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Abstract To devise a multivariate parametric model for

short-term prediction of disability using the Expanded

Disability Status Scale (EDSS) and multimodal sensory EP

(mEP). A total of 221 multiple sclerosis (MS) patients who

underwent repeated mEP and EDSS assessments at vari-

able time intervals over a 20-year period were retrospec-

tively analyzed. Published criteria were used to compute a

cumulative score (mEPS) of abnormalities for each of 908

individual tests. Data of a statistically balanced sample of

58 patients were fed to a parametrical regression analysis

using time-lagged EDSS and mEPS along with other

clinical variables to estimate future EDSS scores at 1 year.

Whole sample cross-sectional mEPS were moderately

correlated with EDSS, whereas longitudinal mEPS were

not. Using the regression model, lagged mEPS and lagged

EDSS along with clinical variables provided better future

EDSS estimates. The R2 measure of fit was significant and

72% of EDSS estimates showed an error value of ±0.5. A

parametrical regression model combining EDSS and mEPS

accurately predicts short-term disability in MS patients and

could be used to optimize decisions concerning treatment.
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Introduction

Progression of disability is the most important outcome

measure in multiple sclerosis (MS), but the individual

course of MS is still unpredictable [1, 2]. As a result, the

detection of patients at high risk for disease progression

versus those at low risk is difficult, and a better guidance is

still needed for choosing the most appropriate and cost-

effective among several treatment options now available

[3]. Evoked potentials (EP) have been used for more than

20 years in MS to confirm the involvement of sensory and

motor pathways or to disclose clinically silent lesions [4].

The diagnostic value of EP in establishing the diagnosis of

MS has been addressed by several studies. Patients with

suspected MS and EP abnormalities had a 71% higher risk

of clinical deterioration during a 2-year follow-up com-

pared to individuals with normal EP [5]. Correlations

between EP and EDSS at first test and at 1 [1], 3 [4], 5, and

10 years [2] were also studied using nonparametric

approaches which, however, showed insufficient predictive

power if applied to individual cases. Although there is a

general agreement that EP reflect the integrity of sensory

and motor pathways and that the combination of EP

abnormalities correlates with disability, the usefulness of

multimodal evoked potentials (mEP) in monitoring the

evolution of multiple sclerosis has not been yet clarified

[4]. Moreover, the diagnostic value of EP has been

diminished by the inclusion of only visual EP (VEPs) in the

McDonald’s diagnostic criteria since 2001 [6]. The aim of

this study was to re-evaluate the usefulness of mEP for

short-term prediction of the EDSS by considering mEP not
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as a single predictor but within a multivariate statistic

approach derived from economics which can be easily

implemented and tested. A two-step process was employed

to this end. First, we carried out a thorough retrospective

analysis of all MS patients who had serial multimodal EP

tests performed in our lab since 1989 to describe time-

dependent variations and correlations of disability scores

and EP measures in a large clinical sample. Second, we

developed a multivariate predictive model of EDSS at

1 year by selecting patients who had at least three EP tests

at regular 1-year intervals.

Materials and methods

Patients

A total of 221 MS patients referred to our MS center during

the period 1989–2008 for clinical, neuroimaging, and

neurophysiological assessments (908 exams) were selected

from our clinical database. To be included, patients needed

to have a diagnosis of clinically definite MS according to

research criteria at the time of assessment (McDonald’s

criteria [6, 7] or Poser’s criteria [8] for those diagnosed

before 2001) and at least two multimodal sensory EP tests

and simultaneous clinical and EDSS assessments during

the 20-year period. Results of incomplete EP tests as well

as tests performed during a clinical relapse were not

included. Data of a subgroup of 58 patients who were

assessed yearly on three consecutive occasions was used to

build and test the predictive model.

Sensory evoked potentials

Visual (VEP), auditory (BAER), and somatosensory (SEP)

evoked potentials were recorded according to recom-

mended protocols [9]. Stimulation and recording were

carried out using PC-based neurophysiological recording

systems (Nicolet� CA 2000 and XLTEK� Protector) by

the same experienced technicians. SEPs were obtained by

electrical stimulation of the median nerves at the wrists,

and of the posterior tibial nerves at the ankles. Latencies of

the main peripheral, spinal, and cortical components were

measured along with N20-N9 latency difference and N20-

N25 amplitude difference for median nerve SEPs, P37-N19

latency difference and P37-N45 amplitude difference for

tibial nerve SEPs. VEP to black and white pattern-reversal

stimulation with checks of 30 and 15 min of arc were

recorded over Oz of the 10–20 international system, with

Fz as the reference. Latency of the P100 component and

N75-P100 amplitude difference were measured. BAER to

clicks at 70 dB above subjective threshold with contralat-

eral white noise masking were recorded at the CZ electrode

referred to the ipsilateral and contralateral ears. The latency

of the main peaks I, III, and V, the inter-peak latencies

(I–III, III–V, and I–V), and the I:V amplitude ratio were

measured.

