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Abstract Previous studies have suggested that body size

and locomotor performance are targets of Darwinian

selection in reptiles. However, much of the variation in

these traits may derive from phenotypically plastic

responses to incubation temperature, rather than from

underlying genetic variation. Intriguingly, incubation

temperature may also influence cognitive traits such as

learning ability. Therefore, we might expect correlations

between a reptile’s size, locomotor speed and learning

ability either due to selection on all of these traits or due to

environmental effects during egg incubation. In the present

study, we incubated lizard eggs (Scincidae: Bassiana

duperreyi) under ‘hot’ and ‘cold’ thermal regimes and then

assessed differences in hatchling body size, running speed

and learning ability. We measured learning ability using a

Y-maze and a food reward. We found high correlations

between size, speed and learning ability, using two dif-

ferent metrics to quantify learning (time to solution, and

directness of route), and showed that environmental effects

(incubation temperature) cause these correlations. If

widespread, such correlations challenge any simple inter-

pretation of fitness advantages due to body size or speed

within a population; for example, survivors may be larger

and faster than nonsurvivors because of differences in

learning ability, not because of their size or speed.

Keywords Correlations � Cognition � Locomotor

performance � Body size

Introduction

Whenever we randomly sample sexually reproducing

populations, we find correlations between the phenotypic

values of traits: individuals that are similar in one respect

(e.g. size) are also similar in others (e.g. speed). Phenotypic

correlations can result from (1) simultaneous selection on

multiple traits; (2) genetic interactions (e.g. pleiotropy,

linkage disequilibrium), whereby selection on one trait

results in concurrent changes in a linked trait (Lande 1984);

and (3) environmental effects, whereby local environments

influence the expression of phenotypically plastic traits

(Via and Lande 1985). By determining the relative con-

tributions of genetic versus environmental factors respon-

sible for phenotypic correlations, we can clarify which

traits are the potential targets of selection (Lande 1984; Via

and Lande 1985).

For many traits, variation within a population seems

likely to convey a fitness advantage to some individuals.

One trait that has attracted considerable attention in studies

of birds and mammals is learning ability. The ability to

quickly and effectively adapt individual behaviour to meet

ecological challenges may provide a selective advantage

(Shettleworth 2001). For example, blue tits learn to syn-

chronize their nesting period to coincide with peak cater-

pillar biomass based on previous foraging experience, and

this matching enhances the condition and survival proba-

bility of their offspring and increases maternal fitness
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(Grieco et al. 2002). In contrast, the limited studies of

Darwinian fitness in reptiles have focused primarily on the

effects of variation in body size and athletic performance

(Janzen 1993; Le Galliard et al. 2004). No studies have

assessed whether variation in cognitive traits, such as

learning ability, might also influence fitness in reptiles. In

laboratory and semi-natural field experiments, reptiles use

a diverse range of learning mechanisms to accomplish fit-

ness-critical tasks, such as food location, predator avoid-

ance and courtship behaviour (Burghardt 1977; Noble et al.

2012; Leal and Powell 2012; Wilkinson and Huber 2012).

Therefore, individuals with greater learning ability might

well have greater Darwinian fitness.

Positive correlations between phenotypic traits make it

difficult to determine which trait(s) actually affects fitness.

This may be especially relevant in reptiles, where a sub-

stantial literature demonstrates that incubation temperature

influences the phenotypic expression of several morpho-

logical, physiological and behavioural traits (Deeming

2004). Recent research suggests that incubation tempera-

ture may also influence learning ability in reptiles. In a

preliminary study, Amiel and Shine (2012) found that B.

duperreyi incubated under different temperature regimes

varied in their ability to learn the location of a safe refuge

during a simulated predator attack. Incubation temperature

is also known to influence the size and speed of hatchling

B. duperreyi, although Amiel and Shine (2012) did not

record significant correlations between learning ability and

any morphological or performance traits in their lizard

cohort. If incubation temperature does in fact influence

learning ability in reptiles, then it may also produce posi-

tive correlations between learning ability and other traits.

Such correlations would make it difficult to determine how

learning ability contributes to Darwinian fitness in reptiles.

In the present study, we document high correlations

between learning ability, body size and running speed

within a cohort of young scincid lizards and suggest that

environmental effects (incubation conditions) are respon-

sible for these correlations.

