
Abstract The adult brain maintains the ability to reorgan-
ise throughout life. Motor cortical representations can
reorganise rapidly in response to different stimuli.
Important mechanisms for mediating reorganisation in the
cerebral cortex involve the unmasking of existing, but
latent, horizontal connections and modulation of
GABAergic inhibition and synaptic efficacy. Interfering
with these mechanisms can either block or enhance reor-
ganisational processes. Following injury to the motor cor-
tex alterations of the neurotransmitter system regulation,
recruitment of additional undamaged brain areas even
remote from the injury, and anatomical alterations such as
axonal sprouting and synaptogenesis in the brain tissue
surrounding the lesion or in the homotopic motor area of
the non-affected hemisphere occur. The understanding of
cortical reorganisation may enable us to apply principles of
plasticity to the rehabilitation of patients after brain injury.
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Introduction

During the past two decades experimental studies in ani-
mals, and neurophysiological and neuroimaging studies in
humans have demonstrated that the adult brain maintains the
ability to reorganise throughout life. Primary motor cortical
representations can reorganise rapidly in response to differ-
ent stimuli, such as peripheral nerve lesion [1, 2], ischaemic
nerve block [3] or motor performance [4, 5]. The important
question for restorative neurology of whether such plastici-
ty also operates after damage to the brain was approached in
specific ablation experiments. Nudo et al. [6], observed that
the cortical finger representations adjacent to partly dam-
aged finger representations became enlarged with rehabilita-
tion, while they remained unchanged in the untreated mon-
keys. These experiments indicate that use-dependent plastic-
ity in perilesional intact neuronal tissue is one mechanism
operating in recovery of function after injury to the brain.

This review will focus on use-dependent plasticity of
the adult primary motor cortex (M1) because evidence
from animal and human studies suggest that post-injury
use of the affected limb is a major modulator of plastic
changes that take place in the undamaged brain tissue and
that contribute to the recovery of function. For the discus-
sion of mechanisms underlying and enhancing recovery of
function after brain injury this review will refer to data
from patients after infarction of the brain because it repre-
sents a well defined localised lesion to the brain with a
clear temporal onset and is in this sense comparable to the
lesion experiments in animals. In the first part of this
review I will describe data available from experiments in
animals and healthy humans pertaining to the mechanisms
of reorganisation of M1 in response to use. In the second
part of the review I will discuss data obtained from animal
lesion experiments and humans after stroke. As the
changes following unilateral injury to the motor output
system are different for the affected and non-affected
hemisphere, the two sides will be discussed separately.
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Mechanisms of use-dependent plasticity in intact M1

Three main mechanisms are thought to mediate cortical
reorganisation: (1) the unmasking of existing, but latent hor-
izontal connections [1, 2], (2) the modulation of synaptic
efficacy, such as long-term potentiation (LTP) [7, 8] or long-
term depression (LTD) [9], and (3) experience-dependent
increases in dendritic spines and synaptogenesis [10–12].

These mechanisms are based on the idea that M1 con-
tains multiple overlapping motor representations [13–15],
functionally connected through an extensive horizontal net-
work [16]. While connections are abundant within somatic
representations, they are sparse between them [16]. By
changing the strength of horizontal connections between
motor neurons, functionally different neuronal assemblies
can form, allowing dynamic motor output zones to form.
Unmasking horizontal connections provides a means for
rapid dynamic modulation of motor output zones in M1 [1,
2]. However, modification of synaptic strength by LTP and
LTD provides more stable changes of horizontal connec-
tions within M1 [17, 18]. The neurotransmitter systems
involved in mediating LTP and LTD effects include the
inhibitory g-aminobutyric acid GABAergic system [8, 19]
and excitatory glutamatergic system with activation of N-
methyl-D-aspartate (NMDA) receptors [7, 8]. Induction of
synaptic modification, e.g. LTP, is related to morphological
changes of dendrites and synaptogenesis, linking cortical
neurophysiological and morphological changes [12, 20]. In
intact human M1, mechanisms underlying use-dependent
plasticity include changes in the balance of excitation and
inhibition [21]. This is influenced by NMDA, muscarinic
and alpha-adrenergic receptor function, as well as
GABAergic neurotransmission [21–23]. Therefore, use-
dependent plasticity in the intact human brain is mediated
by mechanisms that share similarities with LTP as both
activation of NMDA receptors [8] and down-regulation of
GABA can facilitate LTP in M1 slices [7, 8].

