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Abstract From the early stages of life, learning the regu-

larities associated with specific objects is crucial for mak-

ing sense of experiences. Through filial imprinting, young

precocial birds quickly learn the features of their social

partners by mere exposure. It is not clear though to what

extent chicks can extract abstract patterns of the visual and

acoustic stimuli present in the imprinting object, and how

they combine them. To investigate this issue, we exposed

chicks (Gallus gallus) to three days of visual and acoustic

imprinting, using either patterns with two identical items or

patterns with two different items, presented visually,

acoustically or in both modalities. Next, chicks were given

a choice between the familiar and the unfamiliar pattern,

present in either the multimodal, visual or acoustic

modality. The responses to the novel stimuli were affected

by their imprinting experience, and the effect was stronger

for chicks imprinted with multimodal patterns than for the

other groups. Interestingly, males and females adopted a

different strategy, with males more attracted by unfamiliar

patterns and females more attracted by familiar patterns.

Our data show that chicks can generalize abstract patterns

by mere exposure through filial imprinting and that mul-

timodal stimulation is more effective than unimodal stim-

ulation for pattern learning.

Keywords Pattern learning � Filial imprinting � Abstract
rule � Generalization � Chicks � Rule learning

Introduction

Making sense of visual and auditory stimuli requires a

grasp of the structure of the environment. Many studies

have revealed a range of specialized perceptual and

learning mechanisms than can help human adults, infants

and non-human animals to detect patterns from structured

visual and auditory input (Endress et al. 2009; Fitch and

Friederici 2012; reviewed in Dehaene et al. 2015), ranging

from identification of repetitions (Marcus et al. 1999) and

use of predictors (Versace et al. 2008; Meyer and Olson

2011) to extraction of positional regularities (Endress et al.

2010; Chen et al. 2014), statistical regularities (Saffran

et al. 1996; Fiser and Aslin 2001, 2002; Kirkham et al.

2002; Gentner et al. 2006; Sonnweber et al. 2015) and

abstract patterns (Marcus et al. 1999; Stobbe et al. 2012;

Wang et al. 2015; Spierings and ten Cate 2016). Although

regularities can be defined in abstract terms (e.g. AnBn, or

XYX, see, for instance, Fitch and Friederici 2012), with no

explicit reference to the modality used to extract or pro-

duce specific stimuli, it has been shown that stimuli in one

modality can affect the processing in another modality (e.g.

Shimojo and Shams 2001; Ernst and Bulthoff 2004; Seitz

et al. 2007; Robinson and Sloutsky 2013). Little is known,

though, on the effects on pattern learning when stimuli

combine different modalities.
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The investigation of rule learning capacities in non-hu-

man species is often based on the use of operant condi-

tioning paradigms (ten Cate and Okanoya 2012). Although

these paradigms can provide insight in what animals might

be able to learn about various patterned strings of stimuli,

about their learning strategies and what aspects of the

stimuli are important, spontaneous behaviours can reveal

which capacities are available in naturalistic conditions

(ten Cate and Okanoya 2012). Newly hatched birds of

precocial species learn by mere exposure the features of the

conspicuous objects they are exposed to, a phenomenon

called ‘‘filial imprinting’’, that occurs without explicit

reinforcement (reviewed in Bateson 1966; Bolhuis 1991;

Horn 2004; McCabe 2013). After a few minutes spent with

the imprinting stimulus, chicks show affiliative responses,

such as approach, towards it (Bateson and Jaeckel 1976;

van Kampen and Bolhuis 1991). In the wild, filial

imprinting enables chicks to keep proximity with close kin,

thus increasing survival prospects of the youngsters. In the

laboratory, chicks imprint on visual (Horn and McCabe

1984; Wood 2013) and acoustic stimuli (van Kampen and

Bolhuis 1991; Miklósi et al. 1996), showing approach

responses even to artificial imprinting objects presented on

computer screens (Mascalzoni et al. 2010; Wood

2013, 2014). This means that they are sensitive to both the

visual and the acoustic stimulation in their environment

during imprinting.

