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Abstract
Face recognition is important for primate social cognition, enabling rapid discrimination between faces and objects. In 
humans, face recognition is characterized by certain cognitive specializations such as face-specific sensitivity to upright 
faces. The face inversion effect reflects the disproportionate inversion cost (i.e., poorer recognition of inverted compared to 
upright stimuli) for faces compared to non-face objects. Numerous studies have evaluated the face inversion effect in vari-
ous nonhuman primates, but the findings are highly variable and mixed, especially in monkeys. To address this inconsist-
ency, the current study employed a multilevel, phylogenetic meta-analysis on 52 effect sizes across 16 studies to quantify the 
magnitude of the face inversion effect in nonhuman primates. Overall, the difference in inversion costs for faces compared to 
nonface stimuli was small but not statistically significant (b = 0.31, se = 0.16, 95% CI [− 0.01, 0.62], p = 0.06). Additionally, 
this did not systematically vary between the family of species (chimpanzee or monkey) or type of face stimuli (conspecific 
or heterospecific). Ultimately, it cannot be concluded that the face inversion effect is a reliable phenomenon in either chim-
panzees or monkeys, suggesting that nonhuman primates may not use similar face-specific processing strategies as humans.
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Introduction

Face recognition is a highly adaptive cognitive ability inte-
gral for primate social cognition, because rapid recognition 
of friendly and non-friendly conspecific faces facilitates not 
only survival, but also successful social interaction among 
multiple group members (Griffin and Motta-Mena 2019). 
However, discriminating between faces is a computationally 
challenging ability, because faces are a highly homogenous 
class of visual stimuli that share the same basic features 
and configuration. Despite this, humans (Homo sapiens) 
can recognize thousands of individual faces accurately and 
quickly (Hsiao and Cottrell 2008). The ease with which 
humans can discriminate faces fundamentally depends on 

holistic processing. Accordingly, faces are not perceived 
and represented by their individual facial features, but they 
are represented as a unified perceptual whole (for review, 
Tanaka and Simonyi 2015). Therefore, sensitivity to this 
basic configuration enables accurate and rapid recognition 
of subtle variations in the basic configuration among hun-
dreds of unique faces.

Humans are remarkable at recognition for upright faces; 
however, when faces are presented upside down, this is 
marked by a large inversion cost, which is the decrease in 
accuracy and speed of recognition for inverted relative to 
upright stimuli (see meta-analysis, Bruyer 2011). Impor-
tantly, the inversion cost is much larger for faces compared 
to a wide range of other classes of visual stimuli including 
cars, scenes, and houses (Farah et al. 1995; Rossion 2008, 
2009; Yin 1969). The disproportionate inversion cost, a phe-
nomenon known as the face inversion effect (FIE), is due 
to inverted faces disrupting the canonical configuration to 
which holistic face-processing mechanisms are tuned. As a 
result, inverted faces cannot be processing holistically and 
elicit the use of feature-based recognition strategies that are 
similar to strategies used for non-face objects, but are less 
effective for face recognition (Farah et al. 1995; Rossion 
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2008, 2009). Importantly, feature-based strategies for non-
face objects are less sensitive to inversion and are more 
efficient for identifying non-face objects than faces. Taken 
together, this would indicate that faces are disproportion-
ately dependent on holistic processing compared to non-face 
objects (Farah et al. 1995; Rossion 2008, 2009).

The development of the FIE is widely debated but has 
been dominated by two hypotheses: the face-specific mech-
anism hypothesis (Kanwisher 2000; McKone et al. 2007; 
Yin 1969) and the expertise hypothesis (Diamond and Carey 
1986; Gauthier et al. 2000; Richler and Gauthier 2014). The 
latter suggests that the FIE is the result of face-specific cog-
nitive and neural specializations over human and nonhu-
man primate evolutionary history. This stems from a num-
ber of human and nonhuman primate findings including the 
original FIE (Yin 1969), infant visual preferences to upright 
face-like information (Goren et al. 1975), and face-selective 
neural sensitivity to upright faces in the fusiform face area 
(Kanwisher et al. 1998; Yovel and Kanwisher 2005). In 
contrast, the expertise hypothesis suggests that face percep-
tion is enabled by mechanisms that operate on classes of 
stimuli for which people have developed expertise. For faces, 
most humans have developed exceptional expertise due to a 
lifetime of experience of perceiving and recognizing faces. 
However, the visual system can develop expertise for other 
types of stimuli that share a first-order configuration such as 
cars, chess boards, and birds (Boggan et al. 2012; Bukach 
et al. 2010; Gauthier et al. 2000). Importantly, both hypoth-
eses contend that upright faces are processed holistically; 
the main difference is that the expertise hypothesis suggests 
this expert-like processing strategy is the result of massive 
exposure to faces, whereas the face-selective mechanism 
hypothesis suggests this processing strategy is due to innate, 
functionally specialized neural systems.

