
Abstract The neuroimaging of experimental and clinical
pain has revolutionised our understanding of the physio-
logical responses to pain and paved the way for a better
understanding of the pathophysiology of chronic pain syn-
dromes. Extensive research on the central mechanisms
regarding the sensory-discriminative dimensions of pain
have revealed a complex network of cortical and subcorti-
cal brain structures involved in the transmission and inte-
gration of pain, the so-called pain matrix. Although brain
imaging and pharmacological studies have generated some
insight into the circuitry that may be involved in the gen-
eration of chronic pain symptoms, further research into
brain imaging of chronic pain is clearly warranted.
However, modern neuroimaging suggests that the chronifi-
cation of pain (and headaches) involves functional and
structural plasticity of both the central and peripheral ner-
vous system.
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Introduction

Brain imaging of pain is largely dominated by experimen-
tal acute-pain research. Very little has been done regarding
brain imaging in chronic pain. Insight into the fundamen-
tal physiology of these syndromes has been limited by the
lack of methods available for visualising the pathophysio-
logical background of, for example, headache and possible
causes. Functional neuroimaging of patients has, however,
revolutionised this area and provided unique insight into
some of the most common maladies in man.

Functional neuroimaging in experimental pain

To understand the possible impact of functional studies in
primary headache such as migraine and cluster, a clear
understanding of the neuroimaging pattern of activation in
experimental pain is needed. While clinical and experi-
mental studies can show interactions between the intensity
of pain sensation, pain unpleasantness and emotions asso-
ciated with reflection and behaviour, brain imaging studies
using positron emission tomography (PET) and functional
magnetic resonance imaging (f-MRI) have unravelled pain
transmitting structures (the nociceptive system), which
include the ascending spinal pathways and a central net-
work of brain structures. The spinal pathways converge
onto the brain stem, thalamic nuclei, limbic cortical struc-
tures (amygdala, hypothalamus, insular cortex, anterior
cingulate cortex (ACC)) and the sensorimotor cortices.
Activation of the ACC has been repeatedly reported in PET
studies on the sensation of somatic or visceral pain and
attributed to the emotional response to pain [1–4]. Insula
activations appear in studies involving application of heat
[2, 5, 6], subcutaneous injection of ethanol [7], somatosen-
sory stimulation [8], and during cluster headache [1] and
atypical facial pain [9]. Given its anatomical connections,
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the insula is viewed as a relay station for sensory informa-
tion into the limbic system, along with its role in the regu-
lation of autonomic responses [10]. The thalamus is a site
where activations would most be expected in the acute
pain state. Activation of the contralateral thalamus due to
pain is known from experimental animals [11] and func-
tional imaging studies in humans [2, 4]. The ability to
locate pain plays a pivotal role in immediate defence and
withdrawal behaviour. It is therefore no surprise that the
primary somatosensory cortex (SI) shows a clear somato-
topic organisation ipsi- and contralaterally to painful stim-
ulation. Furthermore, differential representations of hand
and foot stimulation appear within the contralateral oper-
cular–insular region of the secondary somatosensory cor-
tex (SII) [12, 13]. This result provides evidence that both
SI and SII encode spatial information of nociceptive stim-
uli without additional information from the tactile system
and highlights the concept of a redundant representation of
basic discriminative stimulus features in human
somatosensory cortices [13]. Functional imaging has also
been able to demonstrate that a very basic form of spatial
coding – that of stimulus laterality of pain stimuli – is not
only preserved in target regions of the afferent neuraxis
such as thalamus, SI, SII and posterior insula [12, 14], but
also in subcortical structures of the motor system, such as
the putamen, red nucleus and cerebellum [13]. This indi-
cates that on a behavioural level, relevant nociceptive
information is processed in the basal ganglia and made
available for pain-related motor responses [15].

The above-mentioned central network of brain struc-
tures involved in pain transmission and processing, the so-
called ‘pain matrix’, is under dynamic top-down modula-
tion (so called antinociceptive system) by brain mecha-
nisms that are associated with anticipation, expectation
and other cognitive factors. Figure 1 outlines the above-
mentioned regions generally activated in functional imag-
ing studies on pain.