Plasticity after lesion to M1

The affected hemisphere

In lesioned M1, one mechanism of mediating recovery is
reorganisation of adjacent intact tissue, i.e. new regions
taking over function of the injured area [24]. This process
appears to be use dependent [24]. Similar to mechanisms
involved in plasticity of intact human M1, regulation of
excitatory and inhibitory neurotransmitter systems may
play a role in this reorganisation process in lesioned M1.
Most evidence is derived from the rat photothrombosis
model, where small focal cortical lesions led to perilesion-
al changes leading to altered spontaneous activity and
stimulus response characteristics within the lesioned hemi-

sphere. These perilesional changes included increased
stimulation threshold and decreased GABAergic intracorti-
cal inhibition [25, 26], up-regulation of NMDA-receptors
[27] and facilitation of LTP induction [28], which persist-
ed over many months. Perilesional anatomical changes
include axonal sprouting and synaptogenesis that are to
some extent dependent on use [10, 12]. In humans there is
some evidence that intracortical inhibition is decreased in
the perilesional area as demonstrated using transcranial
magnetic stimulation (TMS). First, a shortened silent peri-
od occurred after infarctions within M1 [29, 30], indicating
increased excitability of the stimulated area. Second,
increased paired pulse excitability of M1 was seen in
patients with stroke involving the motor output system
either cortically or subcortically [31]. Functional imaging
studies showed regional reorganisation of cortical repre-
sentations. For example, a systematic posterior shift of the
activation was observed after recovery from stroke [32,
33]. Furthermore, there was also evidence that following
infarction in M1, the activation related to sensorimotor
activity occurred in somatosensory cortex [34].

Practice-dependent reorganisation of M1 after infarction
Behavioural experience has a clear impact on limb repre-
sentation in lesioned M1 [12, 20, 24, 35]. In adult mon-
keys, the effect of training the affected limb on the reor-
ganisation of viable M1 neuronal tissue spared by a small
lesion to the hand area of M1 (perilesional reorganisation)
was studied. Monkeys receiving post-infarct behavioural
training showed retention of the undamaged hand repre-
sentation with expansion to the elbow and shoulder repre-
sentation in some cases [24]. In contrast, in monkeys not
receiving post-infarct behavioural training the remaining,
undamaged hand representation decreased in size [24].
There is some evidence that this principle of promoting use
of the affected limb results in improvement of motor func-
tion and maintenance of its cortical representation applies
to humans. In stroke patients, training consisting of repeti-
tive finger and wrist movements of the affected hand or
enhanced walking by treadmill training improved the kine-
matics of the trained movement that generalised to
improvement of overall function [33, 36–38]. Another
example of promoting use of the affected limb is the con-
cept of constraint-induced therapy. This encourages use of
the affected limb by constraining the non-affected limb and
has been shown to improve motor function when applied to
stroke patients [39–42]. Training-induced improvement of
motor function was associated with changes in the motor
representation of the affected limb in one study [41] and
increased perilesional M1 activity [33]. Reduction of
GABAergic inhibition enhanced training-induced increas-
es in M1 excitability and behavioural improvement in
chronic stroke patients [37]. This points to similarities with
use-dependent plasticity in intact M1, thereby further sup-
porting the evidence that use-dependent reorganisation
operates in recovery of motor function after stroke.
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The non-affected hemisphere

In rats, following an ischaemic lesion in the primary motor
cortex, long-term changes in the inhibitory and excitatory
neurotransmitter systems of the homotopic cortex of the
non-affected hemisphere have been described and impli-
cated as processes relevant for functional recovery after
stroke. More specifically, following a lesion to the primary
motor cortex, down-regulation of GABAA-receptor func-
tion and up-regulation of NMDA-receptor function has
been described in the non-affected contralateral motor cor-
tex (for review [43]). Furthermore, use-dependent dendrit-
ic growth followed by dendritic pruning, synapse forma-
tion and changes in the specific structure of synaptic con-
nections was described [35, 44].