Materials and methods

Egg collection and incubation

Three-lined skinks (Bassiana duperreyi) are oviparous

montane lizards that are widely distributed in south-eastern

Australia (Dubey and Shine 2010). Nests of this species are

found over a large range of elevations, and eggs are nat-

urally exposed to a wide range of incubation regimes. We

collected B. duperreyi eggs from field sites at five different

elevations (1060, 1080, 1240, 1615 and 1700 MASL) in the

Brindabella Range, 40 km west of Canberra in the

Australian Capital Territory. B. duperreyi lay their eggs in

soft soil under loose rocks that serve as communal nesting

sites. Oviposition usually occurs in early December and is

highly synchronous (Elphick and Shine 1998), allowing us

to time our fieldwork to coincide with egg-laying. We

sampled nests every 2 weeks, beginning in late November

when there were no eggs present. As a result, we know that

the eggs we collected were laid no more than 14 days prior

to collection.

Eggs were removed from natural nests and placed into

70-mL plastic jars filled with moist vermiculite (water

potential = -200 kPa) for transport to the University of

Sydney. Prior to incubation, we weighed each egg and

transferred it to its own 64-mL glass jar filled with moist

vermiculite (-200 kPa). Jars were covered with plastic

wrap to prevent moisture loss. We randomly divided eggs

from each nest among four 10-step Clayson incubators

(Brisbane, Queensland, AUS). Two incubators were pro-

grammed to mimic ‘hot’ natural nest conditions (diel cycle

of 24 ± 5 �C) and two were programmed to mimic ‘cold’

conditions (diel cycle of 18 ± 5 �C). We based these

thermal regimes on temperature data collected from over

300 natural B. duperreyi nests as part of a long-term study

of phenotypic plasticity in this species (Shine et al. 1997).

We monitored incubator temperatures using iButton

thermochrons (Dallas, Texas, USA).

Overall, we incubated 609 eggs from 34 nests containing

4–77 eggs (X ? SE = 18.64 ? 2.83 eggs), with roughly

equal numbers of eggs collected from all 5 sites. A subset

of 18 ‘hot’ (n = 10 males and n = 8 females) and 21

‘cold’ (n = 9 males and n = 12 females) eggs was used for

the present study. In an attempt to reduce the number of

full and half-siblings in this experiment, we selected

roughly equal numbers of eggs from each of the five ele-

vations (9 eggs from 1700 MASL; 9 eggs from 1650

MASL; 7 eggs from 1240 MASL; 8 eggs from 1080

MASL; and 6 eggs from 1060 MASL). However, some of

these eggs came from the same communal nests and we

cannot rule out the possibility that some of our lizards may

have had common parents.

Upon hatching, we recorded each lizard’s snout-vent

length (SVL) and total length (including tail) using a

transparent plastic ruler. We recorded each lizard’s mass

using a Sartorius top-loading balance (Goettingen, GER),

accurate to ±0.01 g. To determine individual sex, we

manually applied pressure to the tailbase and recorded the

presence or absence of hemipenes (Harlow 1996). To

record individual running speed, we used a one metre

wooden racetrack fitted with infrared photocells every

25 cm (Elphick and Shine 1998). We placed lizards in a

holding area before they were released. They were then

allowed to run down the racetrack. A researcher ‘chased’

the hatchling down the racetrack with an artist’s paintbrush
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to simulate a predatory attack, encouraging the hatchling to

run at top speed and only making gentle physical contact to

stimulate running if the lizard stopped during a trial. We

recorded speed (m/s) as 1 m divided by the cumulative

time it took a lizard to cross the final infrared beam. We ran

each lizard three times at 27 �C and took the average of the

three runs as the lizard’s final speed. A single researcher

conducted all running trials in order to prevent researcher

bias.

Lizard husbandry and maintenance

When lizards were not being tested, they were housed in

communal plastic bins (64 9 41 9 21 cm) with sand

substrate (maximum 10 hatchlings per bin). We used

communal housing because studies in other vertebrate taxa

show that social isolation negatively impacts learning

ability (Wongwitdecha and Alexander Marsden 1996).

Plastic flowerpot trays and PVC tubing provided environ-

mental enrichment, as well as refuges. We provided the

lizards with a 10:14-h light : dark cycle, 27 �C:22 �C

day:night thermal regime, ad libitum access to water, and

daily food.

Learning task

It was our aim to use an experimental paradigm that would

produce results comparable to previous cognition studies,

and simple Y- and T-mazes are among the most established

methods of assessing learning ability in reptiles (Burghardt

1977; Macphail 1982; Wilkinson and Huber 2012).

