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Abstract

Anthocyanins (ACNs) are water-soluble pigments in various fruits and vegetables known for their high antioxidant activity.
They are used as natural food colorants and preservatives and have several medicinal benefits. However, their application in
functional foods and nutraceuticals is often compromised by their low stability to heat, oxygen, enzymes, light, pH changes,
and solubility issues. Spray drying has emerged as an effective microencapsulation technique to enhance the shelf life, qual-
ity, and stability of ACNs. This manuscript reviews the latest scientific developments in spray drying microencapsulation of
ACNs-rich fruit extracts. Process optimization and the stability and physicochemical properties of the spray-dried, micro-
encapsulated ACNs-rich powders are discussed. This review also covers functional food and nutraceutical applications and
introduces novel encapsulation methods, such as freeze-drying, supercritical carbon dioxide (SC-CO,), coacervation, drum
drying, and electrospraying, highlighting their potential in improving the utility of ACNs-rich fruit extracts.

Keywords Anthocyanins stability - Encapsulating agents - Functional food value - Optimized spray drying - Powder
product

Abbreviations EC Encapsulating carbohydrates
ABC ATP-binding cassette ER Endoplasmic reticulum
ACNs Anthocyanins FAs Fatty acids
ANN Artificial neural networking FD Freeze-drying
AVIs Vacuolar inclusions GA Gum arabic
BTL Bilitranslocase GGM Galactoglucomannan
CHI Chitosan GRAS  Generally recognized as safe
CMC Carboxymethylcellulose GSTs Glutathione S-transferases
Cco, Carbon dioxide GX Glucuronoxylan
CSG Cress seed gum HMP High methyl pectin
DE Dextrose equivalents HPH High-pressure homogenization
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IN Inulin

1G Ionic gelation

kDa Kilodalton

KON Konjac

MATE  Multidrug and toxic compound extrusion

MC Modified chitosan

MD Maltodextrin

mPa Millipascal

Mw Molecular weight

OSA Sodium octenyl succinate

PAG Prosopis alba exudate gum

PEC Pectin

PEG Polyethylene glycol

PVP Polyvinylpyrrolidone

RBC Rice bran concentrate

RSM Response surface methodology

SA Sodium alginate

SC-CO, Supercritical carbon dioxide

SMP Soymilk powder

SNARE Soluble N-ethylmaleimide-sensitive factor
attachment protein receptors

SPI Soy protein isolates

SPP Soy protein powder

TA Total anthocyanins

Tg Glass transition temperature

TP Total phenolics

TS Tapioca starch

WPI Whey protein isolates

WS Waxy starch

XG Xanthan gum

7ZG Zedo gum

°Bx Brix

Introduction

In the present era of optimal nutrition, the growing demand
for healthier foods has led to the consumption of natural
antioxidant-containing foods, such as polyphenol-rich fruits
and vegetables. Anthocyanins (ACNSs) are water-soluble
phenolic compounds renowned for their potent natural anti-
oxidant properties. Their unique structure, characterized by
a flavonoid backbone, multiple hydroxyl groups, conjugated
double bonds, chelation sites, glycosylation, and varied sub-
stitution patterns, collectively contributes to their excep-
tional antioxidant properties. These structural attributes
enable ACNs to effectively neutralize free radicals, inhibit
metal ion-induced oxidative reactions, and protect cells and
tissues from oxidative damage, making them valuable natu-
ral antioxidants (Enaru et al., 2021; Tarone et al., 2020).
ACN:ss are responsible for plants’ orange, red, violet, and
blue colors and thus hold great potential as natural colorants
(Azman et al., 2022a, b). Grapes, blackcurrants, blueberries,
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and bilberries are among the most popular ACNs-rich fruits.
In contrast, red cabbages (Machado et al., 2022), eggplants
(Demiray et al., 2023), and red onions (Ali et al., 2016)
are typical examples of ACNs-rich vegetables. In addition
to antioxidants, ACNs provide a broad spectrum of thera-
peutic effects and biological activities, including anticar-
cinogenic, inflammatory, immune-stimulating, antibacte-
rial, antiallergic, and antiviral properties (Nawawi et al.,
2023a; Riberio et al., 2019; Salehi et al., 2020). However,
the biological properties and nutraceutical value of ACNs
are often compromised by their instability. The stability of
ACNes is affected by multiple factors such as light, tempera-
ture, pH, enzymatic reactions, oxidation, presence of metal
ions, humidity, microorganisms, moisture, solvents, and the
presence of co-pigments, causing degradation or partial loss
of these compounds (Azman et al., 2022a, b; Feitosa et al.,
2023; Nawawi et al., 2023a; Nawawi et al., 2023b). In this
regard, different delivery processes have been developed to
improve the stability of ACNs and coloring pigments, such
as microencapsulation, nanoencapsulation, and protein com-
plex formation (Feitosa et al., 2023).

Microencapsulation is a viable alternative that efficiently
preserves thermally sensitive compounds such as phenolic
compounds (Abdel-Aty et al., 2022; Gawalek, 2022). This
technique entraps bioactive compounds within the encapsu-
lating agent and transforms liquids into powders for easier
handling (Rocha et al., 2019; Singh et al., 2023a). Encapsu-
lating agents such as maltodextrin (MD), gum arabic (GA),
carrageenan, alginate, waxes, and phospholipids are added
to facilitate powder production, protect bioactive compounds
from oxygen, light, or other unfavorable conditions, and
increase stability (Li et al., 2017; Ligarda-Samanez et al.,
2023).

Many investigations on the microencapsulation of ACNs-
rich fruit extracts, such as berries, pomegranates, jaboticaba,
and cherries, have focused on storage, color stability, and the
quality of the final fruit powder (Gawalek, 2022; Halahlah
et al., 2023; Mahdavi et al., 2016b; Shwetha and Preetha,
2016). Spray drying, freeze-drying, and supercritical carbon
dioxide (SC-CO,) technology are commonly used microen-
capsulation techniques, and spray drying is the most popu-
lar among food industries owing to its cost-effectiveness,
efficiency, and high yield of good-quality powder products
(Ravichandran et al., 2023; Da Rosa et al., 2019). Over the
years, various parameters of spray-drying microencapsula-
tion techniques have been studied for ACNs from various
fruit types. New updates are required to determine which
parameters can be applied to best suit specific fruits.

Therefore, the primary goal of this review was to assess
the current trends and advances in spray drying microencap-
sulation of ACNs-rich fruit extracts. The effects of different
parameters, such as types of encapsulating agents, the ratio
of encapsulating agent to feed, drying temperature, and feed
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flow rate, on the physiochemical and stability characteristics
and functional food quality of the end-use ACNs powder
product are discussed. Furthermore, an overview of innova-
tive microencapsulation techniques, such as freeze-drying,
SC-CO,, coacervation, drum drying, and electrospraying,
is provided.

An overview of ACNs

The word ACNSs has been coined from two Greek words,
namely Anthos (flower) and kyanos (blue) (Koop et al.,
2022). As a class of polyphenols and sub-class of flavonoids,
ACNSs are widely distributed in different parts, especially
leaves, fruits, and flowers of various plants belonging to the
Rosaceae, Vitaceae, Saxifragaceae, Ericaceae, Cruciferae,
Fabaceae and Caprifoliaceae families, among others (Li
et al., 2021; Mazza and Miniati, 2018). ACNs tend to be
located in the cells of plant vacuoles and cell walls and can
be acquired through extraction (Ijod et al., 2022) (Fig. 1).
ACNs yield in fruits depends on several factors such as
processing and extraction methods, growing location and
weather, fruit maturity levels, and storage conditions before
analysis (Mazza and Miniati, 2018; Nawawi et al., 2023a).
The concentration of ACNs varies from 0.1 to 1.0% across
various plant materials (Ercoli et al., 2021). Vegetables (e.g.,
red potato, purple sweet potato, eggplant, carrot, purple
corn, red onion, and red cabbage) and fruits (e.g., berries,

cherries, blood oranges, blackcurrants, pomegranate, grapes,
plums, and apples) are essential sources of ACNs for human
nutrition (Karacabey et al., 2023; Mohammed and Khan,
2022; Tan et al., 2023). Berries, grapes, blackcurrants, and
some tropical fruits have been identified as abundant sources
of ACNs (Khoo et al., 2017). Due to their broad range of
nutra-pharmaceutical attributes and chemo-preventive
effects, as evidenced by clinical trials, ACNs have emerged
as promising natural compounds with the potential to replace
synthetic additives or colorants (Thakur et al., 2023).

