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Abstract
The detection and use of emitters’ signals by unintended receivers, i.e., eavesdropping, represents an important and often 
low-cost way for animals to gather information from their environment. Acoustic eavesdropping can be a key driver in 
mediating intra- and interspecific interactions (e.g., cooperation, predator–prey systems), specifically in species such as 
cetaceans that use sound as a primary sensory modality. While most cetacean species produce context-specific sounds, little 
is known about the use of those sounds by potential conspecific eavesdroppers. We experimentally tested the hypothesis that 
a social cetacean, Risso’s dolphin (Grampus griseus), is able to gather biologically relevant information by eavesdropping 
on conspecific sounds. We conducted playback experiments on free-ranging dolphins using three context-specific sounds 
stimuli and monitored their horizontal movement using visual or airborne focal follow observations. We broadcasted natural 
sequences of conspecific foraging sounds potentially providing an attractive dinner bell signal (n = 7), male social sounds 
simulating a risk of forthcoming agonistic interaction (n = 7) and female-calf social sounds representing no particularly 
threatening context (n = 7). We developed a quantitative movement response score and tested whether animals changed their 
direction of horizontal movement towards or away from the playback source. Dolphins approached the foraging and the social 
female-calf sounds whereas they avoided the social male sounds. Hence, by acoustically eavesdropping on conspecifics, dol-
phins can discriminate between social and behavioural contexts and anticipate potential threatening or beneficial situations. 
Eavesdropping and the ensuing classification of ‘friend or foe’ can thus shape intra-specific social interactions in cetaceans.

Keywords Cetacean · Eavesdropping · Conspecific sounds · Playback experiments · Horizontal movement response · 
Communication

Introduction

Animals continuously adjust their behaviour in response 
to environmental stimuli (Dall et al. 2005). The informa-
tion gathered from these stimuli can be encoded through 
acoustic, visual, tactile or chemical signals (Bradbury and 
Vehrencamp 1998). In communication networks, animals 
receive intended signals produced by individual emitters and 
respond adaptively, so that the interaction benefits both the 
emitter and the receiver (Smith and Harper 2003). Animals 
can also gain information through eavesdropping, i.e., by 
either seeking or opportunistically detecting conspecific or 
heterospecific unintended signals (Dall 2005; Valone 2007). 
Eavesdroppers can thus benefit by making behavioural 
adjustments that optimise their on-going fitness-enhancing 
activities (e.g., facilitating mate choice or foraging effi-
ciency) (Blanchet et al. 2010).
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In predator–prey and competition systems, detecting cues 
emitted by each other can be particularly important for both 
parties. Predators, for instance, can use signals produced 
by their prey to facilitate their localization (Clark 2004). 
Conversely, by detecting predator cues, prey species can 
perceive an immediate risk of predation and may decide to 
interrupt a fitness-enhancing activity to switch to an adaptive 
anti-predator response (Sündermann et al. 2008; Curé et al. 
2015). In competition systems, eavesdropping on foraging 
cues released by a conspecific or heterospecific food com-
petitor represents an opportunity for eavesdroppers to locate 
feeding sites at reduced costs (Voigt-Heucke et al. 2016).

Sound is the most efficient propagation signal over large 
distances and in various types of environments (Urick 1983). 
Therefore, species that are particularly mobile, communicate 
at distance and/or live in dark or obstructed environments, 
strongly rely on acoustics to fulfil key life functions and 
behaviours. Sound is of specific importance in the marine 
realm. Cetaceans use sounds as a primary sensory modality 
to communicate, orientate and to locate prey (Tyack 1998; 
Tyack and Clark 2000; Deecke 2006; Hoelzel 2009).