Therefore, to assess learning ability in B. duperreyi, we

used Y-mazes with three 33 9 10 9 5 cm arms and a

central decision point (Fig. 1). We constructed the mazes

from opaque U-shaped electrical conduit (Tripac Distri-

bution Pty Ltd, Sydney, New South Wales, AUS) fitted

with clear plastic lids. In each maze, one arm was empty,

while the other two arms contained identical wooden

platforms, each with a single plastic feeding well. To

provide the lizards with local cues during testing, we

painted the arms containing the wooden platforms with

contrasting colours (blue and orange) and patterns (striped

or solid). Replication and reversal of all colour–pattern

combinations allowed us to control for colour biases in our

lizards.

Previous studies have demonstrated that lizards can use

different learning mechanisms (e.g. associative or spatial

learning) to complete goal-oriented behavioural tasks

(Wilkinson and Huber 2012). In the present study, we were

not interested in which learning mechanism the lizards

were using to locate their food reward. Rather, we were

interested in the ability of the lizards to consistently

improve their ability to solve a behavioural task (i.e. to

learn the location of the food reward). This is because, for

hatchling lizards, the ability to efficiently learn a novel

behavioural task is likely to be biologically significant,

regardless of the mechanism they use to achieve the goal.

For example, hatchlings that learn the most direct route to a

shelter increase their chances of surviving a predatory

attack. It does not matter whether the hatchlings learn to

locate the shelter using spatial location or visual cues, as

long as they can reliably locate the shelter during an attack.

Thus, we provided lizards with several different cues to

help them navigate the maze (Day et al. 1999), including

local colour cues (orange and blue, which are highly con-

trasting), local pattern cues (striped and solid) and external

visual cues (the location of the mazes in the room remained

constant and the lizards could navigate using objects out-

side of the maze). The lizards could have been using any

combination of these cues to locate their reward. Lizards

are also able to locate prey by flicking their tongues to

sample chemical cues in the air (Cooper 1994). We

attempted to control for such cues by coating each of the

feeding wells with cricket scent prior to each trial and

cleaning the maze floors with diluted (70 %) ethanol

between trials.

Learning trials began 10 days after hatching, as soon as

lizards were consistently eating crickets (Acheta domesti-

cus). Learning trials ran for 15 consecutive days with each

lizard completing one trial per day. For each lizard, the

maze colour–pattern combination and the feeding well (left

Fig. 1 Graphic representation of one of the Y-mazes we used to

determine learning ability in hatchling B. duperreyi. Each maze had

three arms of equal length. Two maze arms were painted with

contrasting colours (orange and blue) and patterns (stripes and solids)

to provide visual cues. All colour–pattern combinations were

replicated and reversed in our study (four mazes total). Two arms

contained feeding wells (A and B), whereas the third arm was empty

and designated as the starting position for each trial (C). There was

also a central decision point (D) we used to determine turning errors
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or right) were assigned prior to the first trial and remained

consistent throughout all 15 trials. To start a learning trial,

we inserted a food reward (one cricket) into the designated

feeding well and then placed the lizard in the empty arm of

the maze. We recorded how long it took the lizard to locate

and consume the food reward and how many turning errors

it made in each trial, using overhead surveillance cameras

(Aucom Security, Bundoora, VIC, Australia). An error was

recorded every time the lizard entered the decision point

and turned away from the reward arm (Fig. 1). After

20 min, any lizard that had not located its reward was then

placed on the correct feeding well and offered a cricket

with forceps. To standardize hunger levels, we withheld

food for 24 h prior to the first trial and provided one cricket

per day thereafter. We restricted the hatchlings’ diets to

crickets only so that they could not develop preferences for

different food items, and thus, crickets should have equally

motivated them all to complete the task. We tested all

lizards at 27 �C ambient temperature. The same researcher

scored all of the learning trials in order to avoid researcher

bias.

Upon completion of the learning task, we released the

lizards at their egg collection sites. All lizards were in good

health and free of visible parasites upon release. All

research was carried out under University of Sydney ani-

mal care protocol L04/12-2010/3/5449.

Learning metrics

Using a simple Y-maze design, animals demonstrate

learning by (1) reducing the amount of time it takes to

locate a reward and (2) progressively taking a more direct

route to the reward over successive trials. Therefore, we

used two learning metrics to assess differences in the rate

of learning between lizards from our ‘hot’ and ‘cold’

incubation treatments. First, we assigned each hatchling a

learning score based on the rate its probability of success

within a trial increased over the 15 trials (henceforth

referred to as ‘learning as success’). Here, we defined a

successful trial as one where the hatchling located the food

reward while making no turning errors (i.e. took the most

direct route to the reward). We recorded all other scenarios

(i.e. making at least one turning error and/or failing to

locate the food) as failures, regardless of whether the

hatchling eventually located the food reward. Thus, an

increase in an individual’s probability of success over the

15 trials suggests that the hatchling progressively took a

more direct route to the food reward. Second, we assigned

each hatchling a learning score based on the rate it

decreased its time to locate the food reward over the 15

trials (henceforth referred to as ‘learning as time’). The

learning score is based on the rate at which time to locate

food decreases with number of trials and is estimated in a

hierarchical Bayesian framework as described below.

