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Abstract
Behavioural plasticity is an advantageous trait for animals living in dynamic environments, and can be induced through 
learning. While some behavioural traits are innate, others are framed by experience and learning during an individual’s 
lifetime. Many studies have investigated cognitive abilities in fish species from contrasting environments, but the relative 
contribution of natural selection versus behavioural plasticity in cognitive variability remains equivocal. Furthermore, rear-
ing conditions in laboratories are often mundane, failing to encourage natural behaviour in the species used in these studies. 
Here, we captured juvenile gobies (Bathygobius cocosensis) from intertidal rockpools, and raised them in captivity under 
varied environmental enrichment treatments that mimic variation observed in coastal habitats. When tested in a simple spatial 
learning task, individuals from complex rearing treatments (rock or oyster substrate) reached learning criteria faster than those 
reared in less complex (seagrass) and homogenous environments (sand substrate). Interestingly, gobies reared in complex 
environments demonstrated longer latencies to start the task than gobies in homogeneous treatments. Our results indicate 
that cognitive ability is strongly shaped by individual experience during ontogeny, and exposure to reduced environmental 
complexity in early life leads to reduced cognitive abilities in intertidal gobies.
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Introduction

Adaptation to environmental change is an important driv-
ing force of evolution (Darwin 1859) and is often driven or 
buffered by behavioural plasticity (Brown 2012). Phenotypic 
plasticity is central to dealing with short-term environmen-
tal change (Price et al. 2003, reviewed in; Ghalambor et al. 
2007; Nussey et al. 2007), whereby individuals can adopt 
new and beneficial responses better suited to contemporary 
conditions, resulting in increased fitness through novel and 
plastic behaviours (West-Eberhard 1989; Pigliucci 2001; 
Dukas 2013). In cases where genotype expression is greatly 
influenced by biotic or abiotic factors of the environment 
in which they exist (G × E interactions, Lynch and Walsh 
1998), individuals with identical genotypes can exhibit dif-
ferent phenotypes depending on experience. Thus, individu-
als with similar genotypes raised in different environments, 

particularly early in life, often vary in their behaviour 
(Rosenzweig and Bennett 1996).

Typically, behavioural repertoires are underpinned by 
neurological substrates in the brain, such that brains and 
behaviour evolve and develop co-dependently. Individuals 
raised in homogeneous, or otherwise, predictable environ-
ments tend to have reduced cognitive capacity and asso-
ciated brain regions compared to those raised in dynamic 
and structurally complex environments (Clayton and Krebs 
1994; Healy et al. 1996; Mathews et al. 2005; Kihslinger 
et al. 2006). For example, caching avian species demonstrate 
enlarged hippocampi relative to their non-caching cousins, 
having to deal with increased visuospatial demands of recall-
ing hidden caches (e.g., Krebs 1990; Krebs et al. 1996; Shet-
tleworth 1995; Shettleworth and Hampton 1998). Similar 
findings have been reported in fish (reviewed in Kotrschal 
et al. 1998), where size of the telencephalon (analogous to 
the hippocampus) shows a positive correlation with struc-
tural complexity of environmental origin (e.g., Näslund et al. 
2012; Park et al. 2012). In guppies (Poecilia reticulata), for 
example, the telencephalon in lab reared individuals showed 
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a 19% size decrease compared to those from wild popula-
tions (Burns et al. 2009).

