basal

ganglia circuits in both ALS [69] and FTD [70]. Further studies

that would require detailed neuropsychological assessment of

apathy and neuroimaging examination of frontal-subcortical

circuits are needed to more clearly delineate the anatomical

and functional correlates of apathy in ALS.

The major limitation of the present study lies in the limited

number of patients who underwent complete neuropsycho-

logical tests. In fact, the motor disabilities of some patients

did not allow us to perform exhaustive and detailed tests.

Additional studies with larger sample sizes are necessary to

evaluate the degree, extent and pattern of degeneration of

these structures. Other structural and functional neuroim-

aging studies could be necessary to confirm our results.

However, the present study highlights the large potential

of DTI of the brain to provide in vivo markers of cortical and

subcortical involvement in ALS. Our findings of diffusion

abnormalities in the frontal cortex, caudate, thalamus, hip-

pocampus and amygdala of patients with ALS suggest that

there is degeneration or dysfunction of neurons in these

extra-motor structures. This novel aspect is particularly

promising for understanding the pathophysiology of execu-

tive impairment found in ALS and for studying what the

underlying neuroanatomical changes are from the point of

establishing a common framework for ALS and FTD.
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