Two issues to consider when using metrics such as these

are variability between individuals and parameter uncer-

tainty. Within each incubation treatment, we may expect to

find both fast and slow learners; yet, for either learning

metric, there will be some uncertainty in the rate that each

individual learns due to the unpredictable nature of

hatchling behaviour in each trial. For example, a slow

learner may be successful in individual trials with some

probability, whereas a fast learner might not successfully

complete every trial. Hierarchical Bayesian modelling is an

ideal framework for addressing these issues because we can

estimate group-level parameters, while accounting for the

uncertainty in learning ability at the individual level. That

is, learning ability is an individual parameter modelled as

coming from a group-level distribution, and we estimate

joint posterior distributions for parameters at both indi-

vidual and group levels.

Measuring ‘learning as success’ in hatchlings

For each individual, we assumed that the probability pt;i of

success in trial t for individual i is given by

pt;i ¼ K
1

1þ e�½aiþðt�1Þbi�
ð1Þ

where ai models initial probability of success and bi models

the change in success probability with number of trials.

Both ai and bi are defined on the range [-?, ?]. For

K = 1, Eq. 1 is a standard logistic regression function and

K, defined on the range [0, 1] and modelling the maximum

success rate, is included in the model because we did not

expect that the success rate necessarily approaches one

with the number of trials. In order to obtain a single, easily

interpretable measure of learning, we modelled parameter

K as a common parameter for all individuals and learning is

expressed through bi, interpreted as a measure of the rate

that individual i approaches K, with bi [ 0 indicating

learning.

We define st,i = 1 if trial t of individual i was a success

(otherwise st,i = 0), the likelihood is specified as

f1ðsijai; bi; kÞ ¼
YT

t¼1

Bernoulliðst;ijpt;iÞ; ð2Þ

where si denotes all T trials of individual I and pt,i is given

by Eq. 1.

Measuring ‘learning as time’ in hatchlings

Because time to locate food is inherently positive, we

modelled log-time and denote the logarithm of the time for
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individual i to locate the food in trial t as st,i, with si = st,1,

st,2,…,st,T, and define the likelihood of all T trials for

individual i as

f2ðsijci; di; r
2
sÞ ¼

YT

t¼1

Normal (st;ijy; r2
sÞ; ð3Þ

where y ¼ ci � ðt � 1Þdi; i.e., y is a linear function with

intercept ci and negative slope di. Parameter di is inter-

preted as a measurement of learning for individual i with

positive values indicating learning. Residuals around y are

expressed through r2
s , and in order to reduce the number of

parameters in the analysis, we made this a common

parameter for all individuals.

Speed and body size in hatchlings

There is also uncertainty in our measure of hatchling run

speeds, as these are based on three separate trials, Q = 3.

For each individual i, we denote vq;i as the speed measured

in trial q and vi as the result of all Q races. We define the

likelihood of all trials of individual i as

gðvijui; kÞ ¼
YQ

q¼1

Gamma (vq;ijh; kÞ;

where scale parameter h ¼ eui=k, and shape parameter k is

modelled as a shared parameter between all individuals in

the analysis.

Body size was measured by a single estimate per indi-

vidual and uncertainty is not of particular concern. We define

zi as the total length of individual i, given in log (mm).

Group-level models

Learning at the individual level was modelled either by

‘learning as success’ or ‘learning as time’ for each hatch-

ling using two different models; yet, at the group level, the

corresponding models have the same structure. For nota-

tion, we define li as the learning measure of individual i and

ll as the group mean learning ability, with li = bi, ll = lb,

when we refer to learning as increased probability of suc-

cess, and li = di, ll = lb, when we refer to learning as

decreased time to locate the food. The intercepts, ai or ci,

also have similar interpretation between the models, and

we use xi when referring to either learning metric or lx

when referring to the group mean intercept. At the group

level, intercepts were modelled by a normal distribution

with mean lx and variance r2
x, i.e., xi�Normal(lx; r

2
xÞ:

