
Abstract The extent to which decision-making processes
are constrained in animals with small brains is poorly un-
derstood. Arthropods have brains much smaller and sim-
pler than those of birds and mammals. This raises ques-
tions concerning limitations on how intricate the decision-
making processes might be in arthropods. At Los Baños
in the Philippines, Scytodes pallidus is a spitting spider
that specialises in preying on jumping spiders, and Portia
labiata is a jumping spider that preys on S. pallidus. Scy-
todid spit comes from the mouth, and egg-carrying fe-
males are less dangerous than eggless scytodids because
the female uses her chelicerae to hold her eggs. Held eggs
block her mouth, and she has to release them before she
can spit. The Los Baños P. labiata sometimes adjusts its
tactics depending on whether the scytodid encountered is
carrying eggs or not. When pursuing eggless scytodids,
the Los Baños P. labiata usually takes detour routes that
enable it to close in from behind (away from the scyto-
did’s line of fire). However, when pursuing egg-carrying
scytodids, the Los Baños P. labiata sometimes takes faster
direct routes to reach these safer prey. The Los Baños 
P. labiata apparently makes risk-related adjustments spe-
cific to whether scytodids are carrying eggs, but P. labiata
from Sagada in the Philippines (allopatric to Scytodes) fails
to make comparable risk-related adjustments.
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Introduction

Application of models from behavioural ecology to real
animals will usually depend on an understanding of ani-
mal cognition, with perceptual, information-processing,
and decision-making abilities being especially relevant to
understanding assessment strategies (Yoerg 1991; Belisle
and Cresswell 1997; Kamil 1998; Dukas 1999; Shettle-
worth 2001). Research on intricate and flexible assess-
ment strategies in arthropods is important for clarifying
how decision-making and other cognitive abilities might
be limited by the size and complexity of the animal’s
brain.

During conflict with conspecific rivals, animals tend to
rely on assessment strategies where the goal can be envis-
aged as making decisions based on estimates of potential
risks and payoffs (Maynard Smith and Price 1973; Parker
1974; Enquist et al. 1990). However, direct detection of
risk may often be impossible, and animals usually rely in-
stead on detection of cues that are correlated with par-
ticular risks and payoffs (Huntingford and Turner 1987;
Bouskila and Blumstein 1992).

Assessment may also be important in predator–prey
systems involving different species (Huntingford 1976;
Curio 1978; Rowe and Owings 1978; Lloyd 1986; Lima
and Dill 1990). Predators are obviously dangerous to prey,
and examples are known where prey discriminate be-
tween different species of predators (Leger and Owings
1978; Owings and Leger 1980; Seyfarth et al. 1980; Slo-
bodchikoff et al. 1991; Cheney and Seyfarth 1988; Gyger
et al. 1987; Greene and Meagher 1998), or even between
particular individuals belonging to single species of
predator. This includes discerning the likelihood that a
predator will attack (Hammerstrom 1957; Buitron 1983;
Pettifor 1990), intrinsic variation in how dangerous an in-
dividual predator might be should it attack (Rowe and
Owings 1978; Curio et al. 1983; Owings and Loughry
1985; Hennessy 1986; Helfman 1989; Loughry 1989;
Foster and Ploch 1990; Walters 1990; Rowe and Owings
1996; Swaisgood et al. 1999a) and contextual factors such
as where the encounter takes place and the prey’s repro-
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ductive state (Coss and Owings 1985; Loughry 1987; Swais-
good et al. 1999b).

However, predator–prey interactions may sometimes
be risky to the predator as well as the prey (e.g., Owings
and Coss 1977; Hennessy and Owings 1988). Some
predators have evolved prey-specific prey-capture tactics
(Curio 1976), and these may be shaped by the levels and
types of risks (chemical defences, ability to harm the
predator physically, etc.) from particular species of prey
(Forbes 1989; Brodie and Brodie 1990, 1991, 1999;
Downes and Shine 1998). Less is known about whether
predators rely on cues that reveal intrinsic risk-related
variation among individuals within single prey species.
Yet the decisions of a predator at this level may be espe-
cially instructive when attempting to understand animal
cognition.