Functional neuroimaging in clinical pain

Unlike the abundant research available on experimental
pain [16–18], only a few studies using functional imaging
(PET or f-MRI) have investigated clinical pain [19–25]
and the results of these studies are incongruent [26]. One
of the reasons is that it is difficult to assemble a homoge-
nous patient cohort with exactly matched symptoms, dura-
tion of disease, medication history, age distribution, etc.
[27]. However, studies have begun to evaluate CNS
changes that occur in patients with neuropathic pain
[28–30], phantom pain [31–33], post-herpetic neuralgia
[34], chronic back pain [35], fibromyalgia [36, 37], irrita-
ble bowl syndrome [38] and complex regional pain syn-
drome [22, 39]. However, unlike in primary headache syn-
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dromes such as migraine [24] and cluster headache [40],
functional imaging has not yet provided reproducible find-
ings specific to the disease or, the ultimate goal, a patho-
physiological basis for these syndromes. Certainly more
work and longitudinal studies are warranted to investigate
the natural course of pain diseases and to track pharmaco-
logical effects to gain a better understanding of acute pain
and pain control.

Functional neuroimaging in behavioural responses
to pain

The nociceptive system is essential for reacting to poten-
tially life-threatening situations. As such the brain medi-
ates a response to a complex situation, which may not con-
sist of only the pain stimulus itself. Pain is unpleasant and
contains emotional feelings involving contextual and cog-
nitive factors, because pain often occurs within a situation
that is threatening and stressful. These ‘cognitive’ qualities
and reactions to a situation involving pain have had an
immense impact in pain research using functional imaging.
Based on these investigations, it has been proposed that
two principal ascending spinal pathways for pain exist: the
‘lateral’ and the ‘medial’ spinothalamic tract or pain sys-
tem. The lateral pain system consists of the ventroposteri-
or lateral (VPL) nucleus of the thalamus and the primary
and secondary somatosensory cerebral cortical areas (S1
and S2) and is believed to be involved in discriminative
sensory pain transmission. The so-called ‘medial pain sys-
tem’ consists of the cingulate cortices, amygdala and hypo-
thalamus and, following this theory, processes the emo-
tional and somatic responses to pain (e.g. affective-moti-
vational components) [41–43]. This “classic model” how-
ever, does not imply that the sensory and affective dimen-
sions of pain are interrelated and that these dimensions can
be modulated by cognitive factors.

Functional imaging has begun to reveal the neural cir-
cuits involved in the modulation of pain experience.
Central neural mechanisms associated with such phenom-
ena as placebo, hypnotic suggestion, attention and distrac-
tion are thought to have an effect on pain perception by
modulating neural activity within many of the brain struc-
tures shown in Figure 1. This modulation includes endoge-
nous pain-inhibitory and pain-facilitation pathways that
descend to the spinal dorsal horn. One of the key players is
the ACC, as it is not only involved in the actual perception
of pain but also in imagined pain experience [44], and
observation of another human receiving a pain stimulus
[45]. It should be pointed out that directing attention away
from a painful stimulus is known to reduce the perceived
pain intensity and results in decreased activation of ACC
subregions responsive to painful stimulation [46–48]. The
placebo response in pain seems to be mediated at least in
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part by the ACC [49–52] and the same holds true for the
response to hypnosis and pain [53–55].

Neuroimaging in headache

Migraine

In several PET studies in patients with migraine without
aura [24, 56–58], significantly higher rCBF values were
found during the acute attack compared to the headache-
free interval in brainstem structures over several planes.
These structures lay towards the midline and their localisa-
tion has been refined to the dorsal pons [24, 59]. Increased
activation was also found in the inferior anterocaudal cin-
gulate cortex, as well as in the visual and auditory associa-
tion cortices during the attack, but was not detected in these
areas in the interval scan or after relief from headache- and
migraine-related symptoms through treatment [56].