Face inversion effect in nonhuman primates

The FIE is one of the most widely studied face-processing 
phenomena in nonhuman primates including tamarins (Sagu-
inus oedipus; Weiss et al. 2001), baboons (Papio papio; 
Parron and Fagot 2008), long-tailed macaques (Macaca 
fascicularis; Dittrich 1990), Japanese monkeys (Macaca fus-
cata; Tomonaga 1994), squirrel monkeys (Saimiri sciureus; 
Phelps and Roberts 1994), and an infant gibbon (Hylobates 
agilis; Myowa-Yamakoshi and Tomonaga 2001). However, 
the majority of research has focused on chimpanzees (Pan 
troglodytes) and rhesus monkeys (Macaca macque) yield-
ing highly variable and inconsistent results (for review, Parr 
2011a; Rossion and Taubert 2019). For example, numer-
ous articles have shown that chimpanzees show a reliable 
FIE (Dahl et al. 2013; Parr 2011b; Parr and Heintz 2005; 
Parr et al. 2006; Weldon et al. 2013; Wilson and Tomon-
aga 2018; Tomonaga 1999, 2007), although this finding is 

not ubiquitous (Tomonaga et al. 1993; Kret and Tomonaga 
2016; Gao and Tomonaga 2018). In rhesus monkeys, there is 
a more symmetrical distribution of studies supporting (Dahl 
et al. 2007; Neiworth et al. 2006; Overman and Doty 1982; 
Tomonaga 1994; Vermeire and Hamilton 1998) and not sup-
porting (Bruce 1982; Dittrich 1990; Gothard et al. 2004; 
Parr et al. 1999; Rosenfield and Van Hoesen 1979; Weiss, 
et al., 2001) the existence of the FIE. Based on the current 
state of the literature, there is little cumulative evidence to 
suggest that nonhuman primates show similar face inversion 
effects as humans and the magnitude of this effect has never 
been estimated across the existing literature. Aside from 
known limitations due to small sample sizes and imprecise 
estimates, this large inconsistency may be driven by the large 
methodological heterogeneity between studies.

Methodological heterogeneity

One of the core methodological differences that contributes 
to inconsistency in the literature is the numerous operation-
alizations of the FIE. In its original instantiation, the crucial 
aspect was that the inversion cost was much larger for faces 
than for other non-face stimuli (Yin 1969). Despite this, 
numerous studies in nonhuman primates have designed stud-
ies and made conclusions about the inversion cost between 
upright and inverted faces, without comparisons to nonface 
stimuli (Tomonaga 1994; Dahl et al. 2009; Guo et al. 2003). 
In contrast, a number of studies have reported the relative 
inversion costs between face and nonface stimuli, which 
reflects the appropriate interpretation of the effect (Rossion 
2008, 2009). Regardless of definition, conclusions about the 
FIE from these studies are often compared directly, which 
contributes to the inconsistency in the existing literature 
(Parr 2011a).

In addition to differences in operationalization, the FIE is 
measured with various types of indirect and direct outcome 
measures in nonhuman primates. For example, a common 
indirect way of measuring recognition is through a visual 
preference paradigm called visual paired comparison (VPC), 
which leverages the fact that the visual system preferentially 
attends to novel stimuli. VPC is routinely used in nonverbal 
populations including infant humans and nonhuman pri-
mates since explicit recognition requires compliance with 
specific task instructions (e.g., “Select the face you remem-
ber”). In a face version of this task, subjects passively view 
a target face, then are subsequently shown the same face 
accompanied presented next to a novel face. Increased look-
ing time to the novel face compared to the previously seen 
face (i.e., novelty preference) would be a positive indicator 
of face recognition. In contrary, face detection/categoriza-
tion paradigms such as “Matching-to-sample” and “Go/
No Go” are direct ways of measuring face recognition that 
require explicit memory of previously seen faces. Subjects 
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are shown a target face (i.e., a sample) during an encoding/
study phase, which is followed by a two-alternative forced-
choice paradigm where subjects must select the target face 
from a distractor face (i.e., match to the sample). This is the 
most commonly used method for evaluating face recognition 
in humans and nonhuman primates, because it directly eval-
uates an explicit form of recognition requiring the subject 
to actively make judgements about previously seen stimuli.

In addition to the general task paradigm, studies also dif-
fer in the types of stimuli used. For example, some studies 
exclusively focus on conspecific faces (e.g., Bruce 1982; 
Calcutt et al. 2017; Gao and Tomonaga 2018), whereas oth-
ers focus on the inclusion of both conspecific and hetero-
specific faces (e.g., Parron and Fagot 2008; Pokorny et al. 
2011). Importantly, these studies have shown stimulus-
specific effects. For example, Pokorny et al. (2011) showed 
inversion effects of conspecific and human faces, but not 
chimpanzee faces or cars in a group of capuchin monkeys. 
In chimpanzees, Parr et al. (1998) showed similar results 
suggesting inversion effects for conspecific and human faces, 
but not capuchin monkey faces or cars. More recently, Kret 
and Tomonaga (2016) also found similar inversion effects 
for conspecific and human faces in chimpanzees. This indi-
cates that the type of face stimuli can have an impact on the 
presence of a FIE and may also moderate the magnitude of 
the FIE.