That scaling factors must constrain the cognitive abili-
ties of animals is widely acknowledged. Smaller animals
tend to have fewer, not smaller, neurons (Alloway 1972;
Menzel et al. 1984), which means fewer components are
available for brains and sense organs, the machinery used
for cognitive functions. There is considerable evidence
that, even over a small range and among closely related
species, brain size influences cognitive ability (Lashley
1949; Jerison 1973, 1985; Eisenberg and Wilson 1978;
Clutton-Brock and Harvey 1980; Mace et al. 1981; Le-
febvre et al. 1997). That there are drastic limitations on
the cognitive capacities that can evolve in animals such as
spiders and insects appears to be indisputable because,
compared with birds and mammals, most arthropods have
much smaller nervous systems. Yet there is little precise
information about how severe these limitations might be
(see Bitterman 1986; Bernays 2001).

Recent spider studies suggest that size constraints on
spider cognition may be less severe than formerly sup-
posed. For example, foraging behaviour, web building,
and mating decisions of many spiders are influenced by
learning and other types of experience (Grünbaum 1927;
Bays 1962; LeGuelte 1969; Lahue 1973; Seyfarth et al.
1982; Sebrier and Krafft 1993; Edwards and Jackson
1994; Sandoval 1994; Whitehouse 1997; Heiling and Her-
berstein 1999; Nakata and Ushimaru 1999; Morse 1999,
2000a, b; Tso 1999; Chmiel et al. 2000; Rodriguez and
Gamboa 2000; Venner et al. 2000), and the level to which
salticid spiders rely on problem solving, decision making,
and forward planning (Jackson 1977, 1981; Jackson and
Wilcox 1990, 1993a, b; Wilcox et al. 1996; Jackson et al.
1998, 2001; Clark et al. 1999; Clark and Jackson 2000;
Tarsitano et al. 2000; Jackson and Carter 2001) is unusual
even for vertebrates (Wilcox and Jackson 1998, 2002;
Harland and Jackson 2000).

Here we investigate whether araneophagic spiders (i.e.,
spiders that specialise in preying on other spiders) make
assessment decisions based on cues that reveal intrinsic
risk-related variation among individuals within single
prey species. All spiders are predators, and many species
routinely take prey comparable to themselves in size
(Foelix 1996). However, especially intricate decisions
might be important for araneophagic spiders. For a preda-

tor that preys routinely on other predators, risk-assess-
ment decisions might often have life-or-death conse-
quences for the predator as well as the prey. As a case
study, we investigate a predator–prey system involving two
species, each of which is araneophagic and each of which
preys on the other. One is a web-building spitting spider
(Scytodidae) and the other is a jumping spider (Salti-
cidae).

The eyes of most spiders lack the structural complexity
required for acute vision (Homann 1971; Land 1985), but
the unique complex eyes of salticids support resolution
ability with no known parallel in other animals of compa-
rable size (Land 1969a,b,1974,1985 ; Blest et al. 1990;
Land and Nilsson 2001). Almost 5,000 salticid species
have been described (Coddington and Levi 1991; Zabka
1993), most of which appear to be cursorial hunters of in-
sects (Richman and Jackson 1992). Having intricate vi-
sion-controlled predatory behaviour, most salticids nei-
ther build nor use webs (Jackson and Pollard 1996), but
there are exceptions, the most striking of which are in the
genus Portia (Wanless 1978). Besides capturing prey in
the open, Portia also spins prey-capture webs (Jackson
1985) and they routinely invade alien webs where they
take their preferred prey, other spiders (Li and Jackson
1996; Li et al. 1997).

After entering another spider’s web, instead of simply
stalking or chasing down the resident spider, Portia uses
aggressive-mimicry signals to manipulate the resident spi-
der’s behaviour (Jackson and Wilcox 1998). However,
Portia’s flexibility includes more than complex, flexible
signalling behaviour (Jackson and Wilcox 1993a). When
direct routes are unavailable, Portia may make deliberate
detours (Tarsitano and Andrew 1999), including ‘reverse-
route detours’ (detours that can be completed only by ini-
tially moving away from, and losing sight of, the prey
(Tarsitano and Jackson 1994, 1997). Portia may also take
detours by choice even when shorter direct routes are
available (Jackson and Wilcox 1993b; Jackson et al.
1998).