ACN:s consist of two aromatic rings attached to three car-
bons in an oxygenated heterocycle and a chromane ring with
a second aromatic ring (Tarone et al., 2020) (Fig. 2). ACNs
have sugar at R; positions called oligosaccharide side chains,
normally in a single glucoside unit. The amount of hydroxyl
and methoxy groups indicates the level of intensity and type
of color of the ACNs. The higher amounts of hydroxyl and
methoxy groups contribute to the extracts’ intense bluish and
redness colors, respectively (Enaru et al., 2021).

ACNs are also known as the glycosylated (aglycone)
forms of anthocyanidins. Chemically, anthocyanidins are
sugar-free counterparts of ACNs. As natural dyes, these
compounds are responsible for the color of many fruits
(Khoo et al., 2017). There are six main types of glycosides
derivative ACNs: pelargonidin, cyanidin, delphinidin, peoni-
din, petunidin, and malvidin. Interestingly, pelargonidin dis-
plays a red-colored pigment in fruits and berries but appears
orange in flowers. Besides, cyanidin appears reddish-purple
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Fig.1 ACNs move from the synthesis site, the endoplasmic reticu-
lum (ER), to the vacuole for storage. ER-derived vesicles facilitate
anthocyanin transport to the vacuole, where they bind to the mem-
brane via soluble N-ethylmaleimide-sensitive factor attachment pro-
tein receptors (SNARE) and release ACNs during the micro (1) and
macro (2) autophagy processes. Several membrane proteins (multi-
drug and toxic compound extrusion (MATE), ATP-binding cassette

(ABC), and bilitranslocase (BTL-like transporters) aid in the trans-
port of ACNs into vacuoles and their sequestration in vacuolar inclu-
sions (AVIs) in the membrane transporter-mediated pathway (3), Glu-
tathione S-transferases (GSTs) mediate the conjugation of ACNs to
generate the glutathione-ACNs conjugate, which serves as an intact
and efficient means of transport from the ER to the vacuole. Adapted
from Nistor et al. (2022) with modification
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Fig.2 Microencapsulation of ACNs extracts from various food sources and general chemical structure of ACNs and their anthocyanidins.
R3 =sugar (glucose, arabinose, galactose, etc.). Adapted from Koztowska and Dzierzanowski (2021) with modification

or magenta, while delphinidin causes a blue-reddish or pur-
ple pigment in plants. Examples of methylated anthocya-
nidins include peonidin, malvidin, and petunidin. Peonidin
contributes to the magenta color in grapes, berries, and red
wines. Also, malvidin displays as a darker rusty red pigment
in red wine, while petunidin appears as a dark red or pur-
ple pigment in blackcurrants and purple petals of the flower
(Khoo et al., 2017). These color variations can result from
the complex interplay between pH, co-pigments, metal ions,
genetics, environmental factors, chemical modifications, and
concentration levels (Enaru et al., 2021).

Stability of ACNs

ACNSs, which are hydrophilic, are highly unstable com-
pounds and are quickly degraded due to different factors.
The stability of ACNs is influenced by their concentration,
pH, storage temperature, chemical structure, the presence of
enzymes, proteins, flavonoids, metal ions, oxygen, and light
(Enaru et al., 2021; Jafari et al., 2016). Their stability is also
affected by the presence of hydroxyl or methoxy functional
groups in the structure, as the presence of these clusters
decreases the stability of the compound in an organic solvent
or aqueous solution (Khoo et al., 2017).

The quality of ACNs degrades during processing and
storage, thereby reducing the effectiveness of their poten-
tial role in the food and pharmaceutical industries. There-
fore, preventive measures must be employed to maintain the
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quality of these compounds, particularly during thermal pro-
cessing (Ijod et al., 2022). The degradation of ACNs occurs
when they are exposed to temperatures exceeding 60 °C for
prolonged periods, typically exceeding 60 min. Such condi-
tions can break covalent bonds within ACN molecules and
induce oxidation processes, resulting in a loss of color and
potential health benefits (Ali et al., 2016). In blanched pur-
ple potatoes (95-97 °C/2 min), a 63% loss in total mono-
meric ACNs was recorded compared to that in fresh potatoes
(Karacabey et al., 2023). Also, hot drying (60°C, 10 h), hot
water blanching (5 min), and steaming (100°C, 5 min) of
red cabbages resulted in ACNs losses of 60, 23 and 13%,
respectively (Tan et al., 2023).

Improving ACNs stability: chemical
and biological approaches

The therapeutic applications of ACNs are often limited
because of their reduced stability and low solubility in
aqueous and organic media. Interestingly, ACNs can be
transformed into acylated or glycosylated derivatives using
enzymatic, chemical, or chemoenzymatic approaches. For
example, converting ACNs into bioconjugates via fatty
acid (FAs) acylation may offer the opportunity to posi-
tively modify these compounds’ physicochemical prop-
erties and biological functionalities (Khoo et al., 2017).
Bioconjugates, a novel class of hybrid materials consist-
ing of a synthetic macromolecule linked to a biomolecule/
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biological entity such as peptides or proteins, vitamins,
and nucleic acids, are gaining increasing importance in the
fields of medicine, biotechnology, and nanotechnology (Li
and Mabhato, 2017).

The stability of ACNs can also be improved through
intramolecular copigmentation, wherein the color intensity
of anthocyanidins/ACNs is increased or reinforced in the
presence of other flavonoids as cofactors or copigments
(Azman et al., 2022a, b). In this phenomenon, due to color
intensification, an increase in color intensity with spectral
shifts towards higher wavelengths can be observed with the
addition of a copigment to acidic (preferably), neutral, and
even slightly alkaline ACNs aqueous solutions.

Improving ACNs stability: physical
approaches

In addition to bioconjugation and copigmentation, the sta-
bility and functional properties of ACNs can be improved
using microencapsulation. Microencapsulation is a viable
alternative for enhancing the stability and practical uses of
ACNs on an industrial scale. In this process, ACNs, being
the core material (active agent), are entrapped within another
substance (wall material/coating material) or encapsulants
such as starches, gelatin, GA, and MD (Estupifian-Amaya
et al., 2023; Mahdavi et al., 2016a; Rocha et al., 2019).

Optimization of various parameters (type and concentra-
tion of the encapsulating agent, concentration of the active
agent, ratio of coating/active material, process time, tem-
perature, etc.) is required to establish the best conditions for
microencapsulation, offering better yield and good quality
of the end-use powdered product, which has been exten-
sively reviewed by Tarone et al. (2020). In this context,
conventional optimization methods are now being replaced
by modern approaches, such as response surface methodol-
ogy (RSM) and in silico (computer simulation) modeling
studies, to devise an optimized microencapsulation process
(Machado et al., 2022; Mahdavi et al., 2016a; Tarone et al.,
2020).

Microencapsulation provides many advantages to the
final product by diminishing the surroundings and protect-
ing bioactive compounds/ACNs from side effects caused by
air, light, moisture, and heat. This process can deteriorate the
vapor of the inside material to the outside environment and
modify the physical characteristics to make ACNs or related
bioactive materials more convenient to use. Also, microen-
capsulation is efficient in masking the inside material's flavor
and forming two phases when mixed with liquid or semi-
solid products (Ray et al., 2016). Powdered particle size can
be categorized as macro (> 5000 pm), micro (1-5000 pum),
and nano (< 1 um) (Jafari et al., 2008).

Spray drying microencapsulation

Spray drying, due to its versatility, cost-effectiveness, and
ease of operation, is the most common and widely appli-
cable technique for the encapsulation of bioactive such as
ACNs-rich extracts (Da Rosa et al., 2019; Ravichandran
et al., 2023) (Fig. 2). Spray drying process is the tradi-
tional method for forming powders from semi-solid or lig-
uid forms. Most of the 15,000 industries have used spray
dryers to form products, such as luminescence materials,
oxides, chemicals, fertilizers, and dried foods (Nandiyanto
et al., 2019).