Cetaceans belong to a complex trophic network in 
which predation and competition interactions occur at 
various levels. Therefore, they represent interesting spe-
cies models to study acoustic eavesdropping. Experimental 
methods to study acoustic communication and eavesdrop-
ping usually involve playback experiments, i.e. presenting 
acoustic stimuli to animals and monitoring their behav-
ioural responses (McGregor 1992; Magrath et al. 2015). 
Eavesdropping in cetaceans has been poorly studied, 
relatively to terrestrial animals. Most studies focussed on 
heterospecific cetacean dyads, especially predator–prey 
systems, demonstrating the importance of sound eaves-
dropping in the mediation of interspecific interactions 
(Fish and Vania 1971; Cummings and Thompson 1971; 
Tyack et al. 2011; Curé et al. 2013, 2015, 2019; Bowers 
et al. 2018; Benti et al. 2021). Regarding the acoustically-
mediated interactions within species, some pioneering 
studies using playbacks on cetacean species were con-
ducted in the humpback whale (Tyack 1981, 1983; Mob-
ley et al. 1988), the right whale (Clark and Clark 1980; 
Parks 2003) and the killer whales (Filatova et al. 2011) 
and showed that the detection of conspecific sounds could 
trigger behavioural responses. Since then, there has been a 
significant advance in the understanding of acoustic com-
munication systems, particularly in the bottlenose dolphin 
(King and Janik 2013; King and McGregor 2016). How-
ever, there remains a gap of knowledge in the potential use 
of acoustic eavesdropping within cetacean species, and its 
role in mediating social behavioural response and interac-
tion between conspecific individuals.

Here, we hypothesize that cetaceans can eavesdrop on 
conspecific sounds produced in different socio-behavioural 

contexts, to identify and anticipate potential forthcoming 
threatening or beneficial situations. To test this hypothesis, 
playback experiments were conducted on free-ranging Ris-
so’s dolphins (Grampus griseus). The Risso’s dolphin pro-
duces known context-specific sounds: echolocation clicks 
and buzzes while foraging (Visser et al. 2021) and social 
sounds termed whistles, burst pulses and whistle-burst 
pulses (Corkeron and Van Parijs 2001; Neves 2013; Arranz 
et al. 2016). They have a complex social organisation in 
which females with calves usually remain apart from male 
groups, likely to protect their offspring from potential har-
assing behaviours from males (Hartman et al. 2008; FV 
pers. obs.). Males form long-term associations with other 
males and observations of agonistic behaviours between 
male groups suggest they can potentially compete for terri-
torial resources or access to females (Hartman et al. 2020). 
Based on these observations, dolphins were exposed to 
three acoustic stimuli recorded in different behavioural 
contexts, that were expected to elicit contrasting horizon-
tal movement responses: (1) conspecific foraging sounds 
potentially indicating the presence of prey, providing an 
attractive dinner bell signal, (2) male social sounds sim-
ulating a potential risk of agonistic interaction, and (3) 
female-calf social sounds likely representing no risk.

Methods

General protocol

Experiments with free-ranging Risso’s dolphins (Grampus 
griseus) were conducted off Terceira island, Azores (Por-
tugal) during July/August of 2015, 2016, 2018 and 2019. 
Once a group of Risso’s dolphins was sighted (hereafter 
named focal group), a tagged animal (suction-cup attached 
DTAG, Johnson and Tyack 2003), if present, or a recogniz-
able animal in the group was identified as the focal individ-
ual. Tracking of individuals was conducted, visually (2015 
and 2016) or using an unmanned aerial system (UAS; DJI 
Phantom 4 PRO; 2018 and 2019), in pre- and dur-periods. 
The pre-period corresponded to the period immediately pre-
ceding the start of the sound playback lasting for the same 
duration, and the dur-period corresponded to the period 
of sound exposure (n = 21 playbacks; playback duration 
mean ± s.d. = 12 ± 3.5 min). Experiments were performed 
in absence of other boats in the area.

Sex class assignment and tracking

Risso’s dolphins usually form groups mainly composed of 
males or females and calves, or mixed associations (Hart-
man et al. 2008). The focal group was defined following 
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Visser (2014). The age- and sex-class of each individual 
of the focal group was defined using: (1) its sighting his-
tory (photo-identification catalogue, 2014-present), (2) 
the consistent presence/absence of a paired calf, and (3) 
published classification criteria such as body coloration 
and size (Hartman et al. 2015). Calves were defined as 
individuals of 75% or less the size of their associated 
adults, surfacing in close synchrony for at least 50% of 
observation time (Hartman et al. 2008). Adults paired with 
a calf on at least two observation days were identified as 
females. Adult males are larger and have lighter colora-
tion than adult females (Hartman 2018). Larger individu-
als with a typical male coloration, i.e., white, a consistent 
association to other adults (part of stable group) and never 
recorded associated with a calf, were identified as adult 
males. Sub-adults and adults never sighted paired with a 
calf and without clear male coloration were classified as 
‘unsexed’. At the focal group level, groups were classi-
fied as male or female group if all, or all but one or two 
individuals, were adult males, or adult females (with or 
without calves), respectively. Groups with individuals that 
could not be sexed and/or with both males and females, 
were classified as mixed groups.