Multimodal sensory evoked potentials score (mEPS)

For all EP modalities, latencies and amplitudes—when

measurable—were compared with normative data obtained

in our laboratory. SEPs latencies were corrected for body

height. Absolute or inter-side difference values exceeding

2.5 SD of normal values, and absence or gross morpho-

logical abnormality of a major component were considered

abnormal. Abnormalities were quantified separately for

each modality [VEP 300, VEP 150, BAEP, SEP lower limb

(LL), SEP upper limb(UL)], according to a six-point

graded scale drawn from the work of Jung et al. [1]

(0 = normal; 1 = pathological side difference of latency;

2 = latency above the normal range but below 1.1 of upper

limit, or [50% side difference of amplitude; 3 = latency

1.1–1.3 of upper limit; 4 = latency above 1.3 of upper

limit; 5 = absent EP component). The multimodal evoked

potentials score (mEPS) was calculated as the sum of the

left and right abnormalities in the five modalities (inter-side

differences were included only for the pathological side);

thus, the worst possible score was 50 (5 points 9 2

sides 9 5 EP modality).

Statistics

In step 1, the impact of the type of disease course (e.g.,

relapsing-remitting, benign MS, secondary progressive,

and primary progressive) on individual numeric variables

(EDSS, mEPS, age, age at onset, and disease duration) was

assessed by means of one-way ANOVA models. Correla-

tions between experimental variables were assessed by

bivariate parametric statistics (Pearson’s r), whereas an

ordinary least-squares linear regression analysis (OLS) was

applied on the whole sample data, with the EDSS score as

the dependent variable and mEPS, age, age at onset, gen-

der, and type of disease course as the regressors. The model

assumptions (normality, homoscedasticity, linearity, col-

linearity, specification errors, and independence of the data

as well as outliers and leverage points) were all verified

according to recommended procedures [10, 11]. As a

result, a root-square transformation was applied to the

mEPS and five outliers were removed, leaving a total of

903 data for analysis. To deal with heteroscedasticity and

non-independence of the data, the Huber–White sandwich

estimator for robust standard error with the cluster option

was finally applied to the regression [10–12].

In step 2, the same OLS linear regression was applied to

statistically balanced data (e.g., equal time intervals
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between successive EP tests) of a subsample of 58 patients.

The dependent variable was again the EDSS score whereas

quantitative regressors (l.EDSS, l.mEPS) were lagged by

one period (i.e., 1 year or t-1) and the formula resulted:

Y:t ¼ b0þ b1 Y1:t�1þ b2 X2:t�1þ b3 X3:tþ � � � þ b6 X6:t þ e:t
ð1Þ

where Y, EDSS; Y1, lagged EDSS; X2, lagged mEPS;

X3…X6, fixed clinical variables; b, regression coefficient; e,
error term. To verify the results, the difference between

observed EDSS and estimated EDSS was individually

calculated for all patients. All the analyses were performed

with commercial packages (Stata� and Sas System�) with

an academic license.

Results

Step 1

The demographic and clinical characteristics of the study

samples are summarized in Table 1. Concerning the total

sample, the relapsing–remitting (RR) course was the most

represented (83.7%), as were female patients in all disease

courses except in the secondary progressive (SP) group;

patients with an SP or a benign course had longer disease

durations. The largest time interval between age at onset

and age at first EP test was observed in the benign MS

group (about 14 years on average), the shortest in the pri-

mary progressive (PP, 3 years) group. As expected, mean

EDSS and mEPS values were higher in the SP and PP

groups. One-way ANOVA main effects of disease course

were significant (all p \ 0.0001) for age, age at first test,

age at onset, duration of illness at first test, EDSS, and

mEPS.

EDSS and mEPS scores were moderately correlated

(r = 0.44) both in the whole panel data (903 tests) and at

the time of the first test (221 tests, r = 0.42), whereas

among the other quantitative variables only age at onset

showed a mild but significant correlation with EDSS

(r = -0.15, p \ 0.005).