Additionally, it is a process in which the industry can
manage acceptable levels of deterioration and decomposi-
tion of volatile compounds such as fruit juice. Spray dry-
ing, which involves encapsulation by creating protective
‘walls’ around sensitive ingredients, converts liquids into
solids and enhances their shelf-life and color stability
while safeguarding them against oxidation (Vasile et al.,
2023). The reduced volume resulting from spray drying
also simplifies the handling and storage of the compounds.

The principles of spray drying include preparation,
homogenization, atomization, dispersion, and dehydration
of the liquid solution. A critical issue during this process
is wall deposition, which may affect the quality and quan-
tity of the product that needs to be achieved. The occur-
rence of wall deposition depends on the spray dryer’s type,
size, and operating parameters. Appropriate measures and
controls are needed to avoid wall deposition, thus prevent-
ing the high maintenance cost and lowering the powder
yield (Tarone et al., 2020). The efficiency of spray dry-
ing depends on the selection of parameters, such as the
encapsulating agent and its concentration added to the feed
(active agent), inlet and outlet temperatures, atomization
speed or pressure, and feed flow rate (Gawalek, 2022; Pan
et al., 2022; Vasile et al., 2023). These factors must be
controlled and manipulated for acceptable physical proper-
ties and a higher powder yield.

Encapsulating agents

The limitation of the spray drying technique is the use of
high temperatures for drying and air access (Bednarska
and Janiszewska-Turak, 2019), which may decompose
thermally sensitive ACNs (Gawalek, 2022). Therefore,
encapsulating agents are introduced in the spray drying to
facilitate powder production, especially for ripe fruits with
high °Bx value. This high °Bx value corresponded to a low
glass transition temperature (Tg). When ripe fruits dehy-
drate above Tg, they may exhibit stickiness and adhere to
dryer walls, resulting in a reduction in the final yield of
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the product (Zotarelli et al., 2017). To prevent stickiness,
one option is to control the glass transition temperature so
that it remains below Tg+ 20 °C. High molecular weight
encapsulating agents can also improve the product’s glass
transition (Machado et al., 2022).

Encapsulating agents can be divided into groups of
carbohydrates, proteins, or a combination of both. Car-
bohydrates act as a protective barrier from the external
environment to the inside material, such as gums, starch,
modified starches, dextrins, and cellulose (Halahlah et al.,
2023; Lacerda et al., 2016; Villacrez et al., 2013). The
most essential characteristics of this group are their emul-
sifying activity and solubility properties. These agents
should exhibit characteristics such as low viscosity, non-
hygroscopic, bland flavor/tasteless, non-reactive with core
materials, soluble in aqueous solvents, inexpensive, food-
grade, flexible, rigid, thin, and pliable (Tan et al., 2015).

MD has good water solubility and low viscosity and is
produced by enzymatic or acid hydrolysis of starch (Lac-
erda et al., 2016). The low emulsifying properties of MD
can be counteracted by substituting it with sodium octe-
nyl succinate (OSA) starch. OSA starch introduces lipo-
philic elements, resulting in amphiphilic properties that
enhance emulsification (Lacerda et al., 2016; Sweedman
et al., 2013). Another encapsulating agent in carbohydrates
is inulin, which is a polysaccharide. This polysaccharide
consists of fructose units linked by $-(2,1) bonds with glu-
cose in the chain. Inulin is derived from chicory and has
dietary fiber and prebiotic effects on consumers (El-Kholy
et al., 2020; Lacerda et al., 2016).

Examples of protein types include whey protein iso-
lates (WPI) and soy protein isolates (SPI) (Robert and Fre-
des, 2015). These proteins excel as encapsulating agents
because of their distinct attributes and adaptability. Whey
protein isolates sourced from whey, a byproduct of cheese
production, are renowned for their high nutritional qual-
ity as complete proteins containing all essential amino
acids. They also exhibit exceptional emulsifying proper-
ties, stabilize emulsions, and efficiently encapsulate lipo-
philic compounds. Moreover, WPI has a low allergenic-
ity, making it suitable for a wide array of applications,
and its neutral flavor accommodates the encapsulation of
diverse ingredients. On the other hand, SPI, derived from
soybeans, offers versatility by encapsulating a broad spec-
trum of ingredients, including flavors, vitamins, minerals,
and lipids. With its high protein content, SPI enhances
the nutritional value of encapsulated products. In contrast,
its functional properties, such as emulsification and film
formation, further contribute to its effectiveness in encap-
sulation applications. Being gluten-free and sustainably
sourced from soybeans, SPI aligns with dietary prefer-
ences and environmentally conscious practices (Bian et al.,
2022).
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The selection of encapsulating agents depends on the sol-
ubility of the bioactive compound of interest, which is either
hydro- or lipo-soluble. GA is the best encapsulating agent
for liposoluble bioactive compounds, and hydro-soluble
compounds such as ACNs and MD with different dextrose
equivalent (DE) values, GA, or modified starch are com-
monly used. Due to its low hygroscopicity, the prominent
MD used in spray drying is MD 10-DE (De Souza et al.,
2015).

Encapsulating agents from natural polymers can prevent
the degradation of ACNs and aid in their delivery to the
human body for nutraceutical applications (Vergara et al.,
2020). Combining OSA starch, inulin, and MD as encapsu-
lating agents with an encapsulating carbohydrates (EC) ratio
of 2:1:1 (2/3:1/6:1/6) produced jussara pulp microparticles
with favorable properties. Specifically, these microparticles
exhibited excellent color, antioxidant activity, and ACNs
content, making them a promising encapsulation approach
for preserving the quality and functionality of the jussara
pulp (Lacerda et al., 2016).

The production of ACNs-rich powders from various fruit
sources using spray drying is summarized in Table 1. Over-
all, the SPI encapsulation technique was highly efficient
for polyphenols (catechins, ellagitannins, gallitannins, and
quercetin glycosides). This is due to the nature of the charge
of bioactive compounds, where polyphenols and ACNs
have negative and positive charges, respectively. Also, the
polyelectrolyte structure (density and charge type) contrib-
utes to the interaction of SPI with the bioactive polymer.
Meanwhile, MD was more effective in entrapping ACNs
owing to the production of larger and smoother particles
of fruit powder than GA, which produced smaller particles
and wrinkled surfaces, thus making it easy to be exposed to
oxygen (Ferrari et al., 2013).

Specific inlet and outlet temperatures are needed to
maximize encapsulation efficiency and prevent the accel-
eration of ACNs, polyphenols, and antioxidant degradation
(Gawalek, 2022). Higher inlet temperatures may produce
lower-quality ACNs powder, such as a dense surface layer,
thereby reducing the efficiency of powder reconstitution
(Jafari et al., 2017). In some instances, spray drying using
a high inlet temperature and aspiration rate may contribute
to the high yield of microparticles. Consequently, this can
reduce the stickiness of fruit powder on the cyclone wall
(Yingngam et al., 2018). A more significant loss of ACNs
was detected when the air inlet temperature was higher than
180°C (Gawalek, 2022). A higher inlet temperature with
a lower concentration of encapsulating agents below 30%
(w/w) leads to decreased ACNs stability due to non-enzy-
matic browning and pro-anthocyanidin deterioration (De
Souza et al., 2015).