Focal group size and composition were recorded during 
pre- and dur-periods using visual or UAS-based tracking. 
The UAS (DJI Phantom 4 PRO) recorded video of the focal 
group (4k resolution) while maintaining a height over the 
group of 20–30 m, at which we expected no disturbance 
(Christiansen et al. 2016; Torres et al. 2018). Hence, the 
frame size remained stable throughout the experiment and 
allowed for comparative analysis of the number of indi-
viduals in the frame between the pre- and dur-periods.

The horizontal path of the focal individual was used as 
a proxy of the horizontal response of the focal group. Dur-
ing visual tracking, the distance and bearing of the focal 
animal in relation to the research vessel location were 
collected at 2-min intervals or at first sighting following 
a longer dive (following Visser 2014). The geographic 
positions of the focal animal were then calculated using 
the GPS positions of the vessel during the tracking. The 
UAS-based tracking consisted of recording the UAS exact 
location and height above the sea level using its GPS and 
custom-built laser. These UAS data allowed to calculate 
GPS positions of the focal animal at one record per second 
(Table S1) using semi-automated tracking software (open 
source, Kinovea version 0.8.15).

Sound playback experiments

To exclude potential behavioural responses to tagging, play-
back experiments started after a minimum of 30 min recov-
ery period following the end of any tagging effort. Sounds 
were broadcasted from an underwater omnidirectional 

loudspeaker (in 2015: Lubell LL9642T, frequency response 
0.2–20 kHz; from 2016 to 2019: Oceanears DRS-12 under-
water speaker, frequency response: 0.2–110 kHz) deployed 
from a 6–8 m rigged hull inflatable boat (engine off), hereaf-
ter called playback vessel, at 7–8 m depth using a TASCAM 
DR-680MKII player connected to a SONY XM-N502 ampli-
fier. Frequency responses of the loudspeaker overlapped 
with the main energy frequency spectrum of Risso’s dolphin 
vocalizations (between 1 and 20 kHz, Fig. 1). To ensure that 
sounds were faithfully played by the system without any 
distortion, playback sounds were monitored using a cali-
brated hydrophone Bruel & Kjaer 8105 (frequency response 
0.1–160 000 Hz , sensitivity: − 205 dB re 1 V/μPa) placed 
at 1 m from the speaker and recorded on a TASCAM DR40 
recorder (frequency sampling: 96 kHz, resolution: 16 bit).

Acoustic stimuli were composed of natural sound 
sequences recorded by DTAGS (Johnson and Tyack 2003) 
deployed on different animals in previous years. Non-vocal 
sounds (e.g., breathing sounds, rubbing, bubble noise, back-
ground noise) were removed from the sound sequences using 
Adobe Audition (version 2.0). Recordings of conspecific 
sounds originated from female or male groups (as defined 
above). The foraging or socializing behavioural context of 
the recordings was determined from the presence of echo-
location clicks and buzzes produced by the tagged dolphin 
during typical foraging dive cycles, as recorded on the tag 
(foraging; Arranz et al. 2016; Jensen et al. 2020), or from 