The results of the OLS employing mEPS and the other

clinical variables as regressors to predict EDSS are sum-

marized in Table 2. Despite a significant overall F test, the

coefficient of determination—which measures of how well

future EDSS scores are likely to be predicted by the

model—was not satisfactory (R2 = 0.24).

Step 2

In step 2, a subsample of 58 patients fulfilling the criterion

of three consecutive tests performed at yearly intervals

was drawn from the original panel data (Table 1). This

subgroup did not show significant differences in EDSS and

mEPS mean values by two-sample t tests when compared

to the remaining 163 patients, while significant differences

were found concerning duration of illness, age, and age at

onset (two-sample t tests: all p \ 0.001), as well as the

distribution of gender and type of disease course (Chi-

square tests: all p [ 0.05). At the time of the first test, the

duration of illness ranged between 1 and 15 years and was

rather homogeneously distributed: 37.9% of patients had a

Table 1 Clinical findings of 221 MS patients analyzed in step 1 and of a subsample of 58 patients analyzed in step 2

Course (number) Global (221) RR (185) SP (20) PP (4) Benign (12)

Total sample

Age at first test (years) 32.7 (8.7) 31.6 (8.3) 38.3 (9.5) 43 (10.6) 36.5 (6.3)

F/M ratio 2.6 3.0 0.5 3.0 11.0

MS duration at first test (years) 5.3 (5.6) 4.2 (4.5) 10 (8.2) 3 (2.1) 13.8 (5.8)

Age at onset (years) 27.4 (8.2) 27.4 (7.9) 28.2 (10.2) 40 (10) 22.6 (4.0)

EDSS 2.1 (1.4) 2.2 (1.4) 3.8 (1.4) 2.7 (0.9) 1.8 (0.6)

mEPS 9.7 (9.7) 8.8 (9.4) 18.4 (8.9) 17.5 (10.2) 7.7 (7.1)

Course (number) Global (58) RR (52) SP (0) PP (2) Benign (4)

Subsample

Age at first test (years) 37.5 (8.8) 36.4 (8.4) – 54 (2.8) 42.7 (4.9)

F/M ratio 3.8 3.7 – 1.0 4/0

MS duration at first test (years) 10.1 (7.3) 9.4 (6.8) – 19.5 (10.4) 14.2 (7.9)

Age at onset (years) 28.6 (8.7) 28.5 (8.2) – 47 (5.6) 22 (1.6)

EDSS 2.1 (1.5) 2.1 (1.5) – 2.8 (0.2) 1.7 (0.4)

mEPS 9.0 (9.4) 8.2 (8.6) – 28.3 (5.3) 9.5 (10.1)

Mean (SD)
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disease duration between 1 and 5 years, 24.1% between 6

and 10 years, and 37.9% above 10 years. The group mean

EDSS and mEPS showed a small (1%) increase from the

first to the third year. As in the whole sample, mEPS at the

time of the first test weakly correlated with EDSS (Pear-

son’s r = 0.34, p = 0.01) but after 1 and 2 years the cross-

sectional correlations increased moderately (r = 0.44,

p = 0.0004 and r = 0.50, p \ 0.0001, respectively).

Changes (delta) in EDSS scores after 1 and 2 years were

not significantly correlated with the corresponding delta

mEPS values. However, EDSS scores after 1 and 2 years

were moderately correlated with mEPS at the first test and

after 1 year, respectively (r = 0.38, p = 0.003 and

r = 0.44, p = 0.0005); the best correlation was found

between mEPS after 2 years and EDSS scores after 3 years

(r = 0.53, p \ 0.0001).

The results of the OLS linear regression analysis

employing lagged mEPS, lagged EDSS, and clinical data

as regressors for EDSS prediction are summarized in

Table 3. Afterwards age was excluded as a regressor

because it did not pass the Akaike’s Information Criterion

and Bayesian Information Criterion tests [13]. Individual

regression coefficients for lagged EDSS and lagged mEPS

were significant as well as the overall F test. The value of

the coefficient of determination indicated an overall

goodness of fit compatible with an adequate prediction of

EDSS scores (R2 = 0.79).

To verify the above findings, the difference of fitted

versus real values of EDSS assessed during 2008 was

computed (Fig. 1). We arbitrarily chose an error threshold

of ±0.5 as an acceptable individual error estimate of EDSS

in clinical practice. Using this threshold, 72% of the

patients obtained an error value equal or inferior to ±0.5.