The capacity to generalize imprinting responses enables

young precocial birds to recognize social partners in spite

of their heterogeneity and changes in appearance (e.g.

mother hen and siblings seen from different angles and

during development; Bateson 1973): imprinting in fact

extends to stimuli presented from novel points of view

(Wood 2013), and to objects with the same shape but dif-

ferent colour compared to the imprinting object (Bolhuis

and Horn 1992). The preference for slightly novel stimuli

has been viewed as a learning strategy that helps young-

sters to learn the different features of social partners (e.g.

the front and back view of the mother hen are very different

indeed; Bateson 1973, 1979). Although the natural

imprinting stimulus will be a single object, there is

increasing evidence suggesting that the mechanism of

imprinting might be able to go beyond the perceptual

features of a single object to those of a grouped configu-

ration of elements: Versace et al. (2006) showed that

chicks imprinted on coloured cylinders that followed the

(AB)n, (A)n(B)n and (A(BB)A) patterns could recognize

the familiar pattern irrespectively of its colour. In this test,

chicks preferentially approached unfamiliar patterns, con-

firming the preference for novel stimuli that has been

documented at specific times after the initial imprinting

exposure (see, for instance, Bateson and Jaeckel 1976;

Vallortigara and Andrew 1994). The ability of young

chicks to generalize from the stimuli used during the

exposure to a similar arrangement of novel ones was also

demonstrated in a recent conditioning experiment with

young chicks (Santolin et al. 2016), suggesting that chicks

are able to detect a relationship among a set of items. This

was also shown for filial imprinting in another precocial

species by Martinho and Kacelnik (2016), who showed that

ducklings can recognize the XX (two identical items, with

central symmetry) versus XY (two different items) patterns

in visual items and generalize the pattern of their

imprinting items to novel items following the same pattern.

This suggests that these animals learned the abstract rela-

tion between two visual items.

In the present study, we used filial imprinting to

examine the spontaneous capacity of chicks of the

domestic fowl (Gallus gallus) to generalize the visual,

acoustic and multimodal patterns XX and XY to novel

objects. This may indicate an ability to learn an abstract

pattern, i.e. a pattern independent of the particular stimuli

by which it is instantiated. As the propensity for

approaching unfamiliar social stimuli has been shown to be

stronger in male than in female chicks in various tasks

(reviewed in Vallortigara and Andrew 1991, 1994), we

took sex differences into account.

We first exposed newly hatched chicks to stimuli that

followed either the XX or XY pattern in the visual,

acoustic or visual and acoustic modality. In the test phase,

chicks were given a choice between novel stimuli in both

patterns and we measured their preference for each of the

patterns. Chicks showed significantly different approach

responses towards the novel stimuli during the test,

showing that they can use the imprinting pattern to evaluate

novel items, with females preferring the familiar pattern

and males preferring the unfamiliar pattern. Moreover,

multimodal visual and acoustic stimuli were more effective

than visual-only or acoustic-only stimuli.

Methods

Ethics statement

All experiments complied with the current Italian and

European Community laws for the ethical treatment of

animals and the experimental procedures were approved by

the Ethical Committee of University of Trento and licensed

by the Italian Health Ministry (permit number 1138/2015

PR).

Experimental design

To investigate the capacity for generalization of abstract

XX (two identical items) and XY (two different items)
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patterns, we imprinted chicks on either XX or XY stimuli

and then tested chicks’ approach responses towards novel

XX and XY stimuli. Significant differences in the prefer-

ence for novel XX and XY stimuli between chicks

imprinted on different patterns show the capacity to gen-

eralize the information gained during imprinting. To

understand the role of visual, acoustic and multimodally

presented stimuli, the test stimuli were presented to dif-

ferent experimental groups either visually, acoustically or

multimodally. Given that male and female chicks had been

previously shown to exhibit different preferences for

familiar and unfamiliar stimuli, we analysed each sex

separately. Each test was replicated with two sets of stimuli

that differed only with respect to the items used to

instantiate them.

Materials

Subjects

This study was conducted with 388 newly hatched chicks

of domestic fowl (Gallus gallus) of the Ross 308 strain

(Aviagen). Table 1 shows how many males and females

were tested in each condition. The eggs were collected

from a commercial hatchery (Agricola Berica, Monte-

galda, Italy) and incubated at the University of Trento

under controlled conditions at 37.7 �C and 40% humidity.