Several lines of evidence support the functional rele-
vance of the non-affected hemisphere in recovery of func-
tion in humans after stroke. First, in neuroimaging studies
of stroke patients increased recruitment of the non-affect-
ed hemisphere when moving the paretic limb was evident
[45–47]. Second, an increase of excitatory activity in the
non-affected motor cortex was seen in patients after stroke
[48–50]. This increase in excitability correlated with good
recovery of function as it was not seen in patients who
remained plegic [50]. However, the role of M1 of the unaf-
fected hemisphere is still under debate requiring more
detailed studies regarding the time of study in reference to
the insult [50, 51], lesion location and possible combina-
tion of different techniques [52].

Pharmacological enhancement of motor recovery after
infarction

Pharmacological manipulation represents one strategy
used to promote recovery of motor function after stroke.
D-amphetamine (AMPH), a drug that increases the presy-
naptic release of the monoamines noradrenaline,
dopamine and serotonin and inhibition of their re-uptake
from the synaptic cleft, enhanced the beneficial effects of
physical therapy after cortical injury in animals and
patients post-stroke [53–56]. The underlying mechanisms
are not known, but may include modulation of central nor-
epinephrine pathways [57, 58] with secondary alleviation
of injury-induced functional depression of structures
remote from the injury site (diaschisis) [59, 60].
Additionally, there is some evidence that AMPH paired
with motor training facilitates induction and retention of
use-dependent plasticity in healthy humans [22] – a type
of plasticity that is probably mediated by LTP-like mech-
anisms [21]. This evidence is in line with reports of its
facilitatory effect on behaviourally assessed memory stor-
age [61–65] through its effect on memory consolidation
[63] and facilitatory effect on LTP in vitro [66, 67]. As

use-dependent plasticity is thought to contribute to the
functional recovery after brain injury [24, 36] (B.5), the
facilitatory effect of AMPH on this form of plasticity may
contribute to the reported beneficial effect of AMPH on
the functional outcome after brain injury in patients [55,
56]. However, there are studies on stroke patients that did
not find such beneficial effects [68, 69].

The interpretation of studies with AMPH is hampered
by the involvement of different monoamines. More recent
studies use drugs that interact specifically with a single
neurotransmitter system, to address the question of their
relative contribution to the enhancing effect of AMPH. A
beneficial effect of increasing dopaminergic [70, 71] and
serotonergic [72] transmission in stroke patients undergo-
ing physical therapy was already reported, but the underly-
ing mechanism remains unclear. These data demonstrate
the importance of the pharmacological approach in the
rehabilitation of stroke patients.

Non-invasive stimulation of M1

Several reports demonstrated that cortical TMS could
enhance the beneficial effects of motor training on perfor-
mance, cortical plasticity and motor cortical excitability
[73–77]. Anodal transcranial DC stimulation (tDCS)
appears to exert effects comparable to those of excitatory
TMS when applied to cortical regions engaged in a practice
or learning task. Several reports have recently documented
performance improvements in visuo-motor coordination
[78, 79], implicit motor learning [80] and probabilistic clas-
sification learning [81]. Altogether, it appears that tDCS
and TMS may represent useful tools to modulate motor cor-
tical excitability in regions engaged in practice or learning
tasks. This approach has been used in patients with chronic
stroke. tDCS can be applied continuously and safely for up
to 30 min [75, 82–84]. Together with TMS, anodal tDCS
applied to the affected hemisphere of chronic stroke
patients, preferably in association with motor training,
appears to benefit aspects of motor performance [75–77].

Summary

In sum, there is accumulating evidence that mechanisms
known to operate in potentiating synaptic efficacy share
similarities with mechanisms operating in use-dependent
cortical reorganisation in intact and lesioned human M1,
and that this form of plasticity plays an important role in
motor skill acquisition of healthy subjects or patients post-
stroke. TMS and tDCS of M1 and drugs that enhance
monoaminergic transmission are means to enhance use-
dependent cortical reorganisation.
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