As environmental complexity influences brain morphol-
ogy, it will invariably lead to associated improvements in 
cognitive capability, and one such way this is demonstrated 
is through spatial learning. Everyday behaviours, such as 
foraging and predator avoidance, require an intricate knowl-
edge of the spatial distribution of resources and shelters 
(Dodson 1988; Odling-Smee and Braithwaite 2003; Odling-
Smee et al. 2011), and this should favour an ability to learn. 
This is especially critical in aquatic environments, where 
resources may shift, so the need to keep spatial informa-
tion updated is crucial. Fish occupying structurally com-
plex environments develop enhanced spatial learning abili-
ties when compared to individuals raised in barren settings. 
For example, zebrafish (Danio rerio) learn food locations 
faster when reared in heterogenous environments (Spence 
et al. 2011) and sticklebacks (Gasterosteus aculeatus) from 
the structurally complex littoral zone demonstrate superior 
spatial learning skills compared to their sympatric, pelagic 
counterparts (Odling-Smee et al. 2008). Sticklebacks from 
these varying habitats also vary in cue use, likely due to the 
availability of landmarks in the littoral zone, compared to 
the homogenous, featureless pelagic zone, where individuals 
must navigate using egocentric information.

Laboratory-based investigations have become increas-
ingly common in cognitive studies involving fish; however, 
laboratory aquaria are generally devoid of complexity, often 
leading to abnormal and inflexible behaviour (e.g., Brown 
et al. 2003; Näslund and Johnsson 2016). Some compara-
tive cognitive studies suggest that habitat enrichment can 
facilitate cognition to levels observed in wild stocks (Brown 
and Day 2002; Braithwaite and Salvanes 2005; Odling-Smee 
et al. 2008). For example, learning ability in the striped 
knifejaw (Oplegnathus fasciatus) improved when individu-
als were reared with submerged structures to enhance envi-
ronmental complexity (Makino et al. 2015), while Mahseer 
(Tor putitora) shows significantly higher exploratory behav-
iours and antipredator responses when reared in enriched 
conditions (Ullah et al. 2017). Thus, there is little doubt 
that fish show very high capacity for both behavioural and 
neurophysiological plasticity to changing environments.

Owing to the energetic requirements of the underly-
ing neural mechanisms, the costs of learning are such that 
they should only be invested in if required by ecological 
demands (Robinson and Dukas 1999; Mery and Kawecki 
2003; Odling-Smee et al. 2008). As phenotypic plasticity is 
a beneficial adaptation in changing environments, species 
that inhabit a range of environments make ideal research 
candidates to investigate the relationship between environ-
mental complexity and cognition. The intertidal zone is one 
such environment with a number of diverse niches that vary 
in stability. For example, intertidal rockpools are highly 

dynamic, and individuals co-ordinate their movements with 
the changing tides (Martins et al. 2017). The rockpools 
themselves are physically complex in structure, but relatively 
stable owing to some protection from the rocky platforms. 
In contrast, sandy beaches are largely featureless and prone 
to substratum shifts with the tides.

The family Gobiidae is an extensive group of benthic 
fishes commonly found along the intertidal zone and in the 
pools amongst rocky platforms (Thacker and Roje 2011). 
Early investigations on this group showed that they have 
incredible navigation abilities (Aronson 1951, 1971; Markel 
1994) and subsequent studies have revealed a wide range of 
behavioural and life-history differences depending on phylo-
genetic origin (Thacker and Roje 2011). We have previously 
shown that gobies collected from structurally complex rock-
pools demonstrate superior spatial learning skills, a pref-
erence for different cue types and larger telencephala than 
gobies from bare, sandy shore habitats (White and Brown 
2014a, b, 2015a, b). Although comparisons between species 
highlight the impact of environmental influence on cognitive 
function, they cannot differentiate between inherent versus 
acquired traits.

Here, we investigated how a shift from complex to simple 
environments from early ontogeny to later life stages impacts 
the spatial learning capabilities of a ubiquitous marine goby 
species found along the east coast of Australia. Juveniles 
were collected from one location and reared under differ-
ent enrichment regimes to elucidate the degree of behav-
ioural plasticity in the context of spatial learning. Each of 
the rearing environments mimicked the main micro-habitats, 
where these fish are found in the intertidal zone, and vary 
in their degree of physical complexity; sandflats, sea grass 
beds, oyster beds, and intertidal rock pools. We predicted 
that prolonged exposure from early ontogeny to these dif-
ferent habitats would result in variation in cognition, such 
that those fish reared in complex habitats would develop 
enhanced spatial learning capabilities compared to those 
raised in homogenous treatments.