Synthesizing the existing literature

Primary research in comparative psychology is often lim-
ited by small sample sizes because of limited access to non-
human primates. Although not exclusive to comparative 
psychology, small studies are vulnerable to high sampling 
error, overestimating effect sizes, generating estimates in 
the wrong direction, and replication failures (Camerer et al. 
2018; Gelman and Carlin 2014). Fortunately, this issue can 
be addressed with the use of meta-analysis, a principled 
statistical procedure for aggregating data from multiple 
studies. Meta-analyses improves generalizability of results, 
confidence of published findings, and allows for a more pre-
cise effect size estimate than any individual study. In fact, 
without meta-analysis, it is nearly impossible to discern 
the direction, magnitude, and generalizability of observed 
effects from numerous published findings (Meehl 1954). 
Meta-analytic techniques can also provide information on 
publication bias, between-study variability (heterogeneity 
among studies), and moderation of effect size estimates due 
to sample- and study-related factors.

The fidelity of any meta-analysis is contingent on three 
fundamental principles including a precise operationaliza-
tion of the effect under evaluation, a clear set of inclusion 
and exclusion criteria, and proper assessment of methodo-
logical and statistical heterogeneity. Failure to adhere to 

these core principles can lead to the “garbage in, garbage 
out” phenomenon. Therefore, I first ensured consistency 
in outcome measures by operationalizing the FIE as the 
differential inversion cost for faces compared to non-face 
objects with the inversion cost being defined as the recogni-
tion disadvantage for inverted compared to upright stimuli. 
Although the FIE has been studied using face detection and 
visual preference paradigms, I only included “Matching-to-
sample” and “Go/No Go” behavioral paradigms of recog-
nition, because these are psychometrically related and the 
most commonly used paradigms in human and nonhuman 
primates. This also ensures consistency in outcome meas-
ures extracted from the existing literature. For example, I did 
not include visual preference paradigms, because it is widely 
argued that the novelty preference evaluates a different psy-
chological construct than face detection tasks (implicit vs. 
explicit recognition) and these often do not show convergent 
validity (e.g., Pascalis et al. 2004). Finally, I accounted for 
and assessed relevant sources of heterogeneity with the use 
of a random-effects model and the evaluation of potential 
moderating variables.

The primary goal of this study is to estimate a summary 
effect size from the existing literature to answer three pri-
mary questions: (1) overall, is there a FIE in nonhuman pri-
mates? (2) If so, what is the magnitude of this effect? (3) 
Does the magnitude of this effect differ between species? 
Considering the large inconsistency of published findings, 
no specific predictions were made about the direction, mag-
nitude, or moderation of face inversion effects in nonhuman 
primates. Although this study is not designed to explicitly 
test the face-selective mechanism or expertise account of the 
FIE, the current study can show support in favor of one or 
the other. For example, if the results show that the FIE is a 
statistically significant phenomenon in nonhuman primates, 
this would support the face-selective mechanism hypothesis 
indicating that face-selective sensitivity to upright faces is 
a common feature among all primates. However, this find-
ing would not necessarily rule out the expertise account 
of the FIE, because it is unlikely that any of the animals 
have extensive exposure to the non-face objects used in the 
literature. However, failure to find any evidence of a FIE 
in nonhuman primates would lend support to the expertise 
hypothesis indicating that these animals need more exposure 
and experience with numerous faces to develop a similar 
holistic processing strategy as humans.

Methods

Study search and identification

A PubMed database search was conducted on July 3, 2019 
(updated on November 8, 2019) with the following search 
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parameters: (“processing” OR “recognition” OR “recall” 
OR “perception” OR “memory”) AND (“primate” OR 
“monkey” OR “monkeys” OR “chimpanzee” OR “chim-
panzees” OR “bonobo” OR “bonobos” OR “Rhesus” 
OR “troglodyte” OR “troglodytes” OR “Macaca” OR 
“macaque” OR “macaques”) AND (“face” OR “facial” OR 
“object” OR “shape” OR “scene” OR “car” OR “automo-
bile” OR “house”) AND (“inversion” OR “upside down" 
OR “rotation” OR “inverted” OR “holistic” OR “configu-
ral”). In addition, the reference list from Parr (2011a) was 
appended to these search results. Finally, a manual reference 
search was conducted by screening the references lists of 
each article meeting full inclusion criteria from the initial 
search results. All Preferred Reporting Items for Systematic 
Reviews and Meta-analyses (PRISMA) guidelines were fol-
lowed including adherence to the PRISMA checklist (Sup-
plemental Table 1) and flow diagram (Fig. 1; Moher et al. 
2009).

Inclusion and exclusion criteria

Inclusion criteria

Articles must (1) include a sample of nonhuman primates; 
(2) report accuracy performance differences between upright 
and inverted stimuli (faces and/or objects) in a perception/
recognition task; and (3) report standardized mean change 
scores between these conditions (upright, inverted) or 
enough information to calculate one (e.g., Cohen’s d, t, M, 
SD, N, se, raw individual data).

Exclusion criteria

Articles were excluded if they were (1) not published in 
English; (2) not peer reviewed; (3) not an empirical study. 
If articles met inclusion criteria in all categories but failed 
to include information regarding the effect size, I emailed 
corresponding authors to request the relevant data. If the 
data were not provided, the study was excluded.

Study selection

Database search

Inclusion criteria were applied in two steps. First, all Titles 
and Abstracts from the initial PubMed search were screened 
for inclusion. Since this was the first level of screening, over-
inclusion was emphasized to maximize study yield. For 
example, abstracts were only excluded by demonstrating 
clear examples for exclusion such as not being published 
in English or not an empirical article (e.g., review or com-
mentary). After this, Full Text articles were screened for 

inclusion by evaluating the entire article for the primary 
inclusion components (see inclusion criteria).

