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Abstract
Anthocyanins (ACNs) are water-soluble pigments in various fruits and vegetables known for their high antioxidant activity. 
They are used as natural food colorants and preservatives and have several medicinal benefits. However, their application in 
functional foods and nutraceuticals is often compromised by their low stability to heat, oxygen, enzymes, light, pH changes, 
and solubility issues. Spray drying has emerged as an effective microencapsulation technique to enhance the shelf life, qual-
ity, and stability of ACNs. This manuscript reviews the latest scientific developments in spray drying microencapsulation of 
ACNs-rich fruit extracts. Process optimization and the stability and physicochemical properties of the spray-dried, micro-
encapsulated ACNs-rich powders are discussed. This review also covers functional food and nutraceutical applications and 
introduces novel encapsulation methods, such as freeze-drying, supercritical carbon dioxide (SC-CO2), coacervation, drum 
drying, and electrospraying, highlighting their potential in improving the utility of ACNs-rich fruit extracts.

Keywords Anthocyanins stability · Encapsulating agents · Functional food value · Optimized spray drying · Powder 
product
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IN  Inulin
IG  Ionic gelation
kDa  Kilodalton
KON  Konjac
MATE  Multidrug and toxic compound extrusion
MC  Modified chitosan
MD  Maltodextrin
mPa  Millipascal
Mw  Molecular weight
OSA  Sodium octenyl succinate
PAG  Prosopis alba exudate gum
PEC  Pectin
PEG  Polyethylene glycol
PVP  Polyvinylpyrrolidone
RBC  Rice bran concentrate
RSM  Response surface methodology
SA  Sodium alginate
SC-CO2  Supercritical carbon dioxide
SMP  Soymilk powder
SNARE  Soluble N-ethylmaleimide-sensitive factor 

attachment protein receptors
SPI  Soy protein isolates
SPP  Soy protein powder
TA  Total anthocyanins
Tg  Glass transition temperature
TP  Total phenolics
TS  Tapioca starch
WPI  Whey protein isolates
WS  Waxy starch
XG  Xanthan gum
ZG  Zedo gum
°Bx  Brix

Introduction

In the present era of optimal nutrition, the growing demand 
for healthier foods has led to the consumption of natural 
antioxidant-containing foods, such as polyphenol-rich fruits 
and vegetables. Anthocyanins (ACNs) are water-soluble 
phenolic compounds renowned for their potent natural anti-
oxidant properties. Their unique structure, characterized by 
a flavonoid backbone, multiple hydroxyl groups, conjugated 
double bonds, chelation sites, glycosylation, and varied sub-
stitution patterns, collectively contributes to their excep-
tional antioxidant properties. These structural attributes 
enable ACNs to effectively neutralize free radicals, inhibit 
metal ion-induced oxidative reactions, and protect cells and 
tissues from oxidative damage, making them valuable natu-
ral antioxidants (Enaru et al., 2021; Tarone et al., 2020).

ACNs are responsible for plants’ orange, red, violet, and 
blue colors and thus hold great potential as natural colorants 
(Azman et al., 2022a, b). Grapes, blackcurrants, blueberries, 

and bilberries are among the most popular ACNs-rich fruits. 
In contrast, red cabbages (Machado et al., 2022), eggplants 
(Demiray et al., 2023), and red onions (Ali et al., 2016) 
are typical examples of ACNs-rich vegetables. In addition 
to antioxidants, ACNs provide a broad spectrum of thera-
peutic effects and biological activities, including anticar-
cinogenic, inflammatory, immune-stimulating, antibacte-
rial, antiallergic, and antiviral properties (Nawawi et al., 
2023a; Riberio et al., 2019; Salehi et al., 2020). However, 
the biological properties and nutraceutical value of ACNs 
are often compromised by their instability. The stability of 
ACNs is affected by multiple factors such as light, tempera-
ture, pH, enzymatic reactions, oxidation, presence of metal 
ions, humidity, microorganisms, moisture, solvents, and the 
presence of co-pigments, causing degradation or partial loss 
of these compounds (Azman et al., 2022a, b; Feitosa et al., 
2023; Nawawi et al., 2023a; Nawawi et al., 2023b). In this 
regard, different delivery processes have been developed to 
improve the stability of ACNs and coloring pigments, such 
as microencapsulation, nanoencapsulation, and protein com-
plex formation (Feitosa et al., 2023).