Fig. 1  Spectrograms and oscillograms representing a sound sample 
for each of the three stimulus types, foraging (Fo), social female-calf 
(SF) and social male (SM). Each of these samples illustrates the typi-
cal sounds composing the corresponding stimulus: click series and 
buzzes for Fo, whistle, burst pulses and whistle-burst pulse for SF and 
SM. Spectrograms were made using Seewave package of R software 
version 1.2.1335 (Sueur et al. 2008). Hanning window; FFT window 
size: 1024 points; overlap 75%
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visual observations at the sea surface reporting social inter-
action associated to the production of social sounds (social-
izing). Three types of conspecific acoustic stimuli were 
prepared and randomly broadcasted (Fig. 1). The “foraging 
stimulus” (Fo) comprised natural sequences of echolocation 
clicks and terminal buzzes (fast production of successive 
clicks) produced in a feeding context (i.e., during foraging 
dives). The “social female-calf” stimulus (SF) comprised 
natural sequences of social calls produced during social 
interactions in groups of females and calves, which included 
frequency-modulated whistles, broadband burst pulses and 
whistle-burst pulses (Corkeron and Van Parijs 2001; Neves 
2013). The “social male” stimulus (SM) comprised natural 
sequences of social calls produced during social interaction 
in male groups, which included whistles, burst pulses and/
or whistle-burst pulses. Three versions, each from a differ-
ent DTAG recording, were prepared for each stimulus type 
to avoid pseudo-replication (McGregor 1992). All stimuli 
were prepared using natural sound sequences recorded 
from individuals in the study area (Azores), except one of 
the three versions of SM stimulus that was composed from 
recordings made in California (USA). Acoustic stimuli had 
a sound pressure level ranging from 126 to 136 dB re 1 µPa 
at 1  m within the maximum spectral energy frequency 
band (1–20 kHz), thus not exceeding the natural level of 
Risso’s dolphins sounds (Madsen et al. 2004). Using the 
source level and the distance between the source and the 
animal at start of playback (mean ± s.d.: 685 ± 268; range: 
299–1198 m), the sound level received by the focal indi-
vidual was estimated (mean ± s.d.: 74 ± 4 dB re 1 µPa; n = 22 
playback experiments, range = 68–91 dB re 1 µPa) (Fig. S1). 
Given the hearing sensitivity of Risso’s dolphins (thresh-
old at approximatively 70 dB SPL within their best hearing 
frequency range 5–80 kHz; Nachtigall 2005; Mooney et al. 
2012), acoustic stimuli were likely in the audible range of 
the species at start of playback. Experiments for which the 
estimated received level was below the hearing sensitivity of 
Risso’s dolphin were excluded from analyses (n = 1, Fig. S1).

A focal animal and its group were randomly exposed 
to 1–3 playback stimuli (Table S1) of 12 ± 3.5 min each 
(mean ± s.d., n = 21 playbacks), on the same day, with a 
minimum of 30 min recovery time between the successive 
playbacks. The playback vessel was positioned ahead of and 
to the side of the focal animal’s projected path, to be able 
to detect a potential approach or avoidance response to the 
playback sound source location (Fig. 2).

Quantification of changes in horizontal movement

To investigate the animal’s movement response to a sound 
playback, changes in the direction of horizontal movement 
of the focal animal were quantified by calculating a coef-
ficient of reaction for each playback experiment. Similar 

to the movement reaction score developed by Curé et al. 
(2012), the coefficient of reaction developed in this study 
aimed at quantifying potential horizontal attraction or avoid-
ance response to playbacks by comparing the actual animal 
horizontal trajectory during playback and the theoretical 
animal trajectory if the whale had kept initial direction of 
movement during playback. The main difference of the pre-
sent approach compared to the one used by Curé et al. (2012) 
is that our coefficient of movement reaction was based on 
the animal position at its maximal response (maximal attrac-
tion or avoidance) occurring over the playback course rather 
than considering  the animal position at end of playback as 
used by Curé et al. Our coefficient of movement response 
was based on the comparison between the real horizontal 
trajectory of the focal animal during the playback named the 
playback trajectory, and a theoretical no-change trajectory 
as if the animal had kept its initial direction of movement 
during the playback. Indeed, the natural behaviour of these 
animals are usually to keep a straight course and to spo-
radically change direction of movement when they switch 
activity (pers. obs.). Therefore, if the animal would have no 
reaction to the playback, we expect a no-change trajectory. 
The no-change trajectory corresponded to the projected path 
of the focal animal over the playback period using the real 
speed recorded during playback and the average direction of 
horizontal movement exhibited in the pre-period.

The calculation of the coefficient of reaction was based 
on three steps: (1) calculation of the actual reaction score, 
(2) calculation of the theoretical attraction score, and (3) 
calculation of the coefficient of reaction.