Methods

Test animals

The goby species Bathygobius cocosensis is ubiquitous 
along the NSW coastline, but is particularly abundant in 
the rockpools in the intertidal zone. Individuals of all life 
stages can be found in the naturally occurring pools along 
the rocky platform. Breeding occurs in spring, and larvae 
enter a 4-week pelagic phase post-hatching, before meta-
morphosing and settling onto the benthos as juveniles (Thia 
et al. 2018). Juvenile gobies were collected from Dee Why, 
NSW, Australia, using small, hand held nets, during January 
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and February of 2017. A total of 56 juveniles were col-
lected, ranging from 7 to 10 mm, and transferred to the Sea 
Water Facility at Macquarie University in a large bucket 
(10 l) of aerated seawater. Once there, they were slowly 
acclimatised to a 70 L opaque-white, plastic holding tub 
(64.5 × 41.3 × 27.6 cm) linked to a recirculating system with 
a 3 L/min flow rate. The tub had a 15 mm hose inlet and a 
25 mm PVC outlet, covered with 200 μm mesh to prevent 
gobies escaping. The young gobies were allowed to accli-
mate in this housing tub 4 weeks, during which they were 
introduced to a diet of frozen Artemia infused with pow-
dered Polylab Nano Food Roids. They were also given finely 
crushed commercialised Artemia flakes.

Housing

After the settling period, gobies were randomly assigned 
to a micro-habitat type and introduced to the tidal tank 
(n = 14 per treatment). This tank was made of 6 mm glass 
[144 cm (L) × 50 cm (W) × 40 cm (H)], and divided into five 
parts, four of which were 33 cm long, separated by four 
black acrylic partitions [50 cm (L) × 0.5 cm (W) × 45 cm 
(H)]. Each partition had three holes (diameter 5 cm) cov-
ered by 200 μm mesh, fine enough to stop gobies from pass-
ing through, but coarse enough to allow sufficient water 
flow between sections. Each of the four sections formed a 
micro-niche rearing chamber. Two chambers represented 
relatively homogenous habitats (fine sand substrate with 
and without seagrass Zostera muelleri) and the other two 
rocky platform habitats (a mixture of live oyster formations 
and broken oyster fragments and a makeshift rockpool on a 
bed of coarse shell grit, surrounded by larger stones). These 
chambers mimicked the most common coastal habitats along 
the NSW coastline: open sand, seagrass beds, oyster reefs, 
and intertidal rock pool habitats, respectively. A smaller 
chamber (12 × 50 × 40 cm) on one end of the housing cham-
bers contained the drainage mechanism used to simulate 
tides. This chamber was fitted with a PVC outlet pipe (5 cm 
D × 25 cm H) which, at high tide, emptied directly into the 
sump below (144 × 50 × 40 cm). An additional three holes 
were fitted with 20 mm solenoids alongside the main outlet, 
also draining to the sump below. These solenoids were con-
trolled by an automated sprinkler system (Hunter Pro-C 16 
Station Modular Controller). The automated system opened 
all solenoids at a set time and drained the tank for a period 
of 6 h, after which the water level dropped to 15 cm deep. 
At high tide, when the solenoids were closed, the water was 
35 cm deep.

To minimise interaction with external factors, the tank 
was surrounded with polystyrene foam and food was pro-
vided automatically. An automatic feeder (Jebao DP-4) with 
four separate pumps was arranged with each pump outlet 
leading to one of the four micro-niche sections of the tank. 

Feeding into the pumps was a 1 L flask with a mixture of 
800 ml of saltwater, 200 ml of aged freshwater, and approxi-
mately 25 g of commercial aquarium foods (Ocean Nutrition 
Frozen Artemia and Marine Mix). The mixture was kept aer-
ated and agitated to allow easy flow through the automatic 
feeder. Each pump was programmed to release different 
amounts of the pre-prepared mix twice daily in the morning 
and afternoon at the changeover between low (35 ml) and 
high tide (55 ml).