A combination of encapsulating agents, such as pro-
tein-based products, protects ACNs better than a single



2679

Microencapsulation trends in anthocyanin extracts

‘Te 32 o3enueg ofnery 9]

(s&ep 161) D, S€ pue
(s&ep $727) Do ¥ 18 SNOV

(L107) 'Te 30 12qopy  omd jo ojr-Jrey paguojoid -

SNOV
J0 %06 ~ Suraresaid Aq

syjuow ¢ 10§ (D, G7) 231038
Surmp Apiqess pasoxduwy -

(9100

(9107) Te R vyRMUS D, 0L 12 AVTIQEIS paseaIdu] -

VO pue N
JO UOTIRUIqUIOD B 10} D), f UT

(A9107) 'Te 10 1ABPYRIN  (SYIUOW £) S1]-J[ey 1593u0T -

Do ST 18 (sAep 0z 1) 23e10)s
Surmp K1[Iqeis pasearou -

J,6¢€ e
sAep (G 10J 23e10)s JuLmnp
JI[-Joys pasoidwir Yo pue
(A JO UOTBUIqUIOD AT, -
Do ST @ skep 051
10§ 95e103s SULINp I
-J1oys Suo[ pasned QN %L -
AN IO %L Ynm
(€107 Te e Ler1d  parernsdeous 193je VI, YSIH -
pasnsem 3, 091
Jo armyerodwo) Jo[ur UB USYM
VD Io (A Ul sjuepIxonue
(€107) 'Te 30 BA[IS  pue V[, Jo uoneasasord ysiy -
urnuy uey)
d1 pue V1, 1y31y aAes QN -
Do 0ST 3 1T 54 dIN
{Im paurelqo sem (%98)
d.L pue v, 1soysy oy, -
S9550]
SNDV pue [ouaydAjod
10w pasned (D, 081 <)
sarmerodwo) Jo[ur 1y -

(S107) T8 19 BZNOS 3Q

(1102) YAzofa1zpojoy
pue yezoreg-eysmoyeq

(/W G€) drex sorendse

“(U/T0LY) ¥ex mop pady
‘(Do 0ST) omyeIadura) Jo[uy

(/g

008) S1ex moy Jre ‘(y/3y 1)

9YeT MO[f SSBW (D, £6-68)
axmerodurd) jopno *(0,0L1

—791) 21myeradwa) Joruy

(%02-S1)
a1e1 Moy PadJ (D,5L-09)
smjeroduwo) 19[Ino

‘(Do OTT) oyeIadure) Jo[uy

(/T2 008)

91e1 Moy P (Do 00T)

sarnjeradwa) Ire JopIno
‘(Do 0ST) 2mnyeradura) Joquy

(o1

Ot) MOpJIIe ‘(U TW )

91ex mop padj (D, OLT PUe
‘0ST ‘0¢T) 2ayeredwo) joruy

1o1eMm amdenyn

Qo1n( 9jeurISowod

107eM PAIISIA

301em PA[ISIP JOH

1oenx9 ade1sd oprog

(/34 6t°0)

a1eI MOY “(%8°7¢) Aprurny

QATIB[AI (D, 08-GL) 21

-e1odwe) 19IN0 (D, SH1)
amyeradwa) are joquy

(u/w 87) orex

are Jojeardse ‘(g Tw 09¢)

jel Moy padj (D, 081 PUB
‘091 ‘O 1) dmjerodura) Jo[uy

som( K1xaqyoe[g

15eM PIISIQ

2,001/50T “D,$8/081
“0,0L/09T Do OL/OST

:amyerodwia) 10pIno/1o[uf J0BIX9 JURIINOYOR[

0¢8I HA AN

(1:1) wulnsded 22 VO

(/M) (1:1) VO % AN

(1:¢) uneEs :aN
2% (1:¢) VO :dIN

(m/m) (%0€-01) AN

(M/M) %/ |0oq 10 VD ‘N

AN 2 walns
-deD 10 ‘QN % VD ‘VD ‘AN

urnug
»® 124d ‘814d ‘114d ‘AN

(-dds sngny) K1xaqyoerg

(wnpu
D48 POIUNG) djeurIZOWO]

(rununo wm3 24g) unwe(

(stpdna s1aqiag) Airaqreq

(vasn.aqvy suip) adeiny opiog

("dds sngny) K1xaqyoerg

19ad (vgvo
-1j0qv! P1V124KJY) BqRONOqR[

(1
wnAS1u $2q1y) JURIINIYOR[

SOOURIRYY JuUAWIdOUBYUD AJIIQRIS

juoSe Sunensdeous

s1ojourered Surkip Aexdg ue JOJ WNIPIW UOT)N[OSSI(]

juade Sunemsdeoug

SHNIY YOL-SNOV

anbruyoe) Sutkip Aeids e Jursn )y Juaayip woly pmod YoLI-SNDV Jo uononpoid | djqel

pringer

As



G. ljod et al.

2680

(6107) ey,
-BYSMIZSIUR[ pUE BYSIBUPOg

(6100) T8 10 sojues

(6100) T8 19 S0y B

(6107) 110D pue auepyox

(6107) T8 19 90X

(6107) Te 10 0I19qTy

(8107) Te 30 wreSusur x

(8107) T8 19 s9paig

Do 091
Jo ormjeroduwo) Jorur UB YIIM
(1:¢) 01 4d A PUe VD
usym Q) G e syiuow g 1oJ
93e10)s Sutmp v, YSIy -
2,091
Jo armeradwo) Jorur ue Yiim
01 dIN UL D, ¥ Je sypuow g
10§ 93e10)s Surmp v, Y31y -
¢Hd o1 dn v
JO SSO[ QZIWITUTW 0} AT -
Hd 1omor
ur uonepeI3op SNJV M0[
pue “df1[-§1oys “AIIqels YSTH -

SKBp Ly STT
10} D, OF1 Y8 PazI[Iqe)s -

skep 0€ 10} D, 09 PUE D, ST
J8 UOIEPIXO PIsearod(] -
a3e10)s Jo sAep g1 Sur
-mp Aqiqess ySiy paaoxduy -
Ayq1qe)s jeay poaoxduwy -
ordures pajernsdeous
-uou uey) paje[nsdeous
ur SNOV jo Aiiqess xenog -
VS pue vo £q
Pamo[[o} (JIA UT Seoue)sqns
QATIO JO 9SEB[OI IAISBy -
a3ei10)s

Jo skep (¢ Sutmp 3, ¢z
pue Dt Je SNDV paatasald -

sKep 6/—69
JOJ UOIJBPIXO PISLAIN(] -

(2,002-00T 10 5,091-08)
amyeradwo) 190100 (D, 00T
10 )971) 2anyeradwad) Jo1uy

(/T S°0) 9re1 moy Pady
(0,501) 2ayerodwa) 19110

‘(Do OLT) 2anyeroduuo) 1o7ug

Wsyo)
jer Moy pady «(0,5T'801
PUE ‘001 ‘SL'6L) myered

-wa) om0 (9,091 pue
‘0F1 ‘0T 1) omjeraduwe) Jo[uf
(urwyTw O7)

9161 MO[

(0,58) dmyeradwa) 19pN0
“(Do 0L1) damjerodwa) J9[ug

(unuy/Tw Gy) 9Ye1 Moy pasy

‘(Do 001) 21mye1adwa) N0
(Do 0ST) danyesaduuo) 1o[uf

(urwy/ Ui 4) 918X MO P9y
‘(Do 85) 21meIadWa) 19[IN0
‘(Do STT) danyeroduuo) 1o7ug
(/W 67) drex 1orendse
‘(U TW 9) Q)T MOJ PIS)
(0,011) aame1aduwa) 197Uy
(o Jua )

eI MO P9 (D, 08T
-0z 1) 2amerodwa) joruy

do1n[ K119ga30yD

107EM PATISIA

JoeNX9 A11ogan[g

uoIs[nug

107EM PAIISIA

10eNX0 A119qI0pIq

Jayem pa[[nusiq

1018M PIIISI

VD % S1dd dN
10vD % 01 4d dIN pue
VD ‘ST 4d AN ‘01 3d AN

(/) (1:1) AN

an

(A/m
%SL0°0) DX 2 (A/M %ST) VO

(A/m) %y AN
% (A/M) %9 VD

(A/m) %1 VD VS DN

(m/m) ¢:1 (019 AN

(a/m) (1:2) 1dS ¥ AN

(-dds piuouy) K1ogayoy)