Manual reference search

After all relevant articles were full-text reviewed, a manual 
search of each reference list was conducted on all articles 
meeting full inclusion criteria. To do this systematically, 
RegEx, a string pattern recognition syntax, was used to 
extract article titles from each of the reference lists. Once 
these articles were extracted and duplicates were removed, 
the article titles were screened for inclusion. Then, I repeated 
the two steps described above: (1) Title and abstract screen-
ing; and (2) Full-text review.

Data extraction and computing effect sizes

The FIE was defined as the disproportionate inversion cost 
for faces compared to nonface objects. Therefore, within-
subject accuracy performance for upright and inverted 
stimuli (faces and objects) was extracted to compute the 
standardized mean change score (Cohen’s dz) for each object 
class (Cumming 2012). For articles only reporting M, SD, 
and N, the following set of formulas were used to compute 
the standardized mean change scores between upright and 
inverted conditions (see Cumming 2012; Viechtbauer 2010):

where X2 is the upright mean score and X1 is the inverted 
mean score, and sdiff  is the difference in standard deviation 
between  scores calculated with:

where r is the correlation between X2 and X1 . Since this cor-
relation is rarely reported, a moderate correlation (r = 0.5) 
was assumed for all studies and a sensitivity analysis was 
conducted with various correlation imputations between 0 
and 1. The upright and inverted standard deviations are s2 
and s1 . For studies that reported paired t values, these were 
converted directly to dz (Cumming 2012; Lakens 2013):

Once all effect sizes, dz , were computed, the sample vari-
ances were computed with the following:

Cohen’s dz is known to overestimate the population effect 
size, especially when degrees of freedom are low (df < 50); 
therefore, dz was converted to Hedge’s g, which corrects for 

(1)dz =
X2−X1
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,
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√
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Table 1  Summary of the study and effect size characteristics, listed chronologically, for studies evaluating performance accuracy of upright and 
inverted stimuli in nonhuman primates