Three days before hatching they were moved to a hatch-

ing chamber (37.7 �C and 60% humidity) in opaque

individual boxes, where the chicks hatched in complete

darkness. After hatching, food and water were available

ad libitum.

Stimuli

An overview of the imprinting and test stimuli is presented

in Table 2. The chicks were imprinted with an XX (two

identical items) or with an XY (two different items) pat-

tern. In the visual condition, chicks were imprinted with

two patterns (e.g. V1V1 and V2V2) presented visually,

while a single item (e.g. A7) was presented acoustically; in

the acoustic condition, two patterns were presented

acoustically (e.g. A1A1 and A2A2), while a single visual

stimulus (V7) was presented on the monitor, and in the

multimodal condition, two visual patterns (e.g. V1V1 and

V2V2) and two acoustic patterns (A1A1 and A2A2) were

presented simultaneously. In each condition, half of the

chicks were imprinted with the XX pattern and half with

the XY pattern. To avoid pseudo-replication, we repeated

the experiments with two sets of stimuli (e.g. A1A1 and

A2A2, A3A3 and A4A4).

Acoustic stimuli

Figure 1a shows spectrograms of the acoustic stimuli used.

The acoustic stimuli were artificially created in Praat

(version 6.0.16). In total, there were seven different

acoustic stimuli; six were used to create the imprinting

patterns (A1–A6) and one as the single imprinting sound for

the visual condition (A7, Table 2). As shown in Fig. 1a, the

six sounds for the patterns were created to differ in duration

(between 122 and 180 ms), fundamental frequency, pitch

contour and formant frequencies in order to make them

easily distinguishable, but they were all played with the

same amplitude of 75 dB. To create the XX and XY pat-

tern, two sounds were concatenated with a 50-ms pause

between them, and this created duplets ranging in duration

between 300 and 400 ms. During playback, there were

always three duplets presented in 6 s, spaced equally in

time. This acoustic playback scheme matched with the

visual playback in which the stimulus took 6 s to cross the

screen. The A7 sound used in the visual condition was a

natural recording of a chick vocalization with a duration of

104 ms and an amplitude of 75 dB. This sound was also

presented three times in 6 s, spaced equally over time. All

sounds used in this study were within the hearing range of a

newly hatched chick.

Visual stimuli

Figure 1b shows the visual stimuli used. The seven visual

stimuli were built in MATLAB and were created to be as

distinct as possible. All stimuli fitted in a 4.5-cm square,

but they varied in shape, colour, number of corners, amount

of area filled and presence/absence of central symmetry,

presence of round/sharp edges. The XX and XY

Table 1 Number of subjects tested in each condition, mean prefer-

ence for the XX pattern and standard error of the mean

Imprinting pattern Sex Modality tested N Mean SEM

XX Female Acoustic 38 0.517 0.034

XX Female Multimodal 33 0.644 0.033

XX Female Visual 31 0.589 0.046

XY Female Acoustic 32 0.489 0.034

XY Female Multimodal 37 0.378 0.031

XY Female Visual 28 0.460 0.047

XX Male Acoustic 35 0.511 0.040

XX Male Multimodal 29 0.363 0.037

XX Male Visual 33 0.502 0.044

XY Male Acoustic 32 0.584 0.046

XY Male Multimodal 27 0.482 0.039

XY Male Visual 33 0.539 0.048
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configurations (as well as the V7 stimulus used in the

acoustic condition) moved across the screen horizontally

(30 cm), taking 12 s to run an entire cycle from right to left

and back.

Imprinting set up

The imprinting procedure started on the day that the chick

hatched and lasted three days. The imprinting set up

consisted of a black box (30 9 30 9 40 cm, w 9 l 9 h)

with a monitor (1700, 60 Hz) mounted on the front wall and

a speaker (Logitech, Z150) above the box, both playing the

imprinting stimuli.