(snsooun.f sngny) K1roqQoe[g

(-dds wmu100vA ) A119qan|g

(wngpu
-DAS PIIUNG) 9JBUBIZIWOJ

(vundyzzomzpau
snippy) 21ddy poysorI-pay

(1
pUS1u SNONquDS) K113qI9p[g

(‘b wimppnoound
puISapUY) A119qORIA

ziumg (‘1IN
S1SUdJ1YD D112101S11Y) bR

SOOURIRYY

JuaWIdOUBRYUD AJI[IqRIS

s1oyouwrered Surkip Aexdg

juaSe Sunensdeous
Ue J0J WNIPSW UonNoSSI(]

juade Sunemsdeoug

SHNIY YOL-SNOV

(ponunuoo) | sjqey

pringer

AQs



2681

Microencapsulation trends in anthocyanin extracts

(TT07) Yoremen

(2z00) Te 10 urd

(81207) ‘T8 10 RIwIRUNYRS

(0202) 'Te 19 opeydRN

(1207) 'Te 10 npm

(1207) ‘T8 ¥ ez

(0207) “Te 10 eIeSIop

Do S9T-0ST 03 pasodxa
uoym o[duwres pajernsdeous
oy ur I, Jo Anjiqess ysiy -

Do 0ST—0ST myeroduwoy

Jo[ul M pajensdeoud

19)Je paarasaid DL, 1sy3IH

a3e10)s Jo
sKep ()9 SuLmnp [[em 9[3urs
uey) [[esm UONBUIQUIOD UL
SNOV Jo Ajiqess peseaouy -
Kouaroyjo
uonensdeous paseaiour [dS
pue JINH Jo uoneurquio)) -
2L AN
Surmp sNOV Jo Aifiqels
ayy paseaoul N pue Al -
sanzodoxd
[eorwayo0o1sAyd rorradns
paiqiyxa NI pue N -
Liqess 1eay
uryH ueyy 1on9q st AN -
VI paensded
-uooIdtwr jo Ayiqels y3iy -
[0TU0D uey) 19))9q paAtasaid
QIoMm SIUBPIXONUE PUB T, -
ordwres
pajensdesus ur v, Y31y -

pozrumdo a1om

d.L pue V1 Jo uonealssaid -
Kouaroyjo

uone[nsdeous paoueyuo
-IA PU® [d M Pasealou]

2,091
sAep g¢1 J0J a3e10)s Surmp

SNOV JO %8¥ PIAIasald -
uonsagp
ona ur Surmp sNOV Jo
KITIQISS900B01q PsLaIou] -

S\mE 09%) @rel

moy Ime Sutip “(4/1 1-01)

d1er Mop padj (D,68) 2Im

-erodway Jopn0 (D, G8T

pue 081 ‘SLT ‘0LT ‘S91 ‘091
‘GGT ‘0ST) aamerodwo) joruy

(urwy T ) 9Je1 MO Py
‘(Do 0L) 2ayeIodwo) Jo[IN0
‘(Do S91) 2amerodwa) Joruy

(Do 0ST) 2amyeradwa) 1o1ug
edW 410 2anssaxd Ire
‘(W 1€0°GL) drex Jojendse
“(ury/ T §) AJeI Mo Pad)

‘(Do 0ET) amjeroduwo) Joruy

(Do S8) 2rmerodwra) J9[IN0
(0,0T1) saeradwa) 191Uy

‘(U1 009) 981 moy Ire
“(2,08) rmeroduwd) 1[N0

‘(2,06 1) ermyeraduwa) joquy

(urw
/U €) el moy pas) “(U/ 1

009) 981 Moy ITe (D, 881
—76) 21meradwo) 191U

101eM PIIISI

19%eM PA[IISIA

107EM PAIISIA

19e1X9

PoJBIUIOUOD IO JORIIXO MBY

IajeM PAZIUOId(]

QoIn[ A1aqreg

1018M PIIISI

(%09) 11 9d AN

(A/m)

(¥ T ‘1°7) JNH ¥ 1dS

10 ($:01 201 ‘T:0D) [dM ¥
dINH (%) 1dS (%01) Idm

(m/m) (LE€) AN % DAd
OJN ¥ NIIOAN® VD

VD ® dN

(/M) %0T IdM

(%91 2 8) IdM (%9
26 VD (%S1 % SL) AN

an

("1 pdavo
-oupjau piuoly) A11eqayoyDd

(wmnp8.a1a winiu1d
-opA) A119gan|q 241qqey

dxeorrad ("1 vuvssod
-upul PIUIIIPL) UISOSUBIA

(nagnu "y
1 vp1dpd “TeA ] D2IVLI]O
DI1sSPLG) 93eqQRD POY

(1
WS $2q1y]) JURLINOYOR[ g

(Sup3na s11aq
-12g) A119gIeq SSI[PIas yov[q

("1 winsotagny
wnuvjog) oyejod ording

SOOURIRYY

JuaWIdOUBRYUD AJI[IqRIS

s1oyouwrered Surkip Aexdg

juaSe Sunensdeous
Ue J0J WNIPSW UonNoSSI(]

juade Sunemsdeoug

SHNIY YOL-SNOV

(ponunuoo) | sjqey

pringer

As



G. ljod et al.

2682

(€207) ' 10 Bprowy

(€200) T8 19 9[ISBA

(€200) '8 10 ye[yRIeH

(€£207) 'Te 12 ZourweS-BPILSI]

(€202) e 10 eAewry-ueurdnisg

(€202) T8 1 Sudg

(£207) ‘Iv 10 UBIpURYDIARY

(2202) "Te 1 uakn3N

ordwres pajernsdeous
AU} Ul SJUBPIXONUE PUE ‘d],
VL paseatour QN yiim
D9 jo uonerodioour oy, -
14311 01 pasodxa pue 3 ¢
je (sAep ()9) o5e10)s Surnp
PIppe Sem DY Uaym sjuept
-xonue jo Afiqels paroiduwy -
N pue Hvd
s pajernsdeous odures ur
VL pue ], Jueprxonue ysiy -
JOND+XD
Pue “DND +INDD VD
ueq) ]NOD 10 XD yim
pajensdesus sopdwes
ur K)IATIOR JUBPIXO
-nue pue ‘d[, ‘V.L YStH -
sjueprxonue pue srjoudyd
‘SNDV JO AI[Iqe)s pasearou] -
KIT1QEIS [eWIoy) PaseaIou] -
Kouaroyje
uonensdesud Jo 906~ -
Dd1 Jo A10A0031 pue ‘A1
-AT)oR SurduaAeds ‘4L ysiy
Pasned uoneuIquod VO A -
qrdures
AN Y Ul (%L6~) A19A0931
pue 1uuod SNDV YSIH -

0.5¢ 3ut

-Inp A Jo Kiqes 1saySy -
sonI[Iqe)s uon

-s931p pue 238I0}S paseaIou] -

SL

uey) [dS UI paureIqo a1om

JUIUOD SN DV PUB ‘UIpTuRAD
-oyyueord ‘D1, 1sy3Iy Y, -

VD pue

N s Sunernsdeous 193je
SNDV Jo uonearasaid y3iy -

orduwres pajensdeous

QU3 UT SJUBPIXONUE PUE ‘Y[,
‘dL padoueyua NOM Pue AN -

(urwyTur /') 918X MOy Pady
“(D,6L) dmyeradwa) Jopno
‘(Do OF1) 2rmjeradwd) Jofuy

(wdx Z1) a1e1 mop pasy
‘(Do 08) 2anyerodwa) Jo7IN0
‘(Do 081) 21myeIadwa) Jo[u]

(1eq 8—g) s
-sa1d are passardwod ‘(urw
/TW GT=QT) el MmOy pad)
‘(Do 0L) 9ayeIodwo) Jo[In0
‘(Do 0ST1) 2amerodwa) Joruy

U/ TH1) 9181 Moy e Jo[ul
‘(Do 0TT) 2anyeroduue) 1o7ug

U1
$1%) [epned Jre passardwod
‘(U/gw gg) Moy Ire Jofur
‘(Do 08) 2aeIadwo) J9[IN0
‘(Do 0LT) 2anyeradwad) Joquy
(g
0S¢) paads dund onyeistrad
‘(Do 0S) 2ayeredwo) Jo[IN0
‘(Do 0F1) 2amerodwa) Joruy
(umwy/qu Q1)
91e1 Moy padJ ‘(Do LLLY)
amjerodwa) Jopno
‘(Do 071) 2amerodwa) Joruy