Among spiders, spitting is unique to the genus Scy-
todes (Foelix 1996): by forcefully expelling sticky gum
from their fangs, these spiders can immobilise their prey
from distances of up to 10 body lengths away (Dabelow
1958; McAlistair 1960; Gilbert and Rayor 1985; Nentwig
1985). No other prey of Portia has a comparable ability to
attack from a distance, and scytodids can gum Portia
down with their spit. Encounters by Portia with spitting
spiders are known to be frequent in only one habitat, Los
Baños (Lagunas Province, Luzon) in the Philippines. Here
P. labiata preys routinely on S. pallidus, an especially
common spitting spider, which is itself primarily a preda-
tor of salticids, sometimes including P. labiata (Li et al.
1999). This suggests that, during encounters with S. pal-
lidus, it might be especially advantageous for Portia to
make risk-related strategic decisions.

That the Los Baños P. labiata is locally adapted to 
S. pallidus has been suggested by comparison with P. labiata
from Sagada (Mountain Province, Luzon, the Philippines)
where S. pallidus is not found. The Los Baños P. labiata
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(sympatric with S. pallidus), but not the Sagada P. labiata
(allopatric to S. pallidus), makes consistent use of a partic-
ular tactic (soft plucking with palps in signal–detour–leap
sequences), and these inter- and intraspecific differences are
evident despite the individuals of P. labiata studied being
reared in the laboratory for two to three generations with
no prior experience of scytodids (Jackson et al. 1998). The
Los Baños P. labiata’s faint signals cause the resident spi-
der to move about in an exploratory fashion. This can be
important because it keeps P. labiata’s target, the scytodid,
out in the open. Other signals are advantageous because they
may provoke a full-scale attack. The Los Baños P. labiata,
but not the Sagada P. labiata, avoids making these danger-
ous signals. The detours taken by P. labiata are an espe-
cially advantageous way to approach a spitting spider be-
cause these indirect paths enable P. labiata to reach S. pal-
lidus from the rear, opposite the end from which the scyto-
did’s spit is fired. Using its signal–detour–leap tactic, the
Los Baños P. labiata experiences greater prey-capture suc-
cess and lesser likelihood of being spat on and killed (Jack-
son et al. 1998).

Individuals of S. pallidus may differ significantly in
the intrinsic level of danger they present to P. labiata. Af-
ter oviposition, Scytodes females carry their eggs in their
chelicerae. As their gum is fired from the chelicerae, egg-
carrying females can be envisaged as having ‘spiked their
own guns’ (i.e., blocked the outlet). ‘Spiking’ is not ab-
solute for egg-carrying S. pallidus because they do some-

times lower their eggs from their mouths and spit, but
they appear to be reluctant and slow to do so (Li et al.
1999). Here we consider whether the Los Baños P. labi-
ata’s decision-making processes have become locally
adapted to this variation in the intrinsic risk posed by en-
counters with different individuals of S. pallidus. Having
found no evidence in preliminary trials that the signals
used by P. labiata vary depending on whether S. pallidus
is eggless or egg carrying, we will consider specifically
the detouring decisions of P. labiata.

Methods

All spiders were from laboratory cultures that were started from
specimens collected at Los Baños (Scytodes pallidus, Phintella
aequinosus, and Portia labiata) and Sagada (Portia labiata). All in-
dividuals of Portia labiata were derived from rearing to second or
third generation, with no individuals or their laboratory-reared par-
ents having had prior experience with scytodids. Phintella aequi-
nosus is a leaf-dwelling salticid on which S. pallidus routinely
preys in nature (Li et al. 1999).