Test set up

After imprinting, the chicks were tested in the running

wheel set up shown in Fig. 2. The apparatus was 150 cm

Table 2 Overview of the imprinting and test stimuli used

Modality tested Imprinting pattern Set Imprinting stimuli Test stimuli

Acoustic Visual Acoustic Visual

Multimodal XX One A1A1 and A2A2 V1V1 and V2V2 A5A5 versus A5A6 V5V5 versus V5V6

Two A3A3 and A4A4 V3V3 and V4V4 A1A1 versus A1A2 V1V1 versus V1V2

XY One A1A2 and A4A3 V1V2 and V4V3 A5A5 versus A5A6 V5V5 versus V5V6

Two A3A4 and A5A6 V3V4 and V5V6 A1A1 versus A1A2 V1V1 versus V1V2

Visual XX One A7 V1V1 and V2V2 A7 V5V5 versus V5V6

Two A7 V3V3 and V4V4 A7 V1V1 versus V1V2

XY One A7 V1V2 and V4V3 A7 V5V5 versus V5V6

Two A7 V3V4 and V5V6E A7 V1V1 versus V1V2

Acoustic XX One A1A1 and A4A4 V7 A5A5 versus A5A6 V7

Two A3A3 and A4A4 V7 A1A1 versus A1A2 V7

XY One A1A2 and A4A3 V7 A5A5 versus A5A6 V7

Two A3A4 and A5A6 V7 A1A1 versus A1A2 V7

There were three conditions that differed in the modality tested: multimodal (both patterns presented in both visual and acoustic modality), visual

(patterns presented in the visual modality, a single stimulus presented in acoustic modality) and acoustic (patterns presented in the acoustic

modality, a single stimulus presented in visual modality). In each group, the chicks were imprinted with either an XX pattern or an XY pattern,

and with set one or set two. The letters (A1–A7 for acoustic, V1–V7 for visual) indicate the different stimuli used for imprinting and testing in the

different sets and groups. Stimuli are shown in Fig. 1

Fig. 1 Overview of the stimuli used for imprinting and test.

a Acoustic stimuli: A1–A7 were used to create duplets with either

an XX or an XY pattern. Sound A7 is a natural chick vocalization and

was used as unique acoustic stimulus for imprinting and test in the

visual condition. b Visual stimuli: V1–V7 were used to create duplets

with either an XX or an XY pattern. Stimulus V7 was used as unique

visual stimulus for imprinting and test in the acoustic condition
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long, 46 cm wide, 45 cm high, with a running wheel

(32 cm diameter, 13 cm large, covered with 1 cm of dark

opaque foam on both sides) in the middle of the apparatus.

On each side of the wheel was a monitor and speaker

identical to those used during imprinting. The speaker was

set to 75 dB amplitude. On both sides, monitor and speaker

were located 60 cm far from the centre of the apparatus.

An automated system recorded the centimetres run on each

direction showing this information on a display (see Ver-

sace et al. 2017).

Procedure

Imprinting procedure

We individually exposed newly hatched chicks to stimuli

that followed the XX or XY pattern. The imprinting

lasted three days. In each imprinting cage, the monitor

and speaker played the stimuli for 14 h a day continu-

ously for two days and for 8 h a day continuously, fol-

lowed by 6 h with alternations of 5 min of stimuli

playback and 10 min of darkness and silence on the third

day. This allowed the chicks to familiarize with the

disappearance of the imprinting stimuli. During the

remaining 10 h of the day, the screen was black and no

sound was played.

Test procedure

At the beginning of the test, each chick was placed in the

running wheel facing sideways. The test lasted 20 min.

The XX pattern was presented on one side and the XY

pattern on the opposite side, and the sides were switched

between chicks. Depending on the imprinting modality

tested, the test stimuli were novel for the visual pattern,

or the acoustic one or both, as summarized in Table 2.

The experimenter monitored the distance run in the

wheel.

Data analysis

We expected to observe a significant difference in

approach towards novel XX and XY patterns between

chicks imprinted on XX and XY if chicks could learn the

imprinting pattern and generalize it to novel stimuli. To

check for this effect, for each chick we computed the XX

preference index as

cm run towards XX

overall cm run

We performed an ANOVA on the XX preference index

with imprinting pattern (XX, XY), modality (multimodal,

visual, acoustic), sex (male, female) and set (one, two) as

between-subjects factors. Post hoc two-tailed t tests were

used to contrast levels of significant effects and interac-

tions. The data set supporting this article has been uploaded

as Supplementary material.