(y/ T 0OS) el moy pasy
‘(Do 16) 2aeIadwo) Jo[IN0

‘(Do 0ST) 2rmyeradwa) joruy

doin[ adeiny

JORI)XD J[[OSOY

191eM 10K

107eM PAIISIA

doin[ A119gon[q uespuy

10enX%9 WI0d ofding

10B1X9
doewod 10 20m( A1199I9p[q

JORI)XD J[[ISOY

o9y ‘01 4d AN

(A/m) (S1:68) VO %
AN “(0€:0L % S1:68 ‘S:S6)
OVd ® AN (%001) AN

(w/m) (L0T)
DIND+XD 10 (L°0:T)
DO +NDD VD ‘O XD

(m/m) (1:6) VO ® AN

(m/m)
(I'1) VD 2 AN 10 VD ‘AN

(L) 1dM ®
AN 1o (1:1) VO 2 AN ‘AN

(A/m) %8 S1.79 %8 1dS

(m/m) (T:1) NOY »® AN
10 (T:7) NI 2 AN 10 (T:1)
VD % dIN ‘NOY VO ‘dIN

(-dds s117) ode1n

(1
Dffirpqps snISIqiE ) S[[S0Y

(s
-4k wimu12ovA ) K11qg

(vuasipup -dds wnsosaqny
wnupjog) sauo[d ojejod aAnEN

(mS 2ppuoIpIUU
w122V ) A1199qan[q ueapuy

(-1 s€pwt paz) w102 9rding

som( pue aoewod
(s1suapouno -dsqns v431u snd
-nquing) A119¢I9p[d UBILIDWY

(1
pffiuppqps snasiqigy) S[[9S0Y

SOOURIRYY

JuaWIdOUBYUD AJIqRIS

s1oyowrered Surkip Aexdg

juaSe Sunensdeous
Ue J0J WNIPSW UOnN|oSSI(]

juade Sunemsdeoug

SHNIY YOL-SNOV

(ponunuoo) | sjqey

pringer

AQs



2683

Microencapsulation trends in anthocyanin extracts

uonezruagowoy assaxd-ysSrty HgJH ‘yoreis eoorde], g7 ‘sorjouayd [e10], 47 ‘SurueAdoyjue [e10], 7 OefUos] NOY 9IBIUIOUOD URIq 90Ty
D&y ‘wn3 9epnxa eqe s1dosold D4 {UR[AXOUOININ[D) X ‘UBUUBWOIN[S0IOB[RD DD dSO[N[[I[AYIAWAX0qIRD DA ‘AJeUIS[e WNIPOS VS ‘UBSOIYD PIYIPOIN DA ‘sefost urjold Aoym Jdm
‘unoad [Ayjewr ySTH JWH ‘utnuy N7 ‘unodd DFd ‘1epmod koS Jis ‘1epmod ursjord oS JJ§ ‘o1qere wing yo ‘sejefost urajoid ueaqhkos 7JS ‘Juereambe asonxe 7 ‘UINXOPOICIN T

ping ownsed

paje[nuils ul [, pue 4.1 Jo

9SBO[I MO[S JY) PIsned Yo
pue gJA Jo uoneuIquio)) -

VD pue gJA Jo uon

-BUIQUIOD 9} JO}Je PIAIISqO
1om syueprxonue YSiH -

Kouaroyje

uonensdeous oy pasearour
(€207) 'Te 19 DueaIne] YO puB A JO UONRUIQUO) -
ordwres paziuororwu-uou
9y 0] paredwod Aouaronyye
uonensdeous 1oy3Iy €
pey o[dwes pazIuoIoIn
HdJH Suisn
UOTJRZIUOIOTW AQ PIMOT[O]
(%S1) VD WM pauIquiod
sem (%S1) QN 1YM
PoUTeIqO 2JOM SJUEPIXONJUE
pue ‘Y1 ‘d.L paseaIou]
pasn a1am AoomNC
amyerodwo) Jorur pue (yores
0IR]) %6°07 UdyMm AJUIOLJd
uone[nsdeou? pue vy, Ysiy -

Apms on1A ur Sur
-Inp SNV JO 9sed[ar 10nog -

(9€207) e 9 ysurg

(€200) T8 10 [PWIYD-SI[BS0Y

(W1 6€ €€) moy dwind
‘(Do 06) 2ameIodwa) J9[IN0

(Do 081) 2anyeIadiud) Jou]

joenxa sijodoxd uoai3d
pue Joddad yuid jo armyxtw vy

(uty T 9) 9yex moy dund
‘(Do §8) 2ameIradwa) J9[IN0

‘(Do SLT) danyerodurd) jouy I9Jem PISI

(utyqur £) 9yex moy dund

(2,091-06) 2Imeradwa) Joyuy IajeM PRIIISIQ

(m/m) (1:1) VO ® AN ‘AN

(a/m

%0€) VO % 71-6 4d AN

(/M) (%1°€€-ST)
yoIe)s oreJ,

(vijofiy

-u1q2.42) snuiyog) 1addad yurg

(snsp122 snun.g) K11ayd J1e],

(wnso.taqny wnu
-p]0g) SIdqN) JORIXI SI[EXO)

SOOURIRYY JuaWIdOUBRYUD AJI[IqRIS

juaSe Sunensdeous

s1oyouwrered Surkip Aexdg ue JOJ WNIPaW UOTIN[OSSI(]

juade Sunemsdeoug

SHNIY YOL-SNOV

(ponunuoo) | sjqey

pringer

As



2684

G. ljod et al.

encapsulating agent. Combining encapsulating agents is
assumed to create a strong interaction, leading to a syn-
ergistic effect in improving stability. The temperature and
presence of light also influence the stability of ACNs dur-
ing storage. Low temperatures and dark conditions during
storage improve the stability of ACNs and prolong their
shelf-life. Overall, optimizing spray drying conditions, par-
ticularly drying temperature, is crucial to ensure polyphenol
encapsulation, as presented in Table 1.

Physicochemical, functional food,
and nutraceutical attributes of encapsulated
ACNs-rich powder

Moisture content, water activity, and particle size are the
most critical parameters for producing microencapsulated
ACNs powders. The low moisture content of microencap-
sulated fruit powder is vital to achieve excellent stickiness,
flowability, and storage stability and prevent microbial
growth. This is due to the higher water activity, which pro-
vides more free water space for microbial growth. Notably,
the water activity level of the microencapsulated powder
produced by spray drying is below 0.3, effectively inhibiting
microbial growth (Todorovi¢ et al., 2022).

Furthermore, the particle size of the powder affects the
texture and nutritional properties of the food product. The
optimal size range for microencapsulated powder produced
by spray drying is 10—100 pm (Da Rosa et al., 2019). Solu-
bility is also salient because it provides desirable properties
such as dispersibility, solubility, and wettability. These prop-
erties contribute to the rehydration of food ingredients; thus,

Fig. 3 Effect of encapsulating
agent on the microstructure

of microencapsulated ACNs
powder with (a) GA (12%, w/v),
(b) waxy starch (12%, w/v), and
(¢) MD (12%, w/v) without cel-
lulose from Yousefi et al. (2010)

@ Springer

a low moisture content of the powder is desired (Mahdavi
et al., 2016a). As shown in Fig. 3, good solubility of the
microencapsulated pomegranate powder was achieved when
GA was used as an encapsulating agent. However, its optical
properties are poor compared to encapsulation with waxy
starch and MD and without cellulose (Yousefi et al., 2010).

Santos et al. (2019) found that using MD in blackberry
spray drying efficiently preserved the physicochemical char-
acteristics of the end-use powder product. This was due to
the MD characteristics having a less hygroscopic nature,
which resulted in improved ACNs retention, low moisture
content, and excellent powder reconstitution. With these
properties, this spray-dried blackberry powder is easily
soluble in water and can be effectively applied to produce
juice fruit powder.

The microencapsulation of ACNs provides multiple
benefits to human health. For example, the addition of
encapsulated ACNs powders into yogurt, ice cream,
or other desserts can serve as a prebiotic, assisting in
addressing digestive system issues. Using inulin to encap-
sulate ACNs in cornelian cherry fruit extract has an anti-
diabetic effect at 1 mg/mL. It is suitable as a food ingredi-
ent for diabetic consumers (Enache et al., 2020). Besides,
this product suits a vegan diet and consumers with lac-
tose intolerance and diabetic problems (Dias et al., 2020;
Enache et al., 2020). In the simulated gastrointestinal
studies by da Rosa et al. (2019), microencapsulated blue-
berry extracts successfully improved ACNs digestion than
unencapsulated blueberry extracts. Oancea et al. (2018)
also reported that using WPI as an encapsulating agent
could facilitate the release of ACNs into the intestine.
The presence of various enzymes and different pH levels
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in the human digestive system makes it a complex sys-
tem. This affects the stability and bioavailability of the
ACNs. Combining encapsulating agents, as opposed to
single encapsulating agents, is a successful approach. The
synergistic effects of these encapsulating agents improve
the stability and bioavailability of the ACNs. This imple-
mentation enables a controlled-release mechanism that
efficiently administrates ACNs to targeted organs or
systems, thereby promoting the overall improvement of
human health (Fig. 4) (Da Rosa et al., 2019; Enache et al.,
2020; Mansour et al., 2020; Oancea et al., 2018). Given
these potential health advantages, producing microencap-
sulated ACNs powder with high solubility is essential and
possesses sustained-released properties for its effective
use in dry mixes or instant health foods.