Step 1: Calculation of the actual reaction score

The three following parameters were calculated for each 
focal dolphin’s position collected during a playback trial: 
(1) the distance between the sound source and the theo-
retical dolphin position on the no-change trajectory, (2) 
the distance between the sound source and the actual dol-
phin’s position on the playback trajectory, and (3) the dif-
ference between these two distances, named actual reac-
tion score. Thus, for a given position, if the focal animal 
was closer to the sound source than it would have been 
if it had kept its initial course, the actual reaction score 
had a positive value and was classified as an attraction. 
By contrast, if the position of the animal was further away 
from this position, the actual reaction score had a nega-
tive value and was classified as an avoidance response. 
Then, the actual reaction score that had the maximum 
value (either positive or negative) was retained among 
all actual reaction scores calculated for each position data 
point composing the playback. This score was used to 
define the position time tmax at which the maximal change 
of horizontal movement occurred.



291Animal Cognition (2022) 25:287–296 

1 3

Step 2: Calculation of the theoretical attraction score at tmax

The maximal attraction trajectory was modelled as the pro-
jected maximal attraction of the focal animal toward the 
drifting sound source as if the animal had kept a continuous 
heading towards the playback vessel from the start to the end 

of the playback, with same speed as the one recorded during 
the playback. The theoretical attraction score at tmax was 
then calculated as the difference between the distance from 
the sound source at tmax to the theoretical dolphin position 
on the no-change trajectory (i.e., theoretical no-change posi-
tion at tmax) and the distance from the sound source at tmax 

Fig. 2  Quantification of the horizontal movement response for two 
Risso’s dolphins exposed to foraging (Example 1) and social male 
stimuli (Example 2). Panels A–C correspond, respectively, to the 
three successive steps (1, 2 and 3) for the calculation of the coeffi-
cient of reaction. Panel A illustrates the calculation of the actual 
reaction score at tmax. The horizontal trajectory of the focal individ-
ual (continuous line) was obtained either by visual tracking (Exam-
ple 1) or using an unmanned aerial system (UAS-based tracking) 
(Example 2). Bold line corresponds to the playback trajectory, which 
is the trajectory of the focal individual during the sound exposure. 
The “sound source” arrow represents the natural drift of the play-
back vessel during the sound exposure. The no-change trajectory is 
represented by the dashed arrow and corresponds to the theoretical 

trajectory if the focal animal had kept its initial direction during the 
playback. The tmax point is the time at which the individual exhib-
its its maximal reaction. Panel B shows the calculation of the theo-
retical attraction score at tmax. The maximal  attraction trajectory 
is represented by the dashed line and corresponds to the theoretical 
trajectory if the focal animal had kept a continuous heading towards 
the sound source during the playback. Panel C represents the calcula-
tion of the coefficient of reaction. Example 1: the animal is closer to 
the maximal attraction trajectory than to the no-change trajectory, the 
coefficient of reaction is positive, thus is considered as an attraction 
response. Example 2: the animal has a course away from the maximal 
attraction trajectory, the coefficient of reaction is negative, thus con-
sidered as an avoidance response
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to the theoretical dolphin position on the maximal attraction 
trajectory (i.e., theoretical maximal attraction position at 
tmax) (Fig. 2B).

Step 3: Calculation of the coefficient of reaction

Variation in the position of the sound source and changes 
in trajectory prior to the start of the experiment produced 
variability in the geometry of the experiments. To render 
the coefficient of reaction independent from the experiment 
geometry, it was calculated as the ratio of the actual reaction 
score at tmax over the theoretical attraction score, for each 
playback experiment.

A coefficient of reaction with a positive or negative value 
indicated that the maximal movement response over the 
playback course was, respectively, an approach or an avoid-
ance response (Fig. 2C).

Statistical analysis

To investigate whether Risso’s dolphins discriminated 
between the three acoustic stimuli, Generalized Estimating 
Equation (GEE) models (Liang and Zeger 1986) were used. 
The effects of three predictors Stimulus (Fo, SF, SM), Year 
(animals tested in 2015, 2016, 2018 or in 2019) and play-
back Order (first, second or third playback) were tested on 
the response variable coefficient of reaction. To validate that 
the focal individual response was representative of the group 
response, a second model was fitted to test whether group 
size changed between the pre- and dur-periods. No change in 
group size indicated that group members remained together 
during the experiment phase. The GEE models included 
the focal group identity as a blocking unit to account for 
repeated measures. The coefficient of reaction and the 
group size were modelled as Gaussian response variables. 