The gobies were kept in this tank for 12 months until they 
reached approximately 3–4 cm and were large enough to be 
tagged easily. Each group of gobies was assigned a different 
tagging colour and sequence according to the micro-habitat 
that they were housed in. For tagging procedures, each goby 
was placed in a bath of MS222 and sodium bi-carbonate 
(50 mg per 1 L saltwater) for 30–60 s until equilibrium was 
disrupted. They were then tagged on one of the six possible 
sites beneath transparent scales along their dorsal surface 
with elastomer ID tags (VIE: Marine Technology, Inc. 2008) 
for individual identification. The gobies were also measured 
for total length (TL) and weighed, then placed in an aerated 
bucket of saltwater for recovery. This process took less than 
2 min per goby, and each individual recovered within 5 min. 
They were then returned to the tidal tank for 1 week for full 
recovery.

Test apparatus

The “plus” maze used was of the design described by White 
and Brown (2014a), which could be arranged to form a 
t-maze (Fig. 1). The maze contained a fine sand substrate 
approximately 1 cm thick and was submerged in a large 
fibreglass tub (120 × 75 × 19 cm) with water 12 cm deep. 
Four large black barriers were erected around the maze to 
discourage the gobies from using external cues for orienta-
tion. Each of the four ends of the maze had a clear food 
dish (3 cm diameter, 1.5 cm deep) and a shelter made from 
halved PVC piping (7 cm long, 1.25 cm radius). One of these 
shelters was fitted with clear plastic over both ends to block 
access, and was used as the incorrect choice shelter during 
the trials. The shelter appeared functional, but the plastic 
prevented the fish from entering. A camera was mounted 
above the maze on a steel frame to record all trials, and the 
footage uploaded to a hard drive. Each group of gobies was 
introduced to the maze for a 24-h acclimation period, where 
they had full access to the maze and food inside the food 
dishes. They were then returned to their respective micro-
niche for another 24 h until testing began.

Trials

To account for possible lateralisation bias, each goby was 
randomly assigned to left or right side training prior to 
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commencing trials (Brown and Braithwaite 2004). Each 
goby was tested alone, three times per day, beginning with a 
3-min introduction to the start box. For orientation purposes, 
a landmark (small marble, 1.2 cm diameter) was placed in 
the junction of the maze. The use of a marble ensured that 
none of the subjects were familiar with the landmark, and 
thus, neither group could be at a disadvantage from others. 
The landmark was placed slightly to the left in trials where 
the goby was assigned to choose the right arm, and vice 
versa. This way, the goby had to turn away from the land-
mark to choose the rewarded arm.

Once the individual was settled in the start box, the sepa-
ration door was lifted and the trial began. The exit time, the 
side of choice and total trial time were all noted. The exit 
time was recorded when at least half of the body was outside 
of the start box. Trials were finished when a goby entered 
either the left or right reward box, or a maximum time of 
10 min passed. In cases where gobies did not exit in 10 min, 
they were considered to have failed the trial. When gobies 
chose the correct side, the removable partition was added to 
prevent their escape, and they were immediately rewarded 
with Artemia, delivered via pipette into the food dish. When 
the incorrect choice was made, gobies were kept isolated for 
3 min in their choice box with no food reward and no access 
to the shelter. They were then gently ushered into the correct 
reward arm to access the shelter and rewarded with food, 
though this practice was discontinued after the first 5 days 
of trials, after which they were only given food if they chose 

the correct side. When gobies chose the correct side for three 
trials across five consecutive days successfully (i.e., 15 trials 
consecutively), they were considered to have learnt the task 
and trials ceased. Between each trail, the reward location 
became the new start location, which meant that the fish 
could not rely on extra-maze cues to solve the spatial task. 
Rather, they had to use the landmark or egocentric informa-
tion (i.e. turn direction).