Other innovative microencapsulation
techniques

In addition to spray drying, various microencapsulation
approaches have been studied and verified for their effi-
ciency in encapsulating ACNs. Promising techniques
for ACNs include freeze-drying, SC—CO,, coacervation,
drum-drying, and electrospraying microencapsulation.
Each approach has unique benefits regarding quality,
compound preservation, and encapsulation effectiveness.
The following section will discuss their principles, ben-
efits, and prospective uses for protecting the durability
and efficacy of ACNs in detail.

Fig.4 Oral intake and mecha-
nisms of microencapsulated
ACN:s in the human digestive
system

Freeze-drying

The freeze-drying technique (Fig. 5a) relies on the sublima-
tion of water from frozen material and has been explored
as an alternative approach for encapsulating ACNs (Fredes
et al., 2018). This process involves freezing, sublimation,
desorption, and storage (Bhatta et al., 2020). The sublima-
tion phase efficiently extends shelf life and preserves the
quality of heat-sensitive food materials. As a simple tech-
nique for encapsulating water-soluble essences such as
ACNs and other natural aromas or medications, freeze-dry-
ing is one of the most convenient methods for drying ther-
mosensitive substances that are unstable in aqueous solution
(Azarpazhooh et al., 2018; Estupifian-Amaya et al., 2020)
(Table 2).

As shown in Table 2, MD frequently provided excellent
ACNSs retention and stability results, particularly at low
DE values. A low DE generates low hygroscopicity in the
ACNs-rich powder, which minimizes moisture absorption
and accelerates powder deterioration. Moreover, MD is
highly soluble, blending effortlessly with water and produc-
ing potent combinations when combined with ACNS.

The concentration of the encapsulating agent affects
ACNs stability, as a high amount of the encapsulating agent
serves as a solid wall to protect the core molecule. Regular
integration of encapsulating agents improves ACNs retention
during storage. This combination initiates the construction
of a dual-property wall that regulates compound delivery
while simultaneously increasing compound stability. This
synergistic effect was observed when MD was combined
with the different encapsulation agents.

Extraction and microencapsulation processes ‘ ‘

Combination of encapsulating agents

Microencapsulated |
71 ACNs-Powder
ia)
- Improve/increase
Oral intake ' ./ /

= Stability
Incorporated in ~ Shelf-life A
b ACN-based products Sustain-released properties

Controlled and slow release of
ACNSs in harsh stomach medium

ACNs are delivered to the small intestine,
absorbed into the blood vessel, and
transported to the targeted organ or system

'

ACNs act as an anti-diabetic, anti-
inflammatory, anti-carcinogenic, immune-
stimulating, anti-bacterial, anti-allergic, and
anti-viral properties

@ Springer
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Supercritical carbon dioxide (SC-CO,)

SC-CO, is an emerging method that is inert, non-toxic,
non-flammable, low cost, environmentally friendly, versa-
tile, and free from toxic excess in the yield of the prod-
uct formed (Fig. 5b) (Da Fonseca Machado et al., 2018).
SC-CO, has excellent solvents such as carbon dioxide (CO,),

@ Springer

ethane, water, propane, and dimethyl ether, which can be
categorized as having gas-like low viscosity, intermediate
diffusivity, and liquid-like high density. This technique may
overcome the disadvantages of the conventional spray drying
technique by applying the processing medium with the con-
ditions above its critical point, 31.1 °C and 7.4 mPa (Jang
and Koh, 2023), to precipitate and encapsulate the ACNs
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(Da Fonseca Machado et al., 2018). A supercritical fluid is
above its critical point where gas and liquid exist in the equi-
librium phase, and this fluid is known as a pure substance
(Wang et al., 2020). This technique's efficiency depends on
the active ingredient's thermodynamic properties, encapsu-
lating agents, suitable co-solvents, and the materials used.

As shown in Table 2, the ACNs exhibited more excellent
stability when encapsulated in polyethylene glycol (PEG)
and polyvinylpyrrolidone (PVP) using CO, as the solvent
and ethanol as a co-solvent. It is worth noting that these
two solvents are generally recognized as safe (GRAS). The
improved ACNS retention during SC-CO, encapsulation can
be attributed to the solubility of PEG and PVP in ethanol.
PVP and PEG are both soluble in ethanol, which facilitates
their combination with ACNs to create a stable solution
before encapsulation.

Coacervation

Coacervation microencapsulation involves the separation of
one or more hydrocolloids from the original solution. Fol-
lowing this separation, the newly created coacervate phase
surrounds and encapsulates the active ingredient, which is
either suspended or emulsified within the same reaction
medium (Fang and Bhandari, 2010) (Fig. 5¢). Coacerva-
tion encapsulation can be accomplished using a single col-
loidal solute such as gelatin, or through a more intricate
method involving substances such as gelatin and gum acacia.
Although complex coacervation often lacks specific shapes
and is deemed an expensive method for encapsulating food
items, it is important to weigh its potential advantages. Spe-
cifically, they can be valuable for encapsulating sensitive and
high-value functional ingredients, including ACNs (Devi
et al., 2023).

Devi et al. (2023) also found that using the dual emulsion
method followed by complex coacervation with gelatin and
acacia gum enhanced the microencapsulation of ACNs from
black rice bran. This approach improved the encapsulation
efficiency and thermal stability and ensured better stability
of ACNs during storage at both 7°C and 37°C. The microcap-
sules exhibited decreased moisture content, hygroscopicity,
and solubility. Additionally, their appearance was charac-
terized by smooth, circular, or intact surfaces and firm and
agglomerated structures. The findings in Table 2 indicate
that the coacervation formulation effectively extended the
shelf life of ACNSs, especially under high-temperature condi-
tions, compared to ACNs that were not encapsulated within
a coacervation complex. This indicates that the coacerva-
tion formulation formed between the different encapsulating
agents strengthens their heat stability, thereby improving the
protection of the core materials. Also, the selection of gum-
based materials significantly influences the complexity and

@ Springer

stability of coacervation formulations. This factor is crucial
for dealing with sensitive compounds.

Drum drying

Drum drying is widely employed in food and chemical sec-
tors to produce powdered or granular substances. This pro-
cess involves spreading a liquid or slurry in a thin, even
layer on the surface of a heated revolving drum to dry the
material. The material underwent drying upon contact with
the internally heated surface of the rotating drum (Fig. 5d)
(Sakulnarmrat et al., 2021b; Sakulnarmrat and Konczak,
2022). Encapsulating agents are often used to protect ACNs
during microencapsulation. Meanwhile, Senevirathna et al.
(2021) produced purple sweet potato powder with the addi-
tion of citric acid rather than encapsulating it with encapsu-
lating agents. In comparison to the control, the powder made
with 0.6% citric acid had a higher concentration of ACNs,
antioxidant activity, and an intense red color. As a result, it
can be determined that factors such as steam pressure, drum
rotation speed, and citric acid content influence the powder
quality, which can be optimized using RSM.

Based on the findings in Table 2, it can be summarized
that even though a similar combination of encapsulating
agents was incorporated during drum drying, the encapsu-
lation efficiency was different, probably because of the dif-
ferent sources of ACNs, which possess different properties
and interactions with encapsulating agents. Therefore, opti-
mization must be performed to select the best concentration
of both encapsulating agents to address this issue.