Results

Overall preferences

We examined preferences for the XX versus XY pattern in

chicks imprinted on XX or XY patterns through a linear

model, expecting a difference in XX preference between

chicks imprinted on XX versus XY patterns. As indepen-

dent variables, we used imprinting pattern (XX or XY),

modality tested (acoustic, visual, multimodal), sex (male or

female) and set of stimuli (one or two). There were no

outliers or data points with high leverage, and the model

had a good linear fit. Table 3 shows the complete set of

results. No significant main effect was present in the

analysis, but we observed a trend for modality tested:

F2,364 = 2.603, P = 0.075. We observed only two signif-

icant interactions: imprinting pattern 9 sex (F1,364 =

20.497, P\ 0.001) and imprinting pattern 9 modality

tested 9 sex (F2,364 = 3.292, P = 0.038), as shown in

XY pattern XX pattern

S

Fig. 2 Schematic illustration of the experimental set up. Monitors

and loudspeakers used to present the stimuli were located at the far

ends of the apparatus. The chick was placed in a running wheel in the

middle of the apparatus, facing the long side. While the chick

operated the wheel towards either side to approach the stimuli, an

automated system measured the centimetres run in each direction

Anim Cogn (2017) 20:521–529 525

123



Fig. 3. Since the factor set of stimuli was not significant as

main effect, nor in any interaction, we can conclude that

the observed effects are independent from the stimuli used.

Based on the evidence of sex effects in interaction, and on

well-documented differences in affiliative responses

between male and female chicks (see, for instance, Val-

lortigara 1992; Vallortigara and Andrew 1994), we ran

further separate analyses for males and females.

Female preferences

Females showed a significant main effect of the imprinting

pattern (F1,193 = 21.675, P\ 0.001), no significant main

effect of modality tested (F2,193 = 0.242, P = 0.785) and a

significant interaction imprinting pattern 9 modality tested

(F2,193 = 5.390, P = 0.005).

In all tested modalities, females imprinted on XX had a

higher tendency to approach the XX (familiar) stimulus

compared to females imprinted on XY. Using post hoc two-

tailed t tests for independent samples, we found a significant

effect only in the multimodal test and a trend for the visual

modality (multimodal: t67 = 5.865, P\0.001; visual:

t56.75=1.954,P = 0.055; acoustic: t67.63 = 0.580,P = 0.563).

These results show that, after multimodal imprinting on

XX versus on XY, females have significantly stronger

preference for the familiar pattern, whereas when testing

females with unimodally presented patterns, the prefer-

ences for familiar patterns are much weaker. These findings

suggest a combined effect between modalities in the rep-

resentation of the imprinting object.

Male preferences

Males showed a significant main effect of the imprinting

pattern (F1,183 = 4.51, P = 0.035), a significant main

effect of modality tested (F2,183 = 4.511, P = 0.012) and

no significant interaction imprinting pattern 9 modality

tested (F2,183 = 0.441, P = 0.644).

In all tested modalities, males imprinted on XX had a

higher tendency to approach the XY (unfamiliar) stimulus

compared to males imprinted on XY. Using post hoc two-

tailed t tests for independent samples, we found a signifi-

cant effect only in the multimodal test (multimodal:

t53.34 = -2.211, P = 0.031; visual: t63.64=-0.565,

P = 0.574; acoustic: t62.55 = -1.216, P = 0.229). These

results show that, after multimodal imprinting on XX

versus imprinting on XY, males have significantly stronger

preference for the unfamiliar pattern, whereas when testing

males with patterns that differ only in one modality (either

acoustic or visual), the preferences for the unfamiliar pat-

tern are much weaker. Similarly to what observed in

females, these results suggest an effect between modalities

in the representation of the imprinting object.