Statistical analyses

In most cases, data were normally distributed and analysed 
using parametric tests, or log transformed to achieve a nor-
mal distribution. Exit time from the start box was used as a 
measure of motivation. Each goby had three exit times per 
day, which were then averaged for a daily exit time per indi-
vidual. We used data from the first, fifth, and tenth days of 
the spatial task and the data were log transformed to achieve 
a normal distribution. These days were chosen as a temporal 
representation of when gobies were new to the maze (day 
1), becoming accustomed to the maze and the food reward 
(day 5) and when the learning curve was well established 
with only two gobies having reached criteria (day 10). Size 
class was based on TL, where < 3.49 cm were small fish 
and > 3.50 cm were large fish. We used a repeated measures 
ANOVA to analyse exit time against environmental enrich-
ment and size class as independent variables. The same pro-
tocol was applied when analysing total trial time, calculated 
from the exit time value to the moment an individual entered 
either the correct or incorrect box.

We used ANOVA to examine the effects of environmental 
enrichment and size class on the number of days to reach 
criteria and a Fisher’s post hoc test to determine the pairwise 
differences between the four enrichment treatments.

To analyse performance trends as influenced by enrich-
ment type, each goby was given a binary score (0 or 1) based 
on correct or incorrect choice in the maze. After three trials 
per day, each goby was assigned the average of this score 
for a daily score. We analysed the effect of environmental 
enrichment and size class on daily scores between treatment 
groups for the first, fifth, and tenth days of trials using a 
repeated measures ANOVA. By the tenth day of trials, only 
two individuals had reached criteria, and were given scores 
of 100% for analysis purposes. All analyses were performed 
using StatView Version 232 5·0·1 (SAS Institute Inc. 1998).

Results

Days to reach criteria

There was a significant effect of enrichment in  rear-
ing environment on the number of days to reach criteria 

Fig. 1  Diagram of the spatial learning task. Letters indicate the 
sequence of start box positions for 3 consecutive trials starting at 
position A. The arrow indicates the correct route a right-trained fish 
had to follow to obtain food and shelter
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(F3,24 = 3.804, p = 0.023; Fig. 2). Body size had no effect on 
the number of days to reach criteria and there was no interac-
tion between rearing environment and body size (p > 0.05). 
Post hoc analyses showed that fish reared in rockpool and 
oyster bed environments reached criteria faster than those 
reared in seagrass (Fisher’s PLSD p = 0.014, p = 0.004, 
respectively). Gobies reared in the oyster bed environment 
also reached criteria significantly faster than those in the 
sand environment (Fisher’s PLSD p = 0.02).

Daily scores

Daily scores indicate how many correct choices the fish 
made during the day. There was a significant effect of enrich-
ment in rearing environment on daily score (F3,24 = 4.881, 
p = 0.009; Fig. 3). Body size was not significant, nor was 
the interaction between rearing environment and body size 
(p > 0.05 in both cases). There was a significant effect of trial 
day on mean daily score (F2,48 = 6.362, p = 0.004); scores 
generally improved with increasing trial number. We also 
found an interaction between trial day and environmental 
enrichment (F6,48 = 3.159, p = 0.011; Fig. 4), suggesting that 

the rate of learning over time varied depending on which 
rearing environment the fish were exposed to.

Post hoc analyses revealed that daily score means on 
day 1 were similar across treatment groups (Fisher’s PLSD 
p = 0.310), but showed highly significant differences on days 
5 (p < 0.001) and 10 (p = 0.009). In general, fish reared in 
rockpools and oyster beds showed the greatest improvement 
over time (Fisher’s PLSD p = 0.043, p = 0.010, respectively). 
Those reared in sand or seagrass treatments showed little 
improvement, or in some cases poorer scores, over time 
(p > 0.05 in both cases).