A Jackknife variance estimator was used to avoid biases 
induced by the small sample size (Paik 1988). The model 
selection was based on a backward selection using p-values 
given by an ANOVA (Wald test) model: the factor with the 
highest non-significant p-value (> 0.05) was removed and 
the GEE model was refitted (Curé et al. 2012). Assumptions 
for the normality of the residuals and the homogeneity of 
variances were verified before running the analysis. GEE 
pairwise comparisons were performed with a Bonferroni 
correction applied at p-value < 0.025. All statistical analy-
ses were conducted using the software R (package geepack 
v1.3-1) (Carey et al. 2012).

Results

A total of 14 Risso’s dolphin focal individuals and associ-
ated groups were tracked and exposed to one (n = 7 groups), 
two (n = 5) or three (n = 2) playbacks (Table S1). Focal 
groups included six male groups, two female groups and 
seven mixed groups (Fig. 3, Table S1).

During playback, groups maintained the same group size 
(mean ± s.d. = 7 ± 4; n = 14 groups) as prior to the playback 
(no significant change in number of individuals between 
pre- and dur-periods; ANOVA: Χ2 = 0.40; p-value = 0.53). 
Group composition was moreover validated throughout the 
experiments from both the visual and UAS-based tracking. 
Hence, the movement trajectory observed at individual-level 
was coordinated with group members.

Risso’s dolphins significantly changed their movement 
trajectory in response to the playbacks. The best-fitting GEE 
model showed a significant effect of the factor Stimulus on 
the degree and direction of a change in movement (coef-
ficient of reaction; ANOVA: Χ2 = 12.2; p-value = 0.002). 
Playback order or year of exposure were not retained in 

Fig. 3  Risso’s dolphin avoid-
ance and attraction responses 
to conspecific sounds. Data 
represent the coefficients of 
reaction (mean ± s.e.m.) for the 
change in horizontal movement 
of focal animals exposed to 
foraging sounds, social female-
calf sounds and social male 
sounds. Coefficient of reaction 
> 0 indicates attraction, coef-
ficient of reaction < 0 indicates 
avoidance. Each focal individual 
is represented by a symbol
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the best-fitted GEE model. During six out of seven social 
female-calf playbacks and six out of seven foraging play-
backs, male and mixed focal groups changed their initial 
direction of horizontal movement to approach the sound 
source (Fig. 3; Table S1).

In contrast, during the majority of social male playbacks 
(five out of seven), both male and female groups, as well as 
mixed groups, changed their horizontal course away from 
the sound source. One male group (gg18_197) and one 
female group (gg16_168) showed an attraction to the social 
male stimulus.

Individuals exposed to multiple playbacks reacted con-
sistently. One mixed group exposed to two different ver-
sions of the foraging stimulus (gg15_191), responded with 
a strong approach response to both playbacks. Two out of 
three groups tested with both foraging and social female-calf 
stimuli approached the sound source during both playbacks. 
The mixed group exposed to foraging then to social male 
stimuli (gg16_171) approached the sound source in response 
to the first and showed an avoidance response to the second.

The avoidance response induced by the social male stimu-
lus was significantly different from the approach response 
exhibited during the foraging stimulus (mean (s.e.m.): − 33.0 
(− 18.4) vs. 51.2 (16.1); GEE: estimate ± s.d. = 84.2 ± 29.8, 
p-value = 0.005; Fig. 3) and during the social female-calf 
stimulus (51.7 (14.7); GEE: 84.7 ± 29.7, p-value = 0.004; 
Fig. 3). There was no difference between both attraction 
responses to the foraging and social female-calf playbacks 
(GEE: 0.5 ± 21.2, p-value = 0.98).

Discussion

Our study presents first evidence that cetaceans can eaves-
drop on conspecific sounds and adjust their behaviour 
according to the perceived behavioural context. Risso’s 
dolphins (Grampus griseus) exposed to foraging or social 
female-calf sounds approached the sound source location. 
In contrast, they avoided the location of male social sound 
playbacks.