Discussion

From the early stages of life, learning the regularities

associated with specific objects is crucial for building an

effective representation of the environment. Through the

mechanism of filial imprinting, mere exposure is sufficient

Table 3 Summary of the

results of the overall ANOVA

for the XX preference

Effect df F P

Imprinting pattern 1 2.467 0.117

Modality tested 2 2.603 0.075

Sex 1 0.372 0.542

Set 1 0.811 0.368

Imprinting pattern 9 modality tested 2 2.021 0.134

Imprinting pattern 9 sex 1 20.497 8.1e–06

Modality tested 9 sex 2 2.892 0.057

Imprinting pattern 9 set 1 0.790 0.375

Modality tested 9 set 2 0.118 0.889

Sex 9 set 1 0.371 0.543

Imprinting pattern 9 modality tested 9 sex 2 3.292 0.038

Imprinting pattern 9 modality tested 9 set 2 0.460 0.631

Imprinting pattern 9 sex 9 set 1 1.749 0.187

Modality tested 9 sex 9 set 2 1.730 0.179

Imprinting pattern 9 modality tested 9 sex 9 set 2 0.504 0.604

Residuals 364

In this analysis, the independent variables were: imprinting pattern (XX, XY), modality tested (multimodal,

visual, acoustic), sex (male, female), set of stimuli (one, two)

Bold values indicate significant results (P\ 0.05)
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for newly hatched precocial birds to learn the features of

their social partners and use this information to recognize

them. For this reason, filial imprinting has been widely

used as a system to investigate memory of familiar objects

(Bateson 1966; Bolhuis 1991; Horn 2004; reviewed in

McCabe 2013). Mounting evidence, though, suggests that

the imprinting mechanisms might be powerful enough to

extract abstract features of conspicuous objects, such as

their visual configurations: Versace et al. (2006) showed

that chicks imprinted on coloured cylinders arranged

according to the (AB)n, (A)n(B)n and (A(BB)A) patterns

could discriminate familiar/unfamiliar patterns irrespec-

tively of the hue of stimuli, and Martinho and Kacelnik

(2016) showed that imprinted ducklings can discriminate

between the XX versus XY configurations of objects that

differ in colour or shape from the imprinting objects—a

task that could be solved both based on the presence of

identical/different items and on the presence/absence of

symmetry. In our study, we extend this line of research to

auditory and multimodal information, investigating the

capacity of chicks imprinted on either XX or XY patterns

to discriminate between familiar and unfamiliar patterns in

a generalization context. Both increased and reduced

preference for familiar patterns show the ability to process

and discriminate the patterns.

Our findings confirm chicks’ capacity for extracting the

abstract XX/XY relation presented in the imprinting stim-

uli to novel objects, in the absence of explicit training.

Moreover, we observe that consistent visual and

acoustic stimuli presented multimodally might have a

synergistic effect, since multimodal patterns elicited a

stronger differentiation between XX and XY stimuli than

unimodal patterns. To better understand the representation

of the pattern arising from imprinting, further research

should clarify the way in which conflicting and conforming

multimodal information contribute to determining

approach responses. Rather than overloading the cognitive

system or producing interference, presenting novel stimuli

in both visual and acoustic modality enhanced the capacity

of chicks to discriminate between patterns. This result

extends the findings on recognition of imprinting objects in

avian species (ten Cate 1989; van Kampen and Bolhuis

1991, 1993 and references therein).

Interestingly, while both male and female chicks could

discriminate between familiar and unfamiliar stimuli, they

showed opposite preferences with respect to the familiarity

of the objects. Both preferences for familiar and unfamiliar

stimuli indicate the capacity to discriminate between the

patterns. Consistent with the well-known effect of prefer-

ence for slightly novel stimuli observed in chicks (Jackson

and Bateson 1974; Bateson 1979; Versace et al. 2006)

especially in males (Vallortigara and Andrew 1994), male

chicks consistently approached unfamiliar patterns more

than familiar patterns, while females had the opposite

preference. Early differences in affiliative responses

between male and female chicks have been previously

documented in field and laboratory conditions (e.g.

Workman and Andrew 1989; Vallortigara et al. 1990;

Vallortigara 1992; Vallortigara and Andrew 1994), as dif-

ferences in social and aggressive motivation between the

sexes.

Chicks’ spontaneous capacities to abstract pattern gen-

eralization suggest that this method might be suitable for

investigating the computational capacities used to process

abstract and statistical regularities, complementing condi-

tioning paradigms. The comparative investigation of

spontaneous responses can shed light on the computational

abilities used in the wild to process and extract regularities.
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