Study Study# ES
#

Species Stimuli Stimuli type N g se Lower Upper

Bruce (1982)[1] 1 1 Macaca fascicularis Face CS 6 0.05 0.41 − 0.75 0.85
Bruce (1982)[2] 1 2 Macaca fascicularis Face CS 6 0.06 0.41 − 0.74 0.86
Phelps and Roberts (1994)[1] 2 3 Saimiri sciureus Face HS 1 4.67 3.45 − 2.09 11.43
Phelps and Roberts (1994)[2] 2 4 Saimiri sciureus Nonface scene 1 1.64 1.53 − 1.36 4.64
Parr et al. (1998)[1] 3 5 Pan troglodytes Face CS 5 0.79 0.51 − 0.22 1.79
Parr et al. (1998)[2] 3 6 Pan troglodytes Face HS 5 1.62 0.68 0.29 2.95
Parr et al. (1998)[3] 3 7 Pan troglodytes Nonface car 5 0.59 0.48 − 0.36 1.54
Tomonaga (1999)[1] 4 8 Pan troglodytes Face HS 1 2.18 1.84 − 1.42 5.78
Parr (1999)[1] 5 9 Macaca mulatta Face CS 4 2.67 1.07 0.58 4.77
Parr (1999)[2] 5 10 Macaca mulatta Face HS 4 1.19 0.65 − 0.09 2.47
Parr (1999)[3] 5 11 Macaca mulatta Face HS 4 0.83 0.58 − 0.31 1.96
Parr (1999)[4] 5 12 Macaca mulatta Nonface car 4 2.3 0.95 0.43 4.17
Parr (1999)[5] 5 13 Macaca mulatta Nonface shape 4 0.12 0.5 − 0.87 1.1
Parr and Heintz (2005)[1] 6 14 Pan troglodytes Face CS 6 0.74 0.46 − 0.17 1.64
Parr and Heintz (2005)[2] 6 15 Pan troglodytes Nonface house 6 − 0.32 0.42 − 1.14 0.5
Parron and Fagot (2008)[1] 7 16 Papio papio Face both 7 − 0.03 0.38 − 0.77 0.71
Parr and Heintz (2008)[1] 8 17 Macaca mulatta Face CS 5 0.98 0.54 − 0.09 2.05
Parr and Heintz (2008)[2] 8 18 Macaca mulatta Face HS 5 1.06 0.56 − 0.04 2.15
Parr and Heintz (2008)[3] 8 19 Macaca mulatta Nonface house 5 0.99 0.55 − 0.08 2.06
Parr et al. (2008a)[1] 9 20 Pan troglodytes Face CS 6 1.17 0.53 0.13 2.21
Parr et al. (2008a)[2] 9 21 Pan troglodytes Face CS 6 1.34 0.56 0.24 2.45
Parr et al. (2008a)[3] 9 22 Pan troglodytes Face CS 6 2.04 0.72 0.63 3.44
Parr et al. (2008a)[4] 9 23 Pan troglodytes Face CS 6 3.13 0.99 1.18 5.07
Parr et al. (2008a)[5] 9 24 Pan troglodytes Face CS 6 1.17 0.53 0.13 2.21
Parr et al. (2008a)[6] 9 25 Pan troglodytes Face CS 6 1.4 0.57 0.28 2.53
Parr et al. (2008b)[1] 10 26 Macaca mulatta Face CS 8 1.14 0.45 0.25 2.04
Parr et al. (2008b)[2] 10 27 Macaca mulatta Face HS 8 0.81 0.41 0.01 1.61
Parr et al. (2008b)[3] 10 28 Macaca mulatta Face HS 8 0.97 0.43 0.13 1.81
Parr et al. (2008b)[4] 10 29 Macaca mulatta Nonface house 8 0.52 0.38 − 0.22 1.26
Parr et al. (2008b)[5] 10 30 Macaca mulatta Nonface Clip art 8 0.69 0.39 − 0.08 1.46
Parr (2011a, b)[1] 11 31 Macaca mulatta Face CS 6 0.91 0.49 − 0.04 1.86
Parr (2011a, b)[2] 11 32 Macaca mulatta Face HS 6 1.43 0.58 0.29 2.57
Parr (2011a, b)[3] 11 33 Pan troglodytes Face HS 6 0.11 0.41 − 0.7 0.91
Parr (2011a, b)[4] 11 34 Pan troglodytes Face CS 6 1.55 0.61 0.36 2.74
Parr (2011a, b)[5] 11 35 Macaca mulatta Nonface house 5 1.17 0.58 0.03 2.3
Parr (2011a, b)[6] 11 36 Pan troglodytes Nonface house 5 0.63 0.49 − 0.33 1.59
Weldon et al. (2013)[1] 12 37 Macaca mulatta Face CS 6 0.05 0.41 − 0.75 0.86
Weldon et al. (2013)[2] 12 38 Pan troglodytes Face CS 5 1.9 0.75 0.43 3.37
Kret and Tomonaga (2016)[1] 13 39 Pan troglodytes Face HS 5 0.06 0.45 − 0.82 0.94
Kret and Tomonaga (2016)[2] 13 40 Pan troglodytes Face CS 5 − 0.02 0.45 − 0.89 0.86
Kret and Tomonaga (2016)[3] 13 41 Pan troglodytes Face HS* 5 0.04 0.45 − 0.84 0.92
Kret and Tomonaga (2016)[4] 13 42 Pan troglodytes Face CS* 5 0.12 0.45 − 0.76 1
Kret and Tomonaga (2016)[5] 13 43 Pan troglodytes Nonface CS foot 5 0.02 0.45 − 0.86 0.89
Kret and Tomonaga (2016)[6] 13 44 Pan troglodytes Nonface HS foot 5 − 0.04 0.45 − 0.91 0.84
Kret and Tomonaga (2016)[7] 13 45 Pan troglodytes Nonface CS foot* 5 0.15 0.45 − 0.74 1.03
Kret and Tomonaga (2016)[8] 13 46 Pan troglodytes Nonface Car* 5 − 0.07 0.45 − 0.94 0.81
Kret and Tomonaga (2016)[9] 13 47 Pan troglodytes Nonface HS foot* 5 0.03 0.45 − 0.84 0.91
Calcutt et al. (2017)[1] 14 48 Cebus apella Face CS 9 2.77 0.73 1.33 4.21
Gao and Tomonaga (2018)[1] 15 49 Pan troglodytes Face CS 6 0.15 0.41 − 0.65 0.96
Gao and Tomonaga (2018)[2] 15 50 Pan troglodytes Nonface House 6 − 0.06 0.41 − 0.86 0.74
Gao and Tomonaga (2018)[3] 15 51 Pan troglodytes Nonface House 6 0.17 0.41 − 0.64 0.97
Wilson and Tomonaga (2018)[1] 16 52 Pan troglodytes face Both 5 1.09 0.57 − 0.01 2.2

g standardized mean change score (Hedge’s g), se standard error, CS conspecific stimuli, HS heterospecific stimuli
*Greyscale stimuli
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this overestimation bias and can be interpreted exactly like 
Cohen’s dz (Cumming 2012; Hedges, 1981):

Hierarchical data structure and sources of nonindepend-
ence (e.g., multiple effect sizes per study) are common in 
meta-analysis and methods of accounting for this multi-
level structure have only been recently developed (Assink 
and Wibbelink 2016; Cheung 2014, 2019). Nonhuman 
primate research has a fairly unique source of noninde-
pendence, which is reflected by the limited number of 
animals available for research. As such, the same indi-
vidual animals are often used for multiple published stud-
ies and these studies often report multiple effect sizes. As 
such, each animal location (e.g., Yerkes National Primate 
Research Center), unique study, and each effect size was 
uniquely dummy coded to model this nested structure. For 
the moderation analyses, the sample species, stimuli cat-
egory (face, object), and type of face stimuli (conspecific, 
heterospecific) corresponding to each effect size were 
extracted.

Phylogenetic relatedness

A phylogenetic tree was obtained from the primate 
10KTree database by selecting the species represented in 
the final dataset and evaluating 100 trees for convergence 
(Arnold et al. 2010). Then, the relevant phylogenetic cor-
relation matrix among species was extracted with ‘ape’ to 
specify the covariance structure of all subsequent models 
(Paradis and Schliep 2018).