Microencapsulation is a viable alternative that efficiently 
preserves thermally sensitive compounds such as phenolic 
compounds (Abdel‐Aty et al., 2022; Gawalek, 2022). This 
technique entraps bioactive compounds within the encapsu-
lating agent and transforms liquids into powders for easier 
handling (Rocha et al., 2019; Singh et al., 2023a). Encapsu-
lating agents such as maltodextrin (MD), gum arabic (GA), 
carrageenan, alginate, waxes, and phospholipids are added 
to facilitate powder production, protect bioactive compounds 
from oxygen, light, or other unfavorable conditions, and 
increase stability (Li et al., 2017; Ligarda-Samanez et al., 
2023).

Many investigations on the microencapsulation of ACNs-
rich fruit extracts, such as berries, pomegranates, jaboticaba, 
and cherries, have focused on storage, color stability, and the 
quality of the final fruit powder (Gawalek, 2022; Halahlah 
et al., 2023; Mahdavi et al., 2016b; Shwetha and Preetha, 
2016). Spray drying, freeze-drying, and supercritical carbon 
dioxide (SC–CO2) technology are commonly used microen-
capsulation techniques, and spray drying is the most popu-
lar among food industries owing to its cost-effectiveness, 
efficiency, and high yield of good-quality powder products 
(Ravichandran et al., 2023; Da Rosa et al., 2019). Over the 
years, various parameters of spray-drying microencapsula-
tion techniques have been studied for ACNs from various 
fruit types. New updates are required to determine which 
parameters can be applied to best suit specific fruits.

Therefore, the primary goal of this review was to assess 
the current trends and advances in spray drying microencap-
sulation of ACNs-rich fruit extracts. The effects of different 
parameters, such as types of encapsulating agents, the ratio 
of encapsulating agent to feed, drying temperature, and feed 



2675Microencapsulation trends in anthocyanin extracts

flow rate, on the physiochemical and stability characteristics 
and functional food quality of the end-use ACNs powder 
product are discussed. Furthermore, an overview of innova-
tive microencapsulation techniques, such as freeze-drying, 
SC-CO2, coacervation, drum drying, and electrospraying, 
is provided.

An overview of ACNs

The word ACNs has been coined from two Greek words, 
namely Anthos (flower) and kyanos (blue) (Koop et al., 
2022). As a class of polyphenols and sub-class of flavonoids, 
ACNs are widely distributed in different parts, especially 
leaves, fruits, and flowers of various plants belonging to the 
Rosaceae, Vitaceae, Saxifragaceae, Ericaceae, Cruciferae, 
Fabaceae and Caprifoliaceae families, among others (Li 
et al., 2021; Mazza and Miniati, 2018). ACNs tend to be 
located in the cells of plant vacuoles and cell walls and can 
be acquired through extraction (Ijod et al., 2022) (Fig. 1). 
ACNs yield in fruits depends on several factors such as 
processing and extraction methods, growing location and 
weather, fruit maturity levels, and storage conditions before 
analysis (Mazza and Miniati, 2018; Nawawi et al., 2023a).

The concentration of ACNs varies from 0.1 to 1.0% across 
various plant materials (Ercoli et al., 2021). Vegetables (e.g., 
red potato, purple sweet potato, eggplant, carrot, purple 
corn, red onion, and red cabbage) and fruits (e.g., berries, 

cherries, blood oranges, blackcurrants, pomegranate, grapes, 
plums, and apples) are essential sources of ACNs for human 
nutrition (Karacabey et al., 2023; Mohammed and Khan, 
2022; Tan et al., 2023). Berries, grapes, blackcurrants, and 
some tropical fruits have been identified as abundant sources 
of ACNs (Khoo et al., 2017). Due to their broad range of 
nutra-pharmaceutical attributes and chemo-preventive 
effects, as evidenced by clinical trials, ACNs have emerged 
as promising natural compounds with the potential to replace 
synthetic additives or colorants (Thakur et al., 2023).