The consistent increases in rCBF in the brainstem per-
sisted, even after sumatriptan had induced complete relief
from headache, nausea, phonophobia and photophobia. This
increase was not seen outside the attack. It can be conclud-
ed that the observed activation was unlikely to be just the
result of pain perception or increased activity of the endoge-
nous anti-nociceptive systems. Very recently, these findings
have been replicated and significantly extended. It seems
clear now that the brainstem activation is indeed highly spe-
cific to migraine, but ipsilateral to the pain and at a slightly
different location [24, 58]. Interestingly, the same area was

found to be activated in chronic migraine, which was treat-
ed using suboccipital stimulation [60]. It is certainly beyond
the resolution of the PET scanner to attribute foci of rCBF
increases to distinct brainstem nuclei. However, dysfunction
of the regulation of brainstem nuclei involved in anti-noci-
ception and extra- and intracerebral vascular control pro-
vides a comprehensive explanation for many of the facets in
migraine [11, 61]. The importance of the brainstem for the
genesis of migraine is underscored by the presence of bind-
ing sites for specific anti-migraine compounds within these
structures [62]. The only direct clinical evidence for the
brainstem as primum movens in migraine was reported by
Raskin et al. in non-headache patients who developed
migraine-like episodes after stereotactic intervention with
lesioning of the PAG and more specifically the DRN [63].
Interestingly, these headaches responded to specific sero-
tonergic agonists.

Medication overuse headache

Recently, 16 migraine patients suffering from medication
overuse headache were investigated using 18-FDG PET
(measuring glucose metabolism) before and 3 weeks after
medication withdrawal and compared to a control popula-
tion. Before withdrawal, the bilateral thalamus, orbitofrontal
cortex, anterior cingulate gyrus, insula/ventral striatum and
right inferior parietal lobule were hypometabolic, while the
cerebellar vermis was hypermetabolic [64]. Following with-
drawal of analgesics, all areas but the orbitofrontal cortex
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Fig. 1 The pain-matrix consists mainly of the thal-
amus (Th), the amygdala (Amyg), the insular cortex
(Insula), the supplementary motor area (SMA), the
posterior parietal cortex (PPC), the pre-frontal cor-
tex (PFC), the cingulate cortex (ACC), the peri-
aqueductal grey (PAG), the basal ganglia and cere-
bellar cortex (not shown) and the primary (S1) and
secondary (S2, not shown) sensory cortex. For
review see [16, 17]



showed an almost normal glucose uptake. The authors sug-
gested that medication overuse headache may be associated
with reversible metabolic changes in pain processing struc-
tures like other chronic pain disorders, but also with persis-
tent orbitofrontal hypofunction. Interestingly, the latter is
known to occur in drug dependence, which may predispose
subgroups of migraineurs to recurrent analgesic overuse.

Trigeminal autonomic cephalalgias

The group of trigeminal autonomic cephalalgias comprises
cluster headache, paroxysmal hemicranias and short-lasting
unilateral neuralgiform headache attacks with conjunctival
injection and tearing (SUNCT syndrome) [65]. The concept
of trigeminal autonomic cephalalgias signifies a possibly
shared pathophysiological basis for these syndromes that is
not shared with other primary headaches, such as migraine or
tension-type headache [66]. Thus far, findings in functional
imaging of primary headache syndromes have been specific
to the disease [67, 68], suggesting that these techniques may
be helpful in unravelling the degree of congruence between
clinically analogous headache syndromes. Neuroimaging
has made substantial contributions in recent years to under-
standing these relatively rare but important syndromes [40,
69–71]. These studies consistently show that significant acti-
vations ascribable to the acute headache attack were
observed in the ipsilateral hypothalamic grey matter when
compared to the headache-free state. In contrast to migraine
[56], no brainstem activation was found during the acute
attack compared to the resting state. This is remarkable, as
migraine and cluster headache are often discussed as related
disorders and identical specific compounds, such as ergota-
mine and sumatriptan, are currently used in the acute treat-
ment of both types of headache [72]. Moreover, no hypo-
thalamic activation was seen in experimental pain induced by
capsaicin injection into the forehead [73]. This is important
because injection into the forehead would activate first (oph-
thalmic) division afferents, which belong to the trigeminal
division predominantly responsible for pain activation in
cluster headache. These data suggest that while primary
headaches such as migraine and cluster headache may share
a common pain pathway – the trigeminovascular innervation
– the underlying pathogenesis seems to differ significantly,
as can be inferred from the different patterns of clinical pre-
sentation and responses to preventative agents [72].