Electrospraying

Electrospraying encapsulation involves the formation of nan-
odroplets by using a high-voltage electric field. The voltage,
solution feed rate, solution properties, humidity, tempera-
ture, and separation from the needle tip to the collector are
only a few variables that might influence the ultimate output
(Atay et al., 2018). The electrospraying equipment included
a syringe pump, voltage power supply, collector, and syringe
(Fig. 5e). The electrospraying process requires injecting a
syringe-fed mixture of ACNs and encapsulating agents into
a liquid medium before an electric field is applied at the
nozzle. Therefore, it overcomes the surface tension and pro-
duces a cone-shaped droplet called a Taylor cone. Increasing
the electric field causes the Taylor cone to become fragile
and expels tiny droplets of encapsulated ACNs. Therefore,
the solvent evaporates in the air, causing the droplets to
coagulate as small particles and accumulate in the collector
(Atay et al., 2018; Gonzalez-Cruz et al., 2020).

The solution properties, including viscosity, surface ten-
sion, pH, and electrical conductivity, are crucial elements
that must be considered to ensure that ACNs can undergo
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electrospraying. Improper solution properties cause unde-
sirable particles to form, eventually reducing encapsulation
efficiency (Atay et al., 2018). As reported by Gonzélez-Cruz
et al. (2020), the addition of 10 — 20% zein successfully
encapsulated ACNs from blueberries; further increases in
concentration caused instability and clogging in the nozzle.
Adding ACNSs to 10 — 30% agave fructans or WPI resulted
in instability during the electrospraying process. Based
on Table 2, it can be inferred that various factors must be
considered during the encapsulation of ACNs by electro-
spraying. Using a combination of encapsulating agents has
improved protective properties and the controlled release of
ACNSs. Nonetheless, when employing a single encapsulating
agent, the concentration and molecular weight of the agent
play critical roles in achieving high-quality encapsulated
ACNE.

Encapsulation efficiency across various
microencapsulation techniques

The encapsulation efficiency (EE) is a crucial parameter that
determines the ability of the microencapsulation process to
protect targeted compounds. The data presented by various
authors in Table 1 and Table 2 for various microencapsula-
tion techniques employed for encapsulating ACNs were used
to illustrate the potential of their encapsulation efficiency
(Fig. 6). SD and drum drying consistently showed high EE

100.00 7
90.00 7
80.00 T
70.00 7
60.00 7
50.00 T
40.00 7
30.00 7
20.00 7
10.00 7

0.00

Encapsulation efficiency (%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Authors

Fig.6 Percentage encapsulation efficiency (EE) of various encapsu-
lated ACN powders by referring to the optimal operation of differ-
ent encapsulation techniques as reported by different authors. The
straight line indicates 90% of EE. Different bar colors indicate the dif-
ferent techniques. Yellow, spray drying; blue, freeze-drying; purple,
SC-CO,; orange, coacervation; green, drum drying; dark red, elec-
trospraying; numbers 1-17 referred to different authors. 1 — Fredes
et al. (2018), 2 — Yingngam et al. (2018), 3 — Ribeiro et al. (2019), 4
— Xue et al. (2019), 5 — Pan et al. (2022), 6 — Laureanti et al. (2023),
7 — Zahed et al. (2023), 8 — Jang and Koh (2023), 9 — Nguyen et al.
(2022), 10 — Xue et al. (2019), 11 — Santos et al. (2013), 12 — Gharan-
jig et al. (2020) 13 — Sarkar et al. (2020), 14 — Sakulnarmrat and
Konczak (2022), 15 — Sakulnarmrat et al. (2021b), 16 — Atay et al.
(2018), 17 — Gonzalez-Cruz et al. (2020)

values ranging from 91.14%-99.80% and 98.85%-98.86%,
respectively. In contrast, FD exhibited slightly more vari-
ability in EE, ranging from 85.00 to 98.33%. Although FD
yielded a high EE in some studies (98.33%), some authors
reported values lower than 90%, indicating an inconsist-
ency in achieving at least 90% EE. Other techniques, such
as SC-CO,, showed an EE higher than 90%. Coacervation
and electrospraying display varying degrees of efficiency,
indicating the influence of the process parameters and for-
mulation characteristics. The aforementioned techniques
had the lowest EE, ranging from 44.77%-86.00% and
52.65%—-76.90%, respectively. Considering the EE data, SD
is the best and most promising choice for ACNs encapsu-
lation, owing to its consistently high efficiency, relatively
straightforward process, and cost-effectiveness.

Current status of product application
with microencapsulation techniques

The increasing awareness and demand for healthy products
among consumers requires the food industry and research-
ers to determine a solution for incorporating and protecting
bioactive compounds, such as ACNs, in products. Therefore,
microencapsulation is a promising solution for protecting
ACNSs. Many researchers have compared and determined the
effects of different parameters and microencapsulation tech-
niques on the stability of ACNs after incorporation into the
product (Mihalcea et al., 2020; Sakulnarmrat et al., 2021a;
Santos et al., 2022). For instance, Sakulnarmrat and Konc-
zak (2022) incorporated ACNs from lamduan into gummy
jellies after double-drum drying with different encapsulat-
ing agents. The combination of MD and GA (60:40) was
selected as the best combination and applied to gummy jel-
lies. The shelf-life stability of the gummy jellies was studied
for eight weeks at different temperatures (25°C and 35°C).
The highest lamduan encapsulated powder (30 g/kg) added
to gummy jellies showed the most extended shelf life and
retention of ACNs at both temperatures after eight weeks of
storage. These findings corroborated the idea that encapsu-
lating ACNss before application to food products retained and
enhanced their stability and functionality. Other examples
of ACNs sources, microencapsulation techniques, and their
applications in various products are shown in Table 3.

Advantages and disadvantages of spray
drying compared to other methods

Like any other method, spray drying has unique strengths
and limitations compared to alternative techniques. It is
quicker, more affordable, versatile, and appropriate for large-
scale production than freeze-drying, SC—CO2, coacervation,

@ Springer
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drum drying, and electrospraying microencapsulation. How-
ever, the potential deterioration of heat-sensitive substances
and low encapsulation efficiency during the encapsulation
process are noteworthy disadvantages of spray drying. How-
ever, the choice of method always depends on the specific
properties of the product being dried and the desired char-
acteristics of the final dried product.

Conventional spray drying is the most popular and prac-
tically viable technique for microencapsulating ACNs and
other bioactive components. High-quality powders with low
moisture content, water activity, particle size, and morphol-
ogy can be produced using spray drying. The selection of
encapsulating agents may vary from case to case and mainly
depends on the nature of the feed material/active agent to
be microencapsulated. Various encapsulating agents are
used on specific fruits at specific concentrations or ratios. It
can be concluded that the best encapsulating agent is MD,
with an inlet temperature of < 180°C. This was due to MD
characteristics with low viscosity, moisture, hygroscopicity,
and good solubility. These can help reconstitute and entrap
bioactive compounds from deterioration during processing.
Thus, it can easily be used as a food ingredient. Although
there are many emerging technologies for microencapsula-
tion, spray drying is still widely practiced in most indus-
tries due to its low operation cost, high yield, speed, and
efficiency.

Overall, spray drying is more effective than other tech-
niques for microencapsulation due to its ability to encapsu-
late bioactive compounds rapidly and individually. However,
ACNs extraction requires longer, and the solvents are expen-
sive and risky. Moreover, it is recommended that appropriate
encapsulating agents for specific fruits be used to increase
the stability of ACNs-rich powder, which is costly. Stor-
age surroundings are also necessary for stabilizing the ACN
compound; thus, suitable storage, such as vacuum-pack
packaging, can be used to prevent oxidation. Therefore, it is
recommended to add an antioxidant agent, such as tocoph-
erol, into the fruit extract and encapsulating agents before
the spray drying. Studies have focused on powdered prod-
ucts' physicochemical and nutritional characteristics derived
from the spray-drying microencapsulation of ACNs-rich
fruits. However, functional foods and nutraceutical qualities
are frequently overlooked. Therefore, there is a need to ana-
lyze and explore the functional food and nutra-pharmaceu-
tical prospects of ACNs-rich microencapsulated powdered
products for specific food applications. Moreover, it can be
noted that different process variables for spray drying micro-
encapsulation of ACNs-rich fruits have been optimized by
the researchers using conventional methods. However, with
new software development, modern tools such as RSM and
computer simulation techniques are needed to allow rapid
evaluation and optimization of the plans and design of the
spray drying-based microencapsulation process. Using

@ Springer

artificial neural networking (ANN) to validate such designs
can provide more value for optimizing such processes.
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