Standard maintenance, experimental procedures, cage design,
and feeding routines were adopted, as detailed elsewhere (Jackson
and Hallas 1986). Only critical details are given here. Laboratory-
rearing environments (spacious cages containing meshworks of
twigs) were ‘enriched’ in a manner comparable to that described
by Carducci and Jakob (2000). Testing took place in a controlled-
environment laboratory (light:dark cycle, 12L:12D; lights came on
at 0800 hours; temperature constant at 25°C). Maintenance diet for
Portia labiata consisted of a variety of spider and insect species
(Table 1), as comparable varied diets have been shown in earlier
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Species Order Family Description Body Origin
length 
(mm)

Achaearanea sp. Araneae Theridiidae Web-building spider 1–5 New Zealand
Badumna longinqua (L. Koch) Araneae Amaurobiidae Web-building spider 1–8 New Zealand
Tegenaria domestica (Clerck) Araneae Agelenidae Web-building spider 1–5 New Zealand
Zosis geniculatus (Oliver) Araneae Uloboridae Web-building spider 1–5 Laboratory culture (origin: 

Queensland, Australia)
Cheiracanthium statioticum (L. Koch) Araneae Miturgidae Hunting spider 1–5 New Zealand
Dolomedes minor (L. Koch) Araneae Pisauridae Hunting spider 1–5 New Zealand
Scotophaeus pretiosus (L. Koch) Araneae Gnaphosidae Hunting spider 1–4 New Zealand
Euophrys parvula Bryant Araneae Salticidae Hunting spider 1–7 New Zealand
Jacksonoides queenslandicus Wanless Araneae Salticidae Hunting spider 1–7 Laboratory culture (origin: 

Queensland, Australia)
Marpissa marina Goyen Araneae Salticidae Hunting spider 1–6 New Zealand
Trite planiceps (Urquhart) Araneae Salticidae Hunting spider 1–8 New Zealand
Micromus tasmaniae (Walker) Neuroptera Hemrobiidae Lacewing 3–4 New Zealand
Ctenopseustis sp. Lepidoptera Tortricidae Moth 4–6 New Zealand
Melancha sp. Lepidoptera Noctuidae Moth 6–8 New Zealand
Brevicoryne brassicae (L.) Hemiptera Aphidae Aphid 1–2 New Zealand
Macrosiphum euphorbiae (Thomas) Hemiptera Aphidae Aphid 1–2 New Zealand
Drosophila immigrans (Sturtevant) Diptera Drosophilidae Vinegar 3–4 Laboratory culture
Drosophila melanogaster (Meigen) Diptera Drosophilidae Vinegar 1–2 Laboratory culture
Macromastix zeylandia Alexander Diptera Tipulidae Crane fly 5–6 New Zealand
Musca domestica (Linnaeus) Diptera Muscidae House fly 4–8 Laboratory culture
Trichocera annulata (Meigen) Diptera Trichoceridae Crane fly 4–6 New Zealand

Table 1 Prey used in the laboratory for rearing Portia labiata,
Scytodes pallidus, and Phintella aequinosus. All holometabolous
insects: adults. All hemimetabolous insects and all spiders: juveniles

and adults. Salticids used as prey for S. pallidus only. All other prey
fed to both S. pallidus and Portia labiata. Phintella aequinosus
was fed insects only



studies to be optimal for Portia (Li and Jackson 1997). Each spider
(Portia labiata, Phintella aequinosus, or S. pallidus) was fed to sa-
tiation three times a week. The prey used was always about half
the estimated body volume of the Portia labiata, Phintella aequi-
nosus, or S. pallidus being fed. The mixed diet of each individual
of each species (Portia labiata, Phintella aequinosus, or S. pal-
lidus) consisted of approximately equal numbers of each type of
prey.

Hunger level during experiments was standardised: before be-
ing used in experiments, all individuals of Portia labiata, Phintella
aequinosus, and S. pallidus were maintained without prey for 
5 days after the last time of being fed to satiation. All testing began
between 0830 and 0930 hours. All individuals of S. pallidus and
Phintella aequinosus used in experiments were adult females
(Phintella aequinosus, 4–5 mm in body length; S. pallidus, 7–
10 mm in body length). Each individual of Portia labiata that we
used was a juvenile that matched (to the nearest millimetre) the
length of the individual of S. pallidus with which it was paired (see
below). Each individual of Phintella aequinosus was a virgin fe-
male that had matured about 20 days before any test in which it
was used.