Because we were interested in correlations between

learning, body size and speed, we modelled the group-level

distribution of li, zi and ui by a multivariate normal distri-

bution (denoted MVN) with mean M ¼ ½ll; lz; lu� and

covariance R. In order to obtain posterior distributions of

correlations and facilitate prior elicitation, we follow the

separation strategy suggested by Gelman et al. (2004),

whereby the covariance is split into correlations and stan-

dard deviations by R = SRS, with

R ¼
1 Rl;z Rl;u

Rl;z 1 Rz;u

Rl;u Rz;u 1

2
4

3
5; S ¼

rl 0 0

0 rz 0

0 0 ru

2
4

3
5:

Here, Rl;z;Rl;u and Rz;u are the coefficients of correlation

between learning and body size, learning and speed, and

body size and speed, respectively, and rl; rz and ru are the

corresponding residual standard deviations.

We wanted to compare the overall predicted correlations

among these three traits (all hatchlings combined) with the

predicted correlations within each incubation treatment

(separate means for each treatment). This requires speci-

fying slightly different models.

Incubation treatments combined, models 1 and 2

Denoting all data by D ¼ ½s1; s2; . . .; sN ; v1; v2;

. . .; vN ; z1; z2; . . .; zN �; where N is the number of individuals

in the study, the full Bayesian model for learning measured

by success rate with the incubation treatment groups

combined is written as

Model 1:Pða; b; u;K; k;M;R; la; r
2
ajDÞ

a
YN

i

f1 Sijai; bi;KÞgðvijui; kÞð Þf gMVNð½bi; ui; zi�jM;RÞ
"

Normal (aijla; r
2
aÞ
�
PðlaÞPðr2

aÞPðKÞPðkÞPðMÞPðRÞ

where a ¼ ½a1; a2; . . .; aN �; b ¼ ½b1; b2; . . .; bN �; u ¼
½u1; u2; . . .; uN � and PðlaÞPðr2

aÞPðKÞPðkÞPðMÞPðRÞ indi-

cate priors.

For the equivalent model for learning measured by time

to locate food, all data are instead denoted by D ¼
½s1; s2; . . .; sN ; v1; v2; . . .; vN ; z1; z2; . . .; zN � and the model is

similarly written as

Model 2:Pðc; d; u; r2
s ; k;M;R; lc; r

2
c jDÞ

a
YN

i

f2 st;ijci; di; r
2
s

� �
gðvijui; kÞ

� �
MVN([di; ui; zi�jM;RÞ

"

Normal cijlc; r
2
c

� �i
PðlcÞPðr2

cÞPðr2
sÞPðkÞPðMÞPðRÞ

where c ¼ ½c1; c2; . . .; cN � and d ¼ ½d1; d2; . . .; dN �.

Incubation treatments separated, models 3 and 4

When including the effect of incubation treatment, we

modelled the group-specific mean of M and lx, and when
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required, we denote groups with index j (i.e. Mj and lx,j,

where j = 1 refers to ‘hot’ treatment, and j = 2 to ‘cold’

treatment). Our main interest is differences Mj, specifically

mean learning ability as defined by either ll,j = lb,j or

ll,j = ld,j, and we may say that hot incubation group are

better learners if ll,1 [ ll,2. Also of interest are potential

differences in intercept lx,j, which may indicate differ-

ences in initial performance. In order to obtain more pre-

cise estimates of these parameters of interest and to

facilitate straightforward interpretation of the results, other

parameters were modelled as shared between the groups.

We also use notation Nj to refer to the number of indi-

viduals in each group (N1 = 18 and N2 = 21) and the total

number of trials per individual as T = 15.

The model for learning measured by success rate is then

written as

Model 3:Pða; b; u;K; k;M1;M2;R; la;1;la;2r
2
ajDÞ

a
Y2

j¼1

("
YN1

i

f1 Sijai; bi;KÞgðvijui; kÞð Þf gMVN([bi; ui; zi�

jMj;RÞNormal (aijla;j;r
2
aÞ
#

Pðla;jÞPðMjÞ
)

Pðr2
aÞPðKÞPðkÞðRÞ;

and the corresponding model for learning defined by time

to locate food is written as

Model 4:Pðc; d;u; r2
s ; k;M;R; lc; r

2
c jDÞ

a
Y2

j¼1

("
YN1

i

f2 st;ijci; di; r
2
sÞgðvijui; kÞ

� �� �
MVN([di; ui; zi�

jMj;RÞNormal(cijlc;j; r
2
cÞ
#

Pðlc;jÞPðMjÞ
)

Pðr2
cÞPðr2

sÞPðkÞPðRÞ;

Bayesian inference involves specifying prior beliefs of

parameters. Here, we use vague priors, hence making

inference based mainly on the data. Prior elicitation is

described in detail in Appendix A.1.1 (ESM). All

parameters were estimated using Markov Chain Monte

Carlo (MCMC), which involves constructing a Markov

chain whose limiting distribution represents the posterior

distribution of interest (see e.g. Gamerman and Lopes

2006). The MCMC algorithm is described in Appendix

A.2. (ESM).