Eavesdropping on perceived threatening stimuli can be 
used by animals to anticipate a potential costly interaction 
and to accordingly adjust a trajectory to avoid the poten-
tial detected threat (Valone 2007; Magrath et al. 2015). The 
horizontal avoidance response to male social calls suggests 
that Risso’s dolphins may perceive the presence of conspe-
cific males as a potential threat. Risso’s dolphins in Cali-
fornia showed a horizontal avoidance to killer whale sound 
playbacks simulating nearby presence of potential predators 
(Bowers et al. 2018). Further anecdotal support is provided 
by an avoidance response to one playback to killer whale 
sounds (this study, playback #2 of gg16_171 not included 

in the analysis, Table S1). These observations support our 
finding that Risso’s dolphins exhibit an avoidance strategy 
in response to a potential perceived threat. Risso’s dolphins 
may thus eavesdrop on their congeners’ male social sounds 
to anticipate and avoid a potential agonistic interaction. One 
identified male group exposed to male social sounds avoided 
the playback location potentially to anticipate forthcom-
ing agonistic interactions with other males (Hartman et al. 
2008). Avoidance of males by females is also in accord-
ance with natural observations of females and calves usually 
remaining apart from male groups (Hartman et al. 2008, 
2015). In addition, the avoidance response to male social 
sounds was observed in response to both sounds recorded 
in the studied area and unfamiliar sounds recorded in Cali-
fornia. This indicates that both stimuli are likely perceived 
as potential threat in spite of the familiarity criteria (Deecke 
et al. 2002).

Conversely, the attraction response to foraging sounds of 
conspecifics supports the diner bell effect hypothesis. Stud-
ies in bat species have demonstrated that eavesdropping on 
foraging sounds such as echolocation signals may facili-
tate the location of a food patch for eavesdroppers (Voigt-
Heucke et al. 2016). Thus, echolocation signals produced 
by Risso’s dolphins while foraging could be perceived as a 
feeding opportunity for female or male eavesdroppers, who 
may then initiate food searching behaviours, characterized 
by approach toward the location with foraging signals, deep 
dives and production of click series (Arranz et al. 2016). 
Further experiments are needed to increase sample size with 
tagged animals to explore more behavioural metrics, e.g., 
echolocation and diving behaviour, and to confirm the din-
ner bell effect hypothesis.

The attraction response to the social female-calf sounds 
could be explained by two main hypotheses, depending on 
the sex of receivers (McGregor 1992). As reported among 
a large number of taxa, if the receiving group is composed 
of males, social sounds produced by females could be per-
ceived as a potential mating opportunity (Mountjoy and 
Lemon 1991; Connor and Krützen 2015). In contrast, if the 
receiving group is composed of females, the calf calls con-
tained in the social female-calf stimulus may stimulate other 
females for alloparental care, as shown in terrestrial mam-
mals (Lee 1987; Lingle and Riede 2014).

Compared to the method used by Curé et al. (2012) to 
quantify the movement response, the new coefficient of 
movement response developed in the present study had the 
advantage to take into account potential multiple changes 
in the direction of horizontal movement occurring during 
the playback, as commonly observed in responding Risso’s 
dolphins. It can also be applied when there is a variability 
in the sound source position relative to the position of the 
focal individual across experiments, as this coefficient is 
independent of the experimental geometry (i.e., distance and 
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angle of the sound source from the dolphin path at playback-
onset). The reaction score was not impacted by the differ-
ent temporal resolutions of visual vs. UAS-based horizontal 
tracking methods (Table S1), which suggests that, for this 
species, a sampling rate of one position every 2 min was suf-
ficient to identify horizontal movement responses.

Strong added capability by the UAS-based tracking is 
unprecedented continuous monitoring and quantification of 
the behaviour of the animal and its group members, also 
subsurface. In particular, it was possible to record that ani-
mals often turned their head towards the sound source dur-
ing playbacks. This indicated that they could hear the sound 
stimuli and moreover, that they could orientate towards the 
sound source, potentially for sound localization (Movie S1). 
As expected, we did not observe any evidence of behavioural 
changes associated to the use of the UAS-tracking system. A 
recent study has also shown that a UAS flying over Risso’s 
dolphins at a lower height than the one we applied (7–15 m 
vs. 20–30 m) did not have any effect on animals’ behaviour 
(Hartman et al. 2020).

Conclusions

By developing a coefficient for quantifying horizontal move-
ment response, we showed that Risso’s dolphins eavesdrop 
on conspecific sounds. Sound eavesdropping allowed indi-
viduals to identify different foraging and social contexts 
and to adjust their behaviour accordingly, choosing to avoid 
or approach nearby conspecifics. Hence, Risso’s dolphins 
employ acoustic eavesdropping to mediate intra-specific 
interactions.
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