For the statistical analyses we consulted Sokal and Rohlf
(1995). In each instance, α=0.05. For tests of independence and for
McNemar tests, df=1. For Wilcoxon tests, df=n–1, where n is the
number of paired samples.

In each test we matched a Portia labiata with a scytodid female
of comparable size (7–10 mm in body length or body length plus
length of egg sac). The adult females of Phintella aequinosus were
without eggs. No individual salticid or scytodid was used in more
than one test.

Mated females of S. pallidus lay successive egg batches, whereas
virgin females of S. pallidus remain eggless. In preliminary trials,
egg-carrying scytodid females, regardless of whether they were
with their first or a later eggsac, rarely spat at or killed salticids,
but eggless scytodid females (virgin females, mated females that
had not yet oviposited, mated females that were currently without
eggs, and mated females from which eggs had been forcibly re-
moved, by using forceps, 2–4 h earlier) readily spat at and killed
salticids.

Scytodids for testing were established in webs by placing a leaf
(Psuedopanax spp.) inside a plastic cage made from a petri dish
(diameter 148 mm). The leaf filled about half the surface area of
the cage. One adult scytodid female was put in the cage and main-
tained with prey (vinegar flies, Drosophila melanogaster; house
flies, Musca domestica) for 14–21 days, during which time it built
a web that covered most of the leaf. We destroyed silk strands built
anywhere in the cage other than on the leaf. All scytodids were
adult females without juveniles in their webs. Egg-carrying scyto-
dids were always with their first egg batch, oviposited 5–7 days
before the trial (i.e., 7–16 days after the scytodid was placed in a
cage). Each scytodid reached maturity in the laboratory about 
30 days before being put in the cage. Eggless females were all in-
dividuals that had not mated. Egg-carrying females had mated
once before being used in experiments.

Experiment 1. Are eggless scytodids more inclined 
to spit than egg-carrying scytodids?

A salticid (Phintella aequinosus) was first held in a vial
for 15 s under 100% carbon dioxide, then placed upside
down on the centre of a scytodid’s web. The petri-dish
cage was open and the scytodid was about 50 mm away.
The scytodid was quiescent and facing the centre of the
web. The 15-s exposure to carbon dioxide rendered the
salticid sluggish, but not entirely quiescent. In successful
tests, salticids placed on webs immediately righted them-
selves. Tests were aborted whenever this failed to happen.
Tests ended when scytodids spat, Phintella aequinosus

left the web, or 10 min elapsed, whichever came first. La-
tency to spit was recorded as the time elapsing after plac-
ing the salticid on the web. Eggless scytodids usually spat
during the test (75%, n=20), but most egg-carrying scyto-
dids failed to spit at all (3%, n=30; test of independence,
χ2=28.32, P<0.001).

Experiment 2. Are eggless scytodids more dangerous
than egg-carrying scytodids?

During a test, one salticid (a Phintella aequinosus or a
Los Baños Portia labiata) was left for 24 h in a closed
petri-dish cage (diameter 148 mm) with a scytodid web
and either an egg-carrying (n=60 for Phintella aequinosus
and n=60 for Portia labiata) or an eggless scytodid (n=60
for Phintella aequinosus and n=60 for Portia labiata), af-
ter which we recorded any instance in which a spider had
died.

More salticids (Phintella aequinosus and Portia labi-
ata) survived tests with egg-carrying scytodids than with
eggless scytodids (Table 2): 77% of the Portia labiata
survived tests with eggless scytodids whereas 100% of
Portia labiata survived with egg-carrying scytodids (test
of independence, χ2=15.85, P<0.001); 10% of the Phin-
tella aequinosus survived with eggless scytodids whereas
87% of the Phintella aequinosus survived with egg-carry-
ing scytodids (test of independence, χ2=70.61, P<0.001).
Only 10% of the egg-carrying scytodids survived tests
with Portia labiata, compared to 30% of eggless scyto-
dids (test of independence, χ2=26.03, P<0.001). All scy-
todids survived in tests with Phintella aequinosus.