Statistical analysis

Data were analyzed using multilevel meta-analysis via the 
‘metafor’ package for the statistical software R (R Core 
Team 2018; Viechtbauer 2010). Given the methodological 
heterogeneity in reviewed studies, a random-effects, phylo-
genetic meta-analytic model was used to estimate the overall 
effect size difference between face and nonface object inver-
sion costs, while accounting for dependencies in observa-
tions (e.g., multiple effect sizes per study; phylogenetic relat-
edness among species). Specifically, I fit a multilevel model 
to partition different sources of variance: sampling variance 
of the observed effect sizes, variance between effect sizes 
from the same study, and variance between studies. In addi-
tion to these sources of nonindependence, the covariance 
structure was specified explicitly based on the phylogenetic 
correlation matrix for species included in the analysis. This 
model was used to estimate the differences in inversion cost 
for faces and nonface objects, estimate within- and between-
study variability, and account for relatedness among species. 

(5)Hedge�s g =

(

1 −
3

4df−1

)

× dz .

This multilevel modeling approach, unlike traditional ones, 
properly handles dependency in observations, can include 
more effect sizes, achieves higher statistical power, and 
incorporates the phylogenetic relatedness among species 
(Cheung 2014; Lajeunesse 2009).

Sensitivity analysis

As shown in Eq. 2, the correlation between upright ( 
−

X2 ) and 
inverted ( 

−

X1 ) conditions is required, but studies rarely report 
this correlation making it impossible to directly compute 
Cohen’s dz. As recommended by Viechtbauer (2010) and 
Borenstein et al. (2009), various estimates of r (i.e., 0.1, 
0.3, 0.5, 0.7, 0.9) were inputted to evaluate if major changes 
in the summary estimates occurred with these systematic 
changes in the assumed correlation between the repeated 
measurements.

Moderation analysis

To evaluate effect size differences between monkeys and 
chimpanzees, the meta-analytic model was extended to 
include the moderator variable of species category where 
monkeys were defined by the following species: Cebus 
apella, Macaca fascicularis, Macca Mulatta, Saimiri sciu-
reus, and Papio papio. The chimpanzee category was com-
prised of Pan troglodytes. In addition, the moderator vari-
able of face stimuli was defined as either conspecific if the 
faces matched the sample species, or heterospecific if the 
faces did not match the sample species.

Results

Study selection

Full description of study screening and identification is 
shown in Fig. 1. The initial study search (PubMed and Parr 
2011a) yielded a total of 280 articles. After removing dupli-
cates and conducting a title and abstract screening, 196 arti-
cles were excluded (see reasons in Fig. 1). The remaining 
84 articles were full-text screened for inclusion of which 
16 met full inclusion criteria. It should be noted that five 
additional articles met inclusion with the exception of pro-
viding the relevant information to compute an effect size. All 
corresponding authors were emailed for the relevant data; 
however, zero authors responded, and the studies had to be 
excluded. The reference lists of each of the 16 studies meet-
ing full inclusion criteria (n = 566) were extracted, to con-
duct a manual reference search. After removing duplicates 
within the manual reference search and the initial search 
(n = 277), a title screening ruled out 247 nonrelevant arti-
cles (e.g., books, statistical packages). After another round 
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Fig. 1  PRISMA flow diagram of the article identification, screening, review process for the initial and manual search strategies with reasons for 
exclusion at each level
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of title and abstracting screening, and full-text review, zero 
articles met inclusion criteria from this method.

In total, 52 effect sizes from 16 unique articles were 
included in the meta-analysis. This dataset included at least 
43 unique nonhuman primates with representation from 6 
different species (see Table 1). Since many of the animals 
came from the same laboratories and sites, the study with 
the largest sample size from that site (e.g., Yerkes National 
Primate Research Center) was assumed to be the total num-
ber of unique animals (see Fig. 2 for multilevel structure). 
The sample sizes, means, standard deviations, effect sizes, 
and species names are presented in Table 1.

After selecting the 6 species represented in the final data-
set, all 100 phylogenetic tree estimates from 10Ktree con-
verged to the same relatedness structure (see Supplemental 
Materials). The extracted correlation matrix was used to 
specify the covariance structure in all subsequent models.

Summary effect size differences

The overall effect size differences in inversion cost was 
larger for faces than for nonface objects (b = 0.31, se = 0.16, 
95% CI [− 0.01, 0.62], p = 0.06); however, this failed to 
reach statistical significance (see Fig. 3). Consistent with 
the choice of a random-effects model, there was large het-
erogeneity among the included effect sizes (Q = 78.56, 

p = 0.006, I2 = 77.85%). Furthermore, the phylogenetic mul-
tilevel model revealed that this heterogeneity was due to the 
phylogenetic relationship among species (61.63%), differ-
ences between animal locations (8.00%), and between-study 
variation (8.29%). In contrast, there was virtually no within-
study variability (0.00%). Since only 16 unique studies were 
obtained from the systematic search, “small study effects”, 
like publication bias, could not be evaluated, because all 
methods of assessment are unreliable when the number of 
studies is low (Debray et al. 2018).