Regarding cluster headache, these findings prompted
the use of deep brain stimulation (DBS) in the posterior
hypothalamic grey matter in several patients with
intractable CH headache and led to a complete relief of
attacks [74–76], some with a follow-up of more than four
years [76, 77]. In order to unravel the brain circuitry medi-
ating stimulation-induced effects, a very recent study
applied PET in hypothalamic deep brain stimulated
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patients and found that stimulation induced both activa-
tions and deactivations, which are situated in cerebral
structures belonging to neuronal circuits usually activated
in pain transmission and notably in acute cluster headache
attacks. These data argue against an unspecific antinoci-
ceptive effect or pure inhibition of hypothalamic activity.
Instead, the data suggest a hitherto unrecognised function-
al modulation of the pain processing network as the mode
of action of hypothalamic DBS in cluster headache [78].

Morphometric studies in pain

Recent neurobiological research suggests cortical reorgani-
sation on a functional level as a consequence of chronic pain
[79]. This “functional reorganisation” was not only detected
in patients suffering from phantom limb pain [33], but also in
chronic back pain patients [35]. The extent of functional
changes in patients suffering from chronic regional pain syn-
drome (CRPS Typ I) correlated highly with the intensity of
pain and the magnitude of mechanical hyperalgesia [22, 39].
Apart from functional plasticity in chronic pain states, few
studies have addressed the issue of structural reorganisation
[80]. Using voxel-based morphometry, a whole-brain tech-
nique that is capable of discovering subtle, regionally specif-
ic changes in grey matter by averaging across subjects, a sig-
nificant change in the structure of the brain has been report-
ed in several chronic pain states including chronic back pain
[81, 82], chronic tension-type headache [83] and phantom
limb pain [84]. As the adult human brain may change its
structure in response to environmental demands [85, 86], the
central question arises of whether these findings of cortical
morphological alterations may be a consequence of chronic
pain, or contribute to the neurobiological basis of the chroni-
fication of pain, or both.

Regarding episodic pain syndromes, only migraine [87,
88], tension-type headache [83] and cluster headache [89]
have been reported to show structural brain changes when
compared to healthy volunteers. Interestingly, in cluster
headache, a co-localisation of morphometric and functional
changes was achieved by using two different imaging tech-
niques that could separately identify a highly specific brain
area previously considered on clinical and biological
grounds to be involved in the genesis of the cluster headache
syndrome [90]. The structural data show a morphometric
change of the neuronal density in this region, whilst the
functional imaging data are related to the neuronal activity
in this area. Together, they demonstrated for the first time
the precise anatomical location in the central nervous sys-
tem responsible for cluster headache. Furthermore, given
that this area is involved in circadian rhythm and
sleep–wake cycling [91], these data suggest an involvement
of this hypothalamic area as a primum movens in the acute
cluster attack.
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Outlook

Insight into the fundamental physiology of pain and
chronification of pain is mandatory if we are to treat these
syndromes effectively. However, our knowledge is ham-
pered by a scarcity of studies on clinical pain (whereas a
vast number of studies on experimental pain exist), and
furthermore, the results of these studies are incongruent.
As repeated measures design is warranted, the post-opera-
tive pain model is highly appealing to gain a better under-
standing of acute pain and pain control. The combination
of functional and structural imaging and the multimodal
imaging approach in which classic brain-activation studies
are supplemented with other imaging modalities (VBM,
DTI, MR-Spectroscopy etc.) as well as correlation of these
data with electrophysiological, genetic and biochemical
findings are clearly essential.
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