Motivation

We used exit time as an indicator of the gobies’ motivation 
to interact with the task. There was a significant effect of 
rearing environment (F3,24 = 7.701, p < 0.001), with gob-
ies reared in the seagrass environment exiting significantly 
slower than fish from all other  enrichment treatments (Fish-
er’s PLSD p < 0.02 in all cases; Fig. 5). Larger gobies were 

Fig. 2  Mean (± SE) number of days to reach criteria per treatment 
group of gobies

Fig. 3  Mean (± SE) daily scores for all trials on days 1, 5, and 10 per 
treatment group

Fig. 4  Mean (± SE) daily scores for all trials on days 1, 5, and 10 per 
treatment group [(diamond) sand, (square) seagrass, (triangle) rock-
pool, and (cross) oyster]

Fig. 5  Mean (± SE) exit time for large and small gobies per environ-
mental enrichment treatment across all trials. Size class was based on 
total length (TL), small < 3.49 cm, large > 3.50 cm
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slower to exit the start box than smaller gobies (F1,24 = 4.419, 
p = 0.046; Fig. 5). The interaction between rearing environ-
ment and body size was not significant (p > 0.05). The time 
to exit the start box decreased with increasing trial number 
(F2,48 = 22.013, p < 0.001; Fig. 6).

Total trial time

Total trial time was based on the time an individual spent in 
the t-maze from leaving the start box to choosing either the 
left or right side. There was no significant effect of rearing 
environment or size class on total trial time (p > 0.05 in both 
cases). The interaction between rearing environment and 
size class was also not significant (p > 0.05). Trial day had a 
significant effect on total trial time (F2,48 = 7.000, p = 0.002), 
such that the time to complete the maze declined over time. 
There was also a significant interaction between trial day and 
environmental treatment (F6,48 = 2.528, p = 0.033; Fig. 7). 
There were no other significant interactions.

Post hoc analyses revealed gobies reared in the rockpool 
and seagrass environments showed the greatest improvement 
over time to complete the task (Fisher’s PLSD p = 0.021, 

p = 0.035, respectively). Those reared in oyster and sand 
environments showed little improvement over time (p > 0.05 
in both cases).

Treatments and body length

The TL of the fish reared in each of the treatments was not 
significantly different (F3,28 = 0.494, p = 0.689) nor did they 
differ in body weight (F3,28 = 0.171, p = 0.915). However, 
gobies in the oyster treatment group showed less variation 
in sizes compared to other treatment groups.

Discussion

Previous investigations have reported dramatic differences 
in the spatial learning skills of fish inhabiting contrasting 
environments (e.g., Odling-Smee et al. 2008; White and 
Brown 2014a), but it is unclear to what extent that variation 
is a result of natural selection operating over generations, or 
behavioural plasticity resulting from individual experience 
during ontogeny. Here, we collected juvenile gobies from 
a rockpool environment and reared them in four artificial 
habitats modelled after common coastal environments for 
12 months. We found that rearing gobies in these contrast-
ing habitats had a profound impact on their ability to solve a 
novel spatial learning task. Gobies reared in more complex 
habitats (oyster reef and rocky reef), took fewer trials to 
reach learning criteria and made more correct choices than 
those reared in the simple sandy shore and seagrass treat-
ments. Fish reared in the enriched treatments  took longer 
to leave the start box than those in the sand treatment but 
not the seagrass treatment. Most importantly, exit times 
between small and large gobies were most accentuated in 
the enriched treatments, which indicates how motivated they 
were to engage in the task, but is also commonly used as 
a measure of boldness (e.g., Brown and Braithwaite 2004; 
Toms et al. 2010).