Discussion

The relation between mEPS and EDSS was evaluated in

this study by means of parametric approaches. In the ret-

rospective study of 908 multimodal EP tests performed on

221 patients during the period 1989–2008, Pearson’s cor-

relations confirmed previous findings of a moderate rela-

tionship between the two measures [1, 2, 4]. Furthermore,

EDSS at the first EP examination also correlated moder-

ately (r = 0.42) with mEPS, in line with Leocani’s et al.

study [4], but at variance with two other studies [1, 2]

showing no correlation. These apparently conflicting find-

ings can be explained not only by differences in methods

and variables, but also by the different mean duration of the

disease at the time of the first EP test, which was longer

than 5 years in ours and Leocani’s et al. study [4], but less

than 2.5 years in Jung’s et al. [1] and Kallman’s et al. [2].

More specifically, a poor correlation between mEPS and

EDSS during the first few years after disease onset is likely

due to a substantial rate of subclinical lesions being

detected only by EP tests, which only later progress into

clinically overt signs caught by disability scales such as the

EDSS [1, 14]. Accordingly, our result is consistent with a

longer duration of the disease at the time of the first EP test,

implying a change of the ratio of subclinical versus clinical

lesions in favor of the clinical ones. Indeed, a significant

Table 2 Regression analysis performed in step 1

Coefficient Robust standard

error

t p [ |t|

mEPS 0.28 0.038 7.42 0.000

Age 0.01 0.007 1.47 0.143

Age at onset -0.02 0.010 -2.36 0.019

Gender 0.13 0.151 0.91 0.364

Benign course -0.36 0.202 -1.82 0.070

SP course 1.17 0.233 5.06 0.000

Constant 29.05 22.05 1.32 0.189

F = 28.95; Prob [ F = 0.0000; R2 = 0.2458

Table 3 Regression analysis with lagged (L1) variables

Coefficient Robust standard

error

t p [ |t|

L1-EDSS 0.86 0.589 14.64 0.000

L1-mEPS 0.11 0.038 2.89 0.005

Age at onset -0.009 0.014 -0.71 0.479

Gender 0.25 0.201 1.29 0.203

Benign course -0.26 0.186 -1.43 0.158

PP course -0.98 0.594 -1.65 0.104

Constant 19.86 27.93 0.71 0.480

F = 55.36; Prob [ F = 0.0000; R2 = 0.7989

Fig. 1 Histogram of differences between measured and predicted

values. 72% of patients lie between the ±0.5 error threshold
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correlation between EP scores and EDSS at 5 years was

also found by Kallman et al. [2].

Despite the presence of moderately significant bivariate

correlations, the multivariate OLS analysis including

mEPS along with several clinical variables as regressors

failed to predict EDSS scores at an acceptable level

(R2 = 0.24; Table 2). Again, this result supports the pre-

vious consideration on the clinical versus subclinical

abnormalities ratio. We, therefore, reasoned that if EDSS

measures overt clinical impairment while mEPS adds

information concerning future clinical changes, because of

its sensitivity to subclinical impairment, the linear relation

between mEPS and EDSS should be better analyzed by

time-lagging the former term. This reasoning was sup-

ported by other pieces of evidence concerning increasing

values of correlation coefficients in the cross-sectional

yearly correlations between EDSS and mEPS, as well as

between mEPSt-1 and EDSSt. Specifically, mEPS at first

test (mEPSt) weakly correlated with EDSSt but after 1 and

2 years the correlations increased. By the same token,

EDSS after 1 year (EDSSt?1) weakly correlated with

mEPSt, but after 2 years EDSSt?2 was moderately corre-

lated with mEPSt?1 and this correlation further increased

when EDSSt?3 and mEPSt?2 were compared (Fig. 2).

Besides, the lagged variables strategy made it possible

to include lagged EDSS (EDSSt-1) as a lagged dependent

variable leading to a predictive multivariate model using

lagged mEPS (mEPSt-1) and lagged EDSS (EDSSt-1)

along with the other fixed clinical variables (age at onset,

gender, and course) to predict the EDSS at 1 year.

Longitudinal correlations of delta values between EDSS

and mEPS across the 3-year period were not significant as

already noted by Leocani et al. [4], but in contrast with

Jung et al. [1] who found a significant correlation between

delta mEPS and EDSS in RR patients. As previously dis-

cussed, a role in such discrepancies can be assigned to the

long versus short duration of the disease at the first

observation, i.e., the longer MS duration the lower is the

variability of delta values between tests.

A problem with our retrospective data panel was that the

new model required equal time intervals between succes-

sive tests. It was, therefore, necessary to draw a subsample

of patients who had at least three equally spaced (i.e.,

1-year interval) EP tests. Fifty-eight patients who happened

to be tested during the period 2005–2008 had statistically

balanced data fulfilling such criterion (Table 1). This

subsample showed mean EDSS and mEPS values similar to

the remaining patients sample.