Posterior predictive probabilities

In two instances, we were particularly interested in

obtaining probability statements to support claims about

differences in parameters. First, for models 3 and 4, we

wanted to know the probability that ‘hot’ treatment

hatchlings learned faster than ‘cold’ treatment hatchlings,

i.e., ll,1 [ ll,2. Second, we were interested in the

probability that separating individuals by incubation

treatment reduces the correlation coefficients Rl;z;Rl;u and

Rz;u. We therefore computed the posterior predictive

probability of these statements, technically as the propor-

tion of iterations of the MCMC that satisfy the specified

conditions. Because we are estimating these group-level

parameters in an hierarchical Bayesian framework, uncer-

tainty about individual measures is incorporated in our

probability statements.

Results

Differences in size and speed—Marginal posterior esti-

mates (presented by median and 95 % central credibility

intervals in brackets) of mean body size, given in log mm,

were estimated at 4.04 [4.02, 4.06] and 3.97 [3.95, 3.99] for

the ‘hot’ and ‘cold’ treatments, respectively, indicating that

individuals in the ‘hot’ treatment group were larger than

those in the ‘cold’ treatment. The marginal posterior esti-

mates of mean speed, given in logarithm of average speed

in m/s, were estimated at -0.92 [-0.99, -0.85] and -1.29

[-1.35, -1.22] for the ‘hot’ and ‘cold’ treatments,

respectively, indicating faster individuals in the ‘hot’

treatment group. Estimates of size and speed for each

hatchling were identical in all models.

Differences in learning ability—Fig. 2 plots the mean

success rate and mean log-time to locate the reward for each

incubation group in every trial. Hatchlings from both the

‘hot’ and ‘cold’ incubation treatments increased their prob-

ability of successfully completing a trial and decreased their

time to locate the food reward across the 15 trials. This

change strongly suggests that hatchlings from both incuba-

tion treatments were capable of learning the maze task, but

‘hot’ individuals learned much more rapidly than ‘cold’

individuals. All hatchlings that did not successfully locate the

food reward during the trial period readily ate when we

offered them a cricket with forceps, suggesting that unsuc-

cessful hatchlings were hungry and motivated to eat. Fig-

ure 3 plots the marginal distribution of mean learning ability

(lb,j or ld,j) for each incubation treatment, using each

learning metric (i.e. ‘learning as success’ and ‘learning as

time’) from models 3 and 4. For the ‘hot’ treatment group,

the distributions have most density above zero, providing

strong evidence of learning. However, the distributions for

the ‘cold’ treatment group are centred near zero, indicating

little support for learning. We also computed the posterior

predictive probability that the ‘hot’ treatment group learns

faster than the ‘cold’ treatment group in models 3 and 4. This

is estimated at �99 and 95 % for model 3 and 4, respec-

tively, which indicates that no matter how we define learn-

ing; the ‘hot’ treatment group learned faster.
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A difference in intercept parameters would indicate

differences in initial performance of the ‘hot’ and ‘cold’

incubation treatments. For example, ‘hot’ hatchlings may

learn to locate their food faster because they are more

active in the maze. The marginal posterior estimates of la,j

(presented by median and 95 % central credibility intervals

in brackets) were estimated at -2.7 [-4.2, -1.7] and -3.8

[-5.5, -2.5] for hot and cold treatment, respectively, and

the corresponding estimate for lc,j at 7.0 [6.9, 7.1] and 7.1

[7.0, 7.2], respectively. The substantial overlap indicates no

support for any initial differences in performance (Fig. 2).

Correlations between body size, running speed and

learning ability—Figure 4 plots individual estimates of

size, speed and learning against one another. Figure 5 plots

the pairwise correlation coefficients between learning,

body size and speed. When we combine data for all of the

hatchlings (models 1 and 2, bottom row panels), the mar-

ginal posterior estimates are clearly above zero for both

definitions of learning, indicating strong evidence for cor-

relations. However, when we separate the hatchling into

their incubation treatments (models 3 and 4, top panels),

the distributions are consistently shifted downwards and

generally show high posterior density below zero, indi-

cating little or no support for correlations. We also com-

puted the posterior predictive probability that the

corresponding correlation coefficient is smaller in the

model where groups are separated by incubation treatment.