Environmental enrichment has long been associated with 
changes in the nervous system (Ebbesson and Braithwaite 
2012), by posing an increased demand in sensory, motor, and 
cognitive functions (Dinse 2004; Leggio et al. 2005; Har-
burger et al. 2007; Strand et al. 2010; Salvanes et al. 2013). 
Physical complexity also aids in reducing stress (Braithwaite 
and Salvanes 2005; Millidine et al. 2006; Kistler et al. 2011; 
Näslund et al. 2013) and encourages exploratory behaviour 
(Camacho-Cervantes et al. 2015). Here, we report signifi-
cantly changed cognitive abilities in gobies, whereby those 
reared in structurally complex environments (oyster bed 
and rockpool) reached learning criteria significantly faster 
than those reared in homogenous environments (sand and 
seagrass). These results agree well with similar enrichment 
studies on other fish species (e.g., Salvanes and Braithwaite 

Fig. 6  Mean (± SE) exit time for all gobies for trial days 1, 5, and 10

Fig. 7  Mean (± SE) total trial time for days 1, 5, and 10 between 
treatment groups: [(diamond) sand, (square) seagrass, (triangle) rock-
pool, and (cross) oyster]
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2005; Salvanes et al. 2007; Spence et al. 2011). The rock-
pool treatment group was modelled after a rockpool setting 
from which the juveniles were collected from, thus, this may 
be the closest representation of how wild caught individuals 
would perform in a spatial task at the same developmental 
stage as those used in this study. Interestingly, the seagrass 
group required more days to reach learning criteria than all 
other treatments, despite being in a moderately enriched 
habitat compared to those in the sand treatment.

Daily scores increased significantly in all treatments 
over the length of the experiment; however, there were also 
significant differences between gobies reared in the vari-
ous enrichment treatments. Fish in all treatment groups per-
formed similarly on the first day of trials; however, daily 
score differences changed significantly on days 5 and 10 
as oyster and rockpool groups performed better than sand 
and seagrass groups. These differences between learning 
abilities, derived from the change in habitat complexity 
in early ontogeny to later life stages, indicate that differ-
ential experiences play a critical role in the formation of 
flexible behaviour in later life (Rosenzweig and Bennet 
1996; Kotrschal and Taborsky 2010). Juvenile trout show 
greater spatial learning and problem-solving behaviour when 
exposed to enriched conditions, followed by individuals that 
experienced homogeneity early in life then are switched to 
enriched settings (Bergendahl et al. 2016). Trout in two other 
treatments, early enrichment/late homogeneity and complete 
homogeneity, behaved similarly, indicating that the more 
recent the enrichment, the greater the role in developing flex-
ible behaviour (Bergendahl et al. 2016). Similarly, Atlantic 
salmon briefly exposed to live prey and structural enrich-
ment showed significantly improved responses to novel, 
live prey (Brown et al. 2003). Neurologically, this makes 
sense, as a plain environment would have minimal use for 
spatial learning and the corresponding neural machinery in 
the brain. If an individual’s environment does not demand it, 
there is little point investing energy into neurological struc-
tures required for cognitive processes.

Survival in wild conditions requires the collection and 
interpretation of environmental information (Galef and 
Laland 2005), which can be enhanced in individuals with 
bold or exploratory traits, enabling them to collect this infor-
mation rapidly (Braithwaite and Salvanes 2005). Naturally, 
boldness may enhance fitness through longer foraging trips; 
however, there is an associated risk of predation (Sih et al. 
2004). Although gobies had no threats of predation in this 
study, B. cocosensis commonly show heightened levels of 
aggression, typically between individuals of similar size. We 
found that smaller gobies were faster to leave the start box 
than larger gobies on the first day of trials; however, the 
larger fish showed a decrease in latency by the fifth day, 
which was maintained until the tenth day. Previous studies 
have also found  that smaller individuals tend to be bolder 

than large individuals when emerging from cover into a 
potentially dangerous environment (Brown and Braithwaite 
2004). Small fish have demanding metabolisms and an 
added incentive to feed frequently in order to reach sizes 
where they can avoid gape-limited predation and increase 
their potential in intra-specific competition for resources. In 
addition, larger fish arguably have more to lose given their 
greater long-term investment in growth (asset protection 
principle; Clark 1994). It is interesting to note that as the fish 
became familiar with the test environment (Brown 2001), 
the larger gobies’ emergence times converged with that of 
the smaller individuals, suggesting that they no longer per-
ceived the arena as dangerous.