Simple main effects showed that the summary effect 
size was large for faces (Hedge’s g = 1.13, se = 0.59, 95% 
CI [− 0.05, 2.31], p = 0.06) and objects (Hedge’s g = 0.82, 
se = 0.59, 95% CI [− 0.38, 2.03], p = 0.17), but both failed 
to research statistical significance. Regardless, the summary 
effect size for faces was larger than objects, but estimated 
imprecisely.

Effect of species category and face stimuli 
(moderation analysis)

One of the core goals of this study was to evaluate the extent 
to which monkeys and chimpanzees may differ in either the 
presence or differential magnitude of the FIE. Consistent 
with the overall model, the FIE was not moderated by spe-
cies category such that monkey and chimpanzee inversion 

Fig. 2  Diagram of the multilevel structure inherent in the meta-ana-
lytic dataset. Individual effect sizes (k = 52) were nested within study 
(n = 16), which were nested within animal groups from various insti-

tutions. We specified this multilevel structure for all statistical models 
to account for nonindependence in the data. Dashed lines correspond 
to the specific effect sizes for chimpanzees (as opposed to Monkeys)
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costs were comparable (b = − 0.17, se = 0.32, 95% CI [0.81, 
0.48], p = 0.61). Similarly, the FIE was not moderated by the 
type of face stimuli such that the magnitude was not differ-
ent between conspecific and heterospecific faces (b = 0.09, 
se = 0.21, 95% CI [− 0.33,0.52], p = 0.67). Two studies were 
excluded when evaluating this moderator variable since 
effect sizes were averaged across conspecific and hetero-
specific faces (see Table 1).

Sensitivity analysis

For 32 of the effect sizes, the standardized mean change 
score (Cohen’s dz) was computed directly from paired t val-
ues. However, for 20 of the 52 effect sizes (38%), Cohen’s dz 
was computed from the M, SD, and N while inputting various 
correlation values (see Eq. 2). The overall summary effect 

size between faces and nonface objects was robust to differ-
ences in these various correlation imputations (r0.1 = 0.29, 
r0.3 = 0.30, r0.5 = 0.30, r0.7 = 0.32, r0.9 = 0.35) indicating that 
regardless of the correlation between upright and inverted 
conditions, the effect remained relatively unaltered.

Discussion

This is the first meta-analysis quantitatively synthesizing 
the FIE across the existing nonhuman primate literature. 
The primary goals were to determine if there was a reli-
able FIE in nonhuman primates, quantify the magnitude of 
this effect, and evaluate if this effect was different in chim-
panzees and monkeys. This meta-analysis revealed that 
when data were aggregated for at least 43 unique subjects, 

Fig. 3  Multilevel forest plot displaying the standardized mean change 
scores (Hedge’s g) for each study with effect sizes nested within study 
(indicated by bracket). The solid black interval at the bottom reflects 
the overall summary effect for faces (Hedge’s g = 1.13, se = 0.59, 95% 

CI [− 0.05, 2.31], p = 0.06). The solid grey interval reflects the over-
all summary effect for nonface objects (Hedge’s g = 0.82, se = 0.59, 
95% CI [− 0.38, 2.03], p = 0.17). Center diamonds represent the point 
estimates with the line interval representing 95% confidence intervals
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nonhuman primates showed a larger inversion cost for faces 
(Hedge’s g = 1.13) compared to nonface objects (Hedge’s 
g = 0.82); however, this failed to research statistical sig-
nificance (p = 0.06). Importantly, neither the presence nor 
magnitude of this effect, was moderated by species category 
(chimpanzee, monkey) or type of face stimuli (conspecific, 
heterospecific). While it appears that the faces generate a 
higher inversion cost than objects, this phenomenon was not 
statistically significant.

Considerable debate has centered on whether chimpan-
zees and/or monkeys show reliable face inversion effects 
similar to that of humans (Parr 2011a; Rossion and Taubert 
2019). For example, previous reviews of this literature have 
concluded that the FIE is reliably found in chimpanzees and 
inconsistently observed in monkeys (Parr 2011a); however, 
this interpretation of the existing literature was not ubiqui-
tous (Rossion and Taubert 2019), and is not supported by the 
current meta-analysis. Without a quantitative meta-analysis, 
it is unclear how one would combine, weight, and assign the 
appropriate beta weights for each related study that differ on 
a number of methodological factors in a way that is objective 
(Meehl 1954). As such, numerous speculations have been 
generated to explain why chimpanzees, but not monkeys, 
show face inversion effects. Much of this discussion has 
been centered on why these different primates would have 
qualitatively different face-processing strategies. Despite 
these hypotheses, the data presented in this meta-analysis 
suggest nonhuman primates do not reliably suffer a dispro-
portional inversion cost for faces compared to other objects. 
Furthermore, there is no strong evidence that chimpanzees 
and monkeys have different inversion costs for faces relative 
to non-face objects suggesting that face-specific sensitivity 
may not be the result of socio-ecology, visual bias to con-
specific faces, or phylogenetic relationships. Therefore, pri-
mary studies showing the presence of face inversion effects 
in chimpanzees or monkeys are likely study-specific findings 
that may be driven by sampling error or lack of an appropri-
ate control condition.