Experiment 3. Does egg-carrying status 
of scytodids influence whether Portia labiata
takes a detour or direct path? Sympatric 
and allopatric P. labiata compared

Each Portia labiata was tested twice, on one day with an
eggless scytodid and on the next or previous day (decided
at random) with an egg-carrying scytodid. With this
paired design, the response of each individual P. labiata to
an egg-carrying scytodid was compared with the response
of this same individual P. labiata to an eggless scytodid.
The design of the test limited the test spider to one of two
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Table 2 Findings from experiment 2, showing that more salticids
survived tests with egg-carrying scytodids than with eggless scyto-
dids. For each row, n=60

Salticid species Scytodid Scytodid Salticid Both 
killed killed spiders 
salticid scytodid survived

Portia labiata Eggless 14 28 18
Carrying eggs 0 54 6

Phintella Eggless 54 0 6
aequinosus Carrying eggs 8 0 52



possible responses: leap (direct route) or detour. Most 
P. labiata made a choice (leap or detour) during both tests,
and data from individuals that failed to choose during
both tests were not analysed.

Before testing began, a leaf on which there was a web
occupied by a scytodid was taken from a cage and fas-
tened by a clip to a flexible plastic stand, with the stand
being positioned in the open in the centre of a table (Fig.1).
The leaf was angled down from the clip at 45° from hori-
zontal, and the lower end of the leaf was 50 mm above the
table top. The web was on the underside of the leaf. There
was a transparent petri dish (diameter 35 mm) on the table
directly below the leaf (base of stand 300 mm from centre
of petri dish). A P. labiata (the test spider) was held in the
dish for a minimum of 5 min, then the lid was removed to
start a test, but only if the P. labiata was not on the lid. If
the spider was on the lid, testing was postponed until the
P. labiata moved off. Testing was aborted if P. labiata
failed to move off the lid within 15 min (timed from when
placed in dish). P. labiata usually walked slowly out of
uncovered dishes and periodically oriented towards the
leaf. Testing was aborted if a P. labiata moved more than
10 mm from the petri dish without first orienting towards
the leaf. Testing with the same P. labiata was attempted
again on each successive day until a successful test was
achieved (maximum required, 4 successive days).

P. labiata could readily leap across the distance be-
tween the table top and the leaf. Leaping onto the leaf was
recorded as choosing to take a direct route to the leaf.
When P. labiata walked to the base of the stand, then
across the arm and onto the leaf, this was recorded as
choosing to take a detour. We allowed 4 h for P. labiata to
choose either a detour or a direct route to the leaf. During
the test, P. labiata was watched continuously. If P. labiata
failed to contact the web within 4 h, moved off the table
top before 4 h elapsed, or leapt on to the plastic arm or the
clip, this was recorded as failure to choose. Failure to
choose was rare (fewer than 5% of the tests). Latency to
enter a web was recorded as time elapsing between leap-
ing and first touching the web silk (direct route) or as time
elapsing between first contacting the base of the stand and
first contacting the web silk (detour). Although the web
covered the majority of the leaf, there were always some

clear spaces on the leaf surface. When P. labiata leapt
onto the leaf, it always landed on a clear section and then
walked onto the web.

The Los Baños Portia labiata more often took detours
when tested with eggless scytodids and more often took
direct routes by leaping when tested with egg-carrying
scytodids (McNemar test for significance of changes,
χ2=7.36, P=0.007): (1) 10 took detours with eggless and
direct routes with egg-carrying scytodids; (2) only 1 took
a detour with an egg-carrying and a direct route with 
an eggless scytodid; (3) 14 took detours with both; and
(4) 2 took direct routes with both. Note that only data from
(1) and (2) are used in McNemar tests.

There was no evidence that whether scytodids were
carrying eggs influenced whether the direct route or the
detour was chosen by the Sagada P. labiata (McNemar
test for significance of changes, χ2=1.80, P=0.180): 
(1) 5 took detours with eggless scytodids and direct routes
with egg-carrying scytodids; (2) 4 took detours with egg-
carrying scytodids and direct routes with eggless scyto-
dids; (3) 6 took detours with both; and (4) 7 took direct
routes with both. Only data from (1) and (2) are used in
McNemar tests. Regardless of whether scytodids were
carrying eggs, the Sagada P. labiata took the direct route
at a frequency (32%, n=22) comparable to how often Los
Baños P. labiata took the direct route (37%, n=27) in tests
with egg-carrying scytodids (test of independence, χ2=
0.15, P=0.703).