Brydges and Braithwaite (2009) suggest that sticklebacks 
from enriched aquaria should display lower levels of neo-
phobia and greater levels of boldness compared to individu-
als from homogeneous aquaria (e.g., Sherwin 2004; Braith-
waite and Salvanes 2005; Fox et al. 2006). These patterns 
were reported in other studies, for example, cod exposed to 
spatial heterogeneity during rearing were bolder; however, 
they are also faster at seeking shelter than fish reared without 
enrichment (Salvanes and Braithwaite 2005). Bergendahl 
et al. (2016) admit that while exit time may be a better indi-
cator of motivation rather than learning, their experiment 
showed that trout reared in enriched treatments learned and 
exited faster than their homogeneous counterparts. Similarly, 
mahseer raised in enriched conditions were less neophobic, 
emerging from a start box faster than those reared in impov-
erished environments (Ullah et al. 2017). Our results agree 
with these results to some extent, as shown by the higher exit 
times in the seagrass treatment group, followed by those in 
the enriched treatments (oyster and rockpool), perhaps due 
to their unfamiliarity with open, unsheltered areas in the 
spatial learning test area. It should be noted, however, that 
this trend was only observed in the larger gobies. It is likely 
that they perceived open areas as potentially risky, because 
they were accustomed to hiding in crevices while in their 
home tanks. In contrast, smaller gobies in the rockpool treat-
ment were fastest to exit the start box. Despite the fact that 
larger gobies tended to emerge later than those fish from the 
less complex sand environment, they still learned the task 
substantially more quickly. This was not because they moved 
more quickly through the maze once they had exited the start 
box, but because they tended to make good decisions when 
deciding which arm of the maze housed the reward.

Although rearing environment influences exploratory 
traits (Kelley and Magurran 2003), the reasons behind 
motivation are often difficult to interpret (Braithwaite and 
Salvanes 2005). It is possible that hunger would have been 
one factor to seek out the reward (Colgan 1993), but the 
cryptic nature of gobies probably influenced their moti-
vation to seek out shelter. In early trials, motivation was 
perhaps twofold with the reward being food and shelter, 
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seemingly demonstrated when gobies would first move into 
the shelter and then explore the food dish after some time 
had passed. After several trial days, and presumably when 
gobies became accustomed to the maze and lack of preda-
tors, individuals immediately searched for a food reward 
upon entering the correct arm. This may explain why the 
fish reared in complex environments solved the tasks more 
rapidly: they were initially highly motivated to seek shelter.

To conclude, environmental changes drive genetic vari-
ation in innate behaviours, as environments undergo shifts 
in complexity, so too do behavioural phenotypes change, 
such that no phenotypic trait remains completely optimal 
over time (Mery and Burns 2010). In cases where species 
experience temporal or spatial heterogeneity on a regu-
lar basis, flexible, and reversible plasticity is a favourable 
trait (e.g., Bloch and Robinson 2001; Relyea 2003; Nus-
sey et al. 2007). Kotrschal and Taborsky (2010) suggest 
that disturbed regimes in early ontogeny solidify cognitive 
abilities of individuals, perhaps because it signifies that the 
individual lives in a dynamic world. Here, we show that 
gobies reared in enriched environments modelled after their 
natural habitat were better at solving a spatial task, and it is 
likely that these environments favour enhanced spatial skills 
and underlying brain components (telencephalon: White and 
Brown 2015a). Gobies reared in the seagrass and sand treat-
ments demonstrated reduced cognitive function, as a result 
of experiencing a low-demand habitat from early ontogeny 
for a prolonged period. Our data indicate that many of the 
behavioural variations observed in populations of animals 
collected from contrasting environments may be largely the 
result of behavioural plasticity formed during ontogeny.
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