When learning is defined by time to locate food (comparing

models 2 and 4), this probability was estimated at 95, 98

and 97 % for correlations between learning and size,

Fig. 2 Left panel mean number of successful outcomes per trial for

both the ‘hot’ (black dots) and ‘cold’ (grey dots) incubation

treatments. The solid lines (corresponding to incubation treatment

by colour) indicate the posterior predictive means, and the dashed

lines indicate the corresponding 95 % central credibility interval.

Right panel mean log-time to complete trials for both the ‘hot’ (black

dots) and ‘cold’ (grey dots) treatments. The solid lines (corresponding

to incubation treatment by colour) indicate the posterior predictive

means, and the dashed lines indicate the corresponding 95 % central

credibility interval

Fig. 3 Marginal posterior distributions of mean learning rate of B.

duperreyi from ‘hot’ (solid) and ‘cold’ (dashed) incubation treat-

ments, with learning defined either by time to locate food (left panel)

or by increased probability of successfully locating the food reward

(right panel). Positive values indicate support for learning (decreased

time to locate food or increased success probability with the number

of trials) and a value of zero indicates no learning
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Fig. 4 Relationships between

individual estimates of size,

speed and learning ability, with

grey and black indicating

hatchlings from the cold and hot

incubation treatments,

respectively. For speed and

learning, circles (cold

treatment) or dots (hot

treatment) indicate median of

the marginal posterior estimates

from Model 3 (‘learning as

success’) and Model 4

(‘learning as time’), and error

bars indicate the corresponding

95 % central credibility

interval. Note that the speed and

body size variables are

consistent between models, and

thus, the graphs of speed versus

size produced by each model are

identical (bottom two panels)

Fig. 5 Marginal posterior

distributions of correlation

coefficients between learning,

size and speed for B. duperreyi.

Left column shows results for

models where learning is

measured by time to locate

food, and right column shows

results for learning measured by

success probability. The lower

panels show results for analyses

including all individuals as a

single group, and the upper

panels show results where the

effect of treatment is removed

by modelling group-specific

means of lizards from ‘hot’ and

‘cold’ incubation
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learning and speed, and speed and size, respectively. The

corresponding estimates when learning is defined by suc-

cess probability (comparing models 1 and 3) are 87, 86 and

97 %, respectively.

Discussion

Overall, lizards that were larger were also faster and

smarter (Fig. 4). However, the strong correlations esti-

mated between body size, running speed and learning

ability when we combined hatchlings from the ‘hot’ and

‘cold’ incubation treatments (models 1 and 2, Fig. 5, bot-

tom row panels) largely disappeared when we removed the

effect of incubation treatment (models 3 and 4, Fig. 5, top

row panels). We found particularly strong evidence for this

when we used ‘learning as time’ as the learning metric

(probability estimated at 95, 98 and 97 % for correlation

learning-size, learning-speed and speed-size, respectively).

We found the same trend when we used ‘learning as suc-

cess’ as the learning metric, though it had weaker support

(probability estimated at 87, 86 and 97 %, respectively).

However, because our models showed the same trends,

regardless of the learning metric we used, we can confi-

dently assert that the overall correlations were driven lar-

gely by the effect of incubation temperature on all three of

these variables. This result means that ‘hot’ hatchlings

were in general larger, faster and smarter than ‘cold’

hatchlings, resulting in a strong positive correlation

between these traits when data from the two incubation

treatments were combined. However, within either incu-

bation treatment, there was no trend for larger individuals

to be faster and/or smarter than smaller individuals. Our

results suggest that incubation temperatures that optimized

growth and locomotor speed also optimized cognitive

function. In other words, larger lizards were faster and

smarter because all three of these traits were consequences

of their developmental history (i.e. they hatched from eggs

that had been incubated at high temperatures), rather than

because (for example) larger body size increases a lizard’s

running speed or its intelligence, or because alleles for

larger size are linked with alleles for faster learning or

greater speed.

Note that the probability statements listed above refer to

the probability that the correlation coefficients are lower in

the separated models. Although we cannot conclude that

there is no correlation in the separate models, we can say

with some certainty that the correlation is lower than in the

combined models. This approach is less sensitive to sample

size than a frequentistic approach and avoids the erroneous

conclusion that the lack of a significant correlation means

that there is no correlation. Hence, the lower correlations

found when separating the groups (models 3 and 4) are not

merely the effect of lower sample size per group.