For both the Los Baños and the Sagada P. labiata, la-
tencies to enter webs were shorter when direct instead of
detour routes were taken (Los Baños P. labiata, Wilcoxon
signed-rank test, n=11, normal approximation, t=2.9, two-
tailed P<0.004, median and range for direct routes 3 min
and 1–11 min, median and range for detouring 40 min and
20–113 min; Sagada P. labiata, Wilcoxon signed-rank test,
n=9, normal approximation, t=2.6, two-tailed P=0.009,
median and range for direct routes 3 min and 1–6 min,
median and range for detouring 30 min and 25–73 min).
Although 14 of the Los Baños P. labiata took detours 
to reach the eggless and egg-carrying scytodids, detour
routes to reach eggless scytodids were completed more
slowly than detour routes to reach egg-carrying scytodids
(Wilcoxon signed-rank test, n=14, normal approximation,
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Fig.1 Apparatus used in ex-
periment 3. Not to scale. Portia
in petri dish before test began.
When lid was removed from
petri dish, Portia chose to take
a direct route to the leaf (by
leaping) or a detour (by walk-
ing to the metal base and then
following the arm to the clip)



t=2.89, P=0.004, median and range for detouring to reach
eggless scytodid 57 min and 29–76 min, median and range
for detouring to reach egg-carrying scytodid 31 min and
17–53 min). When the Sagada P. labiata took detours to
reach both types of scytodids, latencies to reach webs
were comparable (Wilcoxon signed-rank test, n=4, normal
approximation, t=0.63, P=0.529, median and range for de-
touring to reach eggless scytodid 41 min and 18–44 min,
median and range for detouring to reach egg-carrying
syctodid 39 min and 14–77 min).

Discussion

Being a salticid-eating spitting spider, Scytodes pallidus is
an especially dangerous prey for P. labiata. Local adapta-
tion was implied by the findings in an earlier study that
considered only eggless S. pallidus (Jackson et al. 1998).
The scytodid-specific prey-capture tactic of the Los Baños
P. labiata (signal–detour–leap sequences in conjunction
with soft palp plucking) is an effective method of min-
imising risk and capturing this locally abundant, but par-
ticularly dangerous, prey spider. The Sagada P. labiata
does not routinely adopt this tactic and is, compared with
the Los Baños P. labiata, less effective at capturing S. pal-
lidus and more likely to be captured by S. pallidus. Our
findings here suggest a more intricate level of local adap-
tation. Individuals of S. pallidus differ in the inherent
level of risk they pose for P. labiata (eggless females of 
S. pallidus are more dangerous than egg-carrying females
of S. pallidus), and the Los Baños P. labiata makes strate-
gic decisions consistent with these risks (taking detours,
which are safer but take more time, during encounters
with eggless females, but taking shorter direct routes dur-
ing encounters with egg-carrying females). Evidently, the
Sagada P. labiata does not make these strategic decisions.

Because we used second- and third-generation spiders
that were reared in the laboratory under standardised con-
ditions, maternal effects (Roff 1998; Wade 1998) and other
indirect genetic effects (Moore et al. 1998) are unlikely al-
ternative explanations for these findings. However, con-
textual variables (see McPhail 1985) raise numerous other
hypotheses. There is no easy way to rule out the possibil-
ity that our findings were consequences of spiders from
different habitats being predisposed to respond differently
under the standardised conditions in the laboratory. Ruling
out contextual variables is notoriously difficult when at-
tempting to show adaptive variation, whether intraspecific
or interspecific, in behaviour (Bitterman 1965). Being akin
to testing null hypotheses, attempting to identify, and then
testing the effects of, all reasonable contextual variables
requires a research program, not one or two experiments
(Kamil 1998). The present study is a first step in such a re-
search program on Philippines P. labiata.