The new OLS regression analysis employing one-period

lagged EDSS and lagged mEPS confirmed the hypothesis

outlined above by returning a better global R2 value (0.79).

Using a variable as both a dependent and a lagged depen-

dent term in a multivariate longitudinal model is a common

technique in economics [11]. For example, to predict future

prices it is crucial to take into account previous prices [15].

In the medical field, Deloire et al. [16] predicted the EDSS

at 5 and 7 years using a multivariate approach which

included baseline EDSS as a predictor. Our interest, how-

ever, was not focused on the obvious relation between the

dependent and the lagged dependent variable as a necessary

step on which to evaluate the contribution of other regres-

sors. We rather sought to underline the ability of the lagged

independent mEPS variable to explain the change between

the two EDSS measurements. As shown above, its indi-

vidual contribution was statistically significant while that of

the other predictors was not.

The performance of the model was further tested

employing the difference between estimated and measured

EDSS values. Using an error threshold of ±0.5, the EDSS

prediction at 1 year was correct in 72% of the patients.

This figure is substantially higher than that of preceding

works using similar multivariate approaches. Yaldizli et al.

were able to explain 56% of EDSS variance after mean of

7.1 years by using EDSS at diagnosis along with other

clinical and MRI variables, while Deloire et al. explained

56 and 71% of EDSS change at 5 and 7 years, respectively,

using EDSS at baseline and age along with either Symbol

Digit Modalities Test or consistent long-term retrieval [16,

17]. Due to major differences in patients’ characteristics,

methods and regressor variables, none of the preceding

works are directly comparable with ours; noteworthy,

neurophysiological variables have been never included as

regressors in spite of being still widely used to diagnose

and monitor the disease [18, 19]. Nonetheless, a general-

ized difficulty in accurate long-term prediction of disability

with multivariate models seems to emerge. Accordingly,

our findings support the application of multivariate models

particularly for a short-term (e.g., \5 years) prediction of

MS disability, as well as the utility of EP in explaining

future disability. A possible drawback of our study resides

in the limited prediction time span; e.g., because of the

small mean variation in EDSS and mEPS scores within the

3-year period of observation our findings would appear to

be obvious at first glance. However, a few issues should be

considered which can support our conclusions. First, indi-

vidual changes up to ±3 EDSS points were found in the 58

Fig. 2 a Cross-sectional correlations between EDSS and mEPS and

b correlation between one-period lagged mEPS and EDSS during the

observation period (2005–2008) in a subsample of 58 patients
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patients group which were accurately predicted by the

model; second, an accurate short-term prediction is more

important for timely decisions than a long-term one, as

stressed by recent treatment optimization guidelines [20];

third, the sum of successive accurate short-term predictions

may be more efficient than long-term ones in detecting

changes in disease course; fourth, in the work of Vercellino

et al. [21] 50% of 174 relapses observed in 304 patients

caused EDSS increases between 0.5 and 3.5 after 1 year,

supporting the utility of short-term prediction.

In conclusion, our study extended previous findings

based on nonparametric approaches [1, 2, 4] by showing the

efficacy of a multivariate parametric model combining

the effect of mEPS and routine clinical variables including

the EDSS itself to predict short-term variability of EDSS. In

spite of a more complex statistical approach requiring the

control of regression assumptions and of balanced data, our

model could be applied in clinical practice to guide treat-

ment and follow-up decisions in individual patients.

Our future aim is to test how the model performs with

more heterogeneous patients subgroups, e.g., as far as

disease course is concerned, as well as to ascertain its

prediction power beyond 1 year. Though we are aware that

increasing the term of prediction will also increase data

variability and estimate errors as the results of a recent

work tend to confirm [17], a 2-year prediction term could

still be a feasible target to pursue with a multivariate

parametric approach. The overall predictability of our

model could also be improved by including the motor

evoked potentials, which were not available in our retro-

spective data panel and which have been found to be well

correlated with the EDSS in cross-sectional analyses [1, 2,

4] and with EDSS changes at 2 years [14]. On the other

hand, the recent introduction of novel targeted immune

modulators which appear to markedly affect disability

progression over time in RR patients [22] and EP abnor-

malities as well [23], could limit the applicability of pre-

dictive models devised in the era of the corticosteroids and

the b-interferons; nonetheless, we think a multivariate

approach could still be needed to tackle the inherent low

predictability of MS outcomes and to deal with new

important covariates.
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