Small sample sizes mark an obvious design limitation 
in most nonhuman primate research. As such, parameter 
estimates are extremely variable and may be in the wrong 
direction (Gelman and Carlin 2014; Ioannidis 2005). Of 
the studies reviewed here, sample sizes ranged from 1 to 9. 
While huge barriers preclude the collection of large nonhu-
man primate samples, the research community should be 
cautious when making strong conclusions about neural and 
cognitive mechanisms in chimpanzees and monkeys. As the 
data presented here show the host of speculations as to why 
chimpanzees, but not monkeys, show inversion effects may 
be informed by spurious findings. One possible solution to 
this small sample problem is the utilization of prospective 
meta-analysis. This approach, unlike the retrospective strat-
egy used here, involves groups of researchers at different 

sites or institutions conducting multi-center studies in which 
methodology heterogeneity can be controlled and sampling 
error reduced (i.e., larger and more generalizable samples). 
Another solution lies in the use of Bayesian statistics. Spe-
cifically, the incorporation of prior knowledge (previous 
studies) and the ability to update the current state of knowl-
edge based on new data (future studies). This inference strat-
egy has become more common in ecology and facilitates a 
cumulative science in which future studies can directly build 
from previous studies. This is particularly helpful in primate 
research, when the availability of large samples is limited or 
even impossible to obtain.

The current study was not designed to directly assess 
the face-selective mechanism  hypothesis   or expertise 
hypothesis related to the development of holistic process-
ing. However, the absence of a FIE in nonhuman primates 
after quantifying the existing literature using meta-analysis 
has clear implications for the two dominant hypotheses 
related to development of holistic processing. For exam-
ple, the face-selective mechanism hypothesis suggests that 
face-specific holistic processing is an innate feature of 
primate face processing due to the importance and social 
relevance of faces in evolutionary history. However, this 
meta-analysis does not support such account of holistic 
processing since there was no evidence of a FIE in either 
chimpanzees or monkeys. If such face-specific mechanisms 
were in place at birth, there should have been a clear FIE at 
least in chimpanzees. In contrary, advocates of the exper-
tise hypothesis would argue that the absence of a FIE is 
due to the lack of exposure to a large amount of faces and 
non-face objects. Furthermore, this may be the result of 
nonhuman primates routinely reared in unnatural settings 
altering the development of face-specific cognitive abilities 
like holistic processing.

Even though this meta-analysis represents the largest 
aggregation of data relevant to the FIE in nonhuman pri-
mates, all the animals were raised in Barren, Institutional, 
Zoo, and other Rare Rearing Environments (BIZARRE; 
Leavens et al. 2010). As such, the extent to which the results 
reported in this meta-analysis generalize to the population of 
chimpanzees and monkeys is unknown. For example, there 
are a number of studies that show that institutionalized non-
human primates that are raised in unnatural environments 
can develop very different visual perceptual and commu-
nicative abilities than naturally dwelling chimpanzees (for 
review, Leavens and Racine 2009; Leavens et al. 2009). 
Considering this and the fact that nonhuman primates are 
usually trained to perform a specific task (e.g., face detection 
task), there is no reason to think that the results presented in 
this meta-analysis would generalize to wild nonhuman pri-
mates as a whole. However, the failure to find a statistically 
significant FIE in nonhuman primates suggests that at least 
for BIZARRE nonhuman primates, the FIE is not reliable 
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phenomenon. Future research can make great contributions 
to the field by developing more ecologically valid methods 
of face perception that can be generalized the population of 
nonhuman primates as a whole.

This study was limited by its input data. For example, 
while the FIE is a commonly studied phenomena in nonhu-
man primates, this literature is inherently small making it 
difficult to derive precise estimates. In addition, this limita-
tion was accentuated, because five studies met full inclusion 
criteria but did not report relevant data. Upon email request, 
zero authors responded to the data request. This would have 
increased the total number of studies by 31%, providing a 
more precise estimate of the FIE. In addition, due to the lim-
ited number of studies, assessment of “small study effects”, 
which can include publication bias, was not possible. Finally, 
all the studies published on this topic are methodologically 
unique. That is, not one single study did the exact same thing 
as another. As a result, the FIE was evaluated using a vari-
ety of paradigms including matching-to-sample, delayed 
matching-to-sample, visual paired comparison, Go/NoGo, 
and the oddity task. To reduce the between-study heteroge-
neity, only studies that used a matching-to-sample, oddity 
paradigm, or a Go/NoGo task were included since these all 
measured explicit recognition performance. However, the 
exclusion of visual preference paradigms limits the number 
of studies reviewed here.

Conclusion

This is the first quantitative synthesis of the commonly stud-
ied FIE in nonhuman primates. The existing literature has 
been widely inconsistent on whether nonhuman primates 
show a FIE similar to humans. This meta-analysis addresses 
the apparent inconsistencies in the literature by pooling data 
across numerous studies and estimating the magnitude of 
the FIE in nonhuman primates. The differential inversion 
cost for faces compared to non-face objects was small, but 
not statistically distinguishable from each other. Importantly, 
this effect was not different between chimpanzees and mon-
keys or was it influenced by conspecific or heterospecific 
face stimuli. The failure to find reliable evidence of a FIE 
suggests that nonhuman primates may not have similar face-
specific sensitivity to upright faces as humans.
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