Possibly the Los Baños and Sagada P. labiata origi-
nally diverged along a cline (see Endler 1977), but these
two populations appear now to be disjoint. P. labiata re-
quires considerable shelter from direct sunshine, making
the large treeless expanses in central Luzon, dominated by

rice fields, unlikely avenues for frequent gene flow be-
tween Los Baños in Lagunas Province in the south and
Sagada in Mountain Province in the north. The Los Baños
and Sagada populations of P. labiata appear to be, at least
currently, examples of behavioural ecotypes rather than
ends of a cline.

That spider behaviour may vary geographically within
single species is well established (Riechert 1979, 1981,
1991, 1999; Riechert and Hedrick 1990; Jackson 1980;
Uetz and Cangialosi 1986). That Portia’s predatory and
anti-predator behaviour is subject to intraspecific geo-
graphic variation is also well established (Jackson and
Hallas 1986; Jackson 1992a, b; Jackson et al. 2001). The
present study, however, is unusual for spider research be-
cause it suggests geographic variation in flexibility: what
varies geographically appears to be Portia’s propensity
for fine tuning of predatory tactics to compensate for vari-
ation in the intrinsic dangerousness of individuals of a sin-
gle prey species. These can be envisaged as at least rudi-
mentary differences in cognitive capacities. Geographic
variation in the cognitive capacities of single species has
been demonstrated in a wide variety of vertebrates (Hunt-
ingford and Wright 1992; Huntingford et al. 1994; Nelson
et al. 1996; Thompson 1990, 1999) but rarely considered
for arthropods. Yet cognitive capacities may be even more
likely to diverge geographically within single species of
smaller animals, such as spiders, where adaptive tradeoffs
may be especially severe.

Of the 27 Los Baños P. labiata tested, only 11 switched
tactics depending on whether the scytodid was carrying
eggs or not, and it is only these 11 that provide data for
McNemar tests of significance of changes. More than half
(16 of 27) of the Los Baños P. labiata did not switch tac-
tics (14 took detours with both and 2 took direct routes
with both). Most individuals took detours with both egg-
less and egg-carrying scytodids (24 of 27 took detours to
reach eggless scytodids and 15 of 27 took detours with
egg-carrying scytodids).

It is tempting to suggest that the 15 individuals that
used detours when approaching egg-carrying scytodids
made an error of judgment because they wasted time
when safety did not require the longer detour route. How-
ever, when compared with eggless scytodids, egg-carry-
ing scytodids are safer prey, but they are not completely
harmless. Perhaps we do not understand fully enough the
various factors that enter into the decision-making process
that determines whether a particular individual Los Baños
P. labiata at a particular time will save time and take a
shortcut or play it safe and take a detour to reach an egg-
carrying scytodid. If we had a sufficient understanding of
P. labiata’s decision-making processes, then perhaps what
initially appears to be an error in judgment would appear
optimal for the individual P. labiata under highly specific
conditions. Moreover, even the individuals of Los Baños
P. labiata that took detours to reach both types of scyto-
dids appear to have exercised greater caution while ap-
proaching eggless scytodids (i.e., they moved more
slowly along the detour route when the scytodid at the
other end was eggless).
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It may be even more tempting to suggest that the three
individuals that used direct routes when approaching egg-
less scytodids made an error in judgment (i.e., took a big-
ger risk than was optimal). We might say that the judg-
ments of these three individuals were opposite to what we
would have done had we been given the same information.
Yet, again, we cannot rule out the possibility that a fuller
understanding of decision-making processes would reveal
how these seemingly bad decisions are actually optimal.

Perhaps an alternative is that we should simply accept
that the Los Baños P. labiata often makes decisions that
are not optimal, but there may be interesting implications
of accepting the notion of a spider making errors of judg-
ment. Automatic, reflex-like, and highly predictable (er-
rorless) behaviour might be more in line with what is usu-
ally expected of a spider. The commonsense notion of
cognitive decision making might correspond with more
intricate information processing that generates less easily
predicted behavioural outcomes: we might say that, when
deciding what to do next, the animal ‘makes up its own
mind’. As we enter the twenty-first century, attitudes to-
wards arthropod behaviour have changed considerably if
we are now becoming comfortable with the idea that a
spider even has a mind to make up.
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