Our study further highlights the benefit of the hierar-

chical Bayesian framework when individual estimates are

based on a limited number of trials. In our study, both

speed and learning ability were assessed by repeated trials,

and because of the somewhat unpredictable nature of ani-

mal behaviour, uncertainty at the individual level of these

parameters becomes an issue. This can be seen in Fig. 4

where the error bars (indicating the 95 % central credibility

interval of the marginal posterior of each individual

parameter) are quite large. For example, within each group,

there are some individuals that show strong support for

learning (error bars do not overlap zero). This uncertainty

about individual parameters is included in the estimates of

group-level parameters and hence in the inference based on

their posterior estimates. We thereby sidestep the random

element that would follow from reliance upon a single

point estimate at the individual level. With a larger number

of trials per individual, this becomes less of an issue, but

with, for instance, only three trials for speed, we cannot

expect to have captured the average speed with sufficient

accuracy.

In reptilian cognition studies, the problem of motivation

is notoriously difficult to address (Burghardt 1977). When

using food rewards, some individuals may perform better

because they are hungrier or because they are more moti-

vated by a particular reward. In the present study, we have

attempted to control for motivation in four different ways.

First, hatchlings were fed 3 crickets per day for 10 days

prior to maze trials, enough time for all lizards to begin

feeding consistently. We then withheld food for 24 h prior

to the first maze trial and fed each lizard one cricket per

day during trials to standardize hunger levels. This means

that hatchlings should have been equally motivated to

locate the food reward in the maze. Second, we offered

hatchlings that failed to complete the maze task a single

cricket after their trial time had expired. All hatchlings

readily ate the crickets we offered them, suggesting that

they were hungry but failed to locate the cricket in the

maze. Third, we fed hatchlings crickets (and only crickets)

for their entire lives in captivity, and we used the same prey

type (crickets) as the only of food reward. This means that

the hatchlings could not develop preferences for different

food items and crickets should equally motivate them all

(Balasko and Cabanac 1998). Fourth, all hatchlings were

tested and maintained at the same temperatures during the

experimental period so that baseline metabolic rates should

have been similar (Angilletta 2001). Thus, we are confident

that our results reveal actual differences in cognitive ability

between B. duperreyi hatchlings from unique thermal

regimes rather than differences in individual motivation.
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Our results suggest a caveat to previous interpretations

of the operation of natural selection. Several studies

(including in lizards) have reported higher survival in

individuals that are larger or faster than most of their

cohort, thereby inferring selection on these traits (Janzen

1993; Irschick et al. 2005). Although we do not doubt that

size and speed are sometimes important targets of selec-

tion, a high correlation between these two traits and

learning ability (as shown in our study) raises the possi-

bility that selection in such cases has worked on variation

in learning ability rather than (or as well as) on size and

speed. Faster learning could enhance fitness through its

effects on resource acquisition or predator avoidance

(Dukas 2004), and thus, selection may favour any number

of underlying cognitive mechanisms associated with

learning ability (e.g. attention, spatial memory, visual

discrimination; Shettleworth 2009). Such effects might be

important even if the effects of incubation temperature on

learning ability are transitory. For precocial species with no

parental care (including most reptiles), learning ability is

likely to have the greatest impact on fitness during the

hatchling stage, when juvenile animals are first learning to

locate resources and escape predators (Burger 1998).

However, incubation-induced effects also may persist for

much of the animal’s life, as has been shown for size and

locomotor ability in B. duperreyi (Elphick and Shine

1998). Unfortunately, almost no studies have assessed the

adaptive significance of learning ability in the field (but see

Thomas et al. 2001; Grieco et al. 2002).

Our study identifies oviparous ectotherms (such as most

lizards) as ideal model systems for such research.

Researchers may be able to separate cognitive traits from

morphological and performance traits using established

experimental manipulations during incubation (e.g. yolk

removal (Warner and Shine 2007) or hormone applications

(Radder et al. 2008)). They could then assess differences in

cognitive abilities and use field studies to determine the

relative importance of within-population variation in

learning, body size and locomotor ability to individual

survival and reproductive success (Warner and Shine

2007). Although such experiments are ethically impossible

in humans, indirect evidence suggests an unexpected and

intriguing parallel to our results in lizards. In humans,

positive correlations between size, speed and learning may

also be driven by phenotypically plastic responses to

developmental conditions, rather than by underlying

genetic variation (Samaras 2007; Tomporowski et al.

2008). More generally, analyses of phenotypic predictors

of fitness within populations (a cornerstone of the Dar-

winian approach) might usefully be expanded to include

cognitive traits. In many circumstances, an individual’s

viability may depend more upon its behavioural flexibility

than upon its size or speed.
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