ACNs consist of two aromatic rings attached to three car-
bons in an oxygenated heterocycle and a chromane ring with 
a second aromatic ring (Tarone et al., 2020) (Fig. 2). ACNs 
have sugar at  R3 positions called oligosaccharide side chains, 
normally in a single glucoside unit. The amount of hydroxyl 
and methoxy groups indicates the level of intensity and type 
of color of the ACNs. The higher amounts of hydroxyl and 
methoxy groups contribute to the extracts’ intense bluish and 
redness colors, respectively (Enaru et al., 2021).

ACNs are also known as the glycosylated (aglycone) 
forms of anthocyanidins. Chemically, anthocyanidins are 
sugar-free counterparts of ACNs. As natural dyes, these 
compounds are responsible for the color of many fruits 
(Khoo et al., 2017). There are six main types of glycosides 
derivative ACNs: pelargonidin, cyanidin, delphinidin, peoni-
din, petunidin, and malvidin. Interestingly, pelargonidin dis-
plays a red-colored pigment in fruits and berries but appears 
orange in flowers. Besides, cyanidin appears reddish-purple 

Fig. 1  ACNs move from the synthesis site, the endoplasmic reticu-
lum (ER), to the vacuole for storage. ER-derived vesicles facilitate 
anthocyanin transport to the vacuole, where they bind to the mem-
brane via soluble N-ethylmaleimide-sensitive factor attachment pro-
tein receptors (SNARE) and release ACNs during the micro (1) and 
macro (2) autophagy processes. Several membrane proteins (multi-
drug and toxic compound extrusion (MATE), ATP-binding cassette 

(ABC), and bilitranslocase (BTL-like transporters) aid in the trans-
port of ACNs into vacuoles and their sequestration in vacuolar inclu-
sions (AVIs) in the membrane transporter-mediated pathway (3), Glu-
tathione S-transferases (GSTs) mediate the conjugation of ACNs to 
generate the glutathione-ACNs conjugate, which serves as an intact 
and efficient means of transport from the ER to the vacuole.  Adapted 
from Nistor et al. (2022) with modification
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or magenta, while delphinidin causes a blue-reddish or pur-
ple pigment in plants. Examples of methylated anthocya-
nidins include peonidin, malvidin, and petunidin. Peonidin 
contributes to the magenta color in grapes, berries, and red 
wines. Also, malvidin displays as a darker rusty red pigment 
in red wine, while petunidin appears as a dark red or pur-
ple pigment in blackcurrants and purple petals of the flower 
(Khoo et al., 2017). These color variations can result from 
the complex interplay between pH, co-pigments, metal ions, 
genetics, environmental factors, chemical modifications, and 
concentration levels (Enaru et al., 2021).

Stability of ACNs

ACNs, which are hydrophilic, are highly unstable com-
pounds and are quickly degraded due to different factors. 
The stability of ACNs is influenced by their concentration, 
pH, storage temperature, chemical structure, the presence of 
enzymes, proteins, flavonoids, metal ions, oxygen, and light 
(Enaru et al., 2021; Jafari et al., 2016). Their stability is also 
affected by the presence of hydroxyl or methoxy functional 
groups in the structure, as the presence of these clusters 
decreases the stability of the compound in an organic solvent 
or aqueous solution (Khoo et al., 2017).

The quality of ACNs degrades during processing and 
storage, thereby reducing the effectiveness of their poten-
tial role in the food and pharmaceutical industries. There-
fore, preventive measures must be employed to maintain the 

quality of these compounds, particularly during thermal pro-
cessing (Ijod et al., 2022). The degradation of ACNs occurs 
when they are exposed to temperatures exceeding 60 °C for 
prolonged periods, typically exceeding 60 min. Such condi-
tions can break covalent bonds within ACN molecules and 
induce oxidation processes, resulting in a loss of color and 
potential health benefits (Ali et al., 2016). In blanched pur-
ple potatoes (95–97 °C/2 min), a 63% loss in total mono-
meric ACNs was recorded compared to that in fresh potatoes 
(Karacabey et al., 2023). Also, hot drying (60℃, 10 h), hot 
water blanching (5 min), and steaming (100℃, 5 min) of 
red cabbages resulted in ACNs losses of 60, 23 and 13%, 
respectively (Tan et al., 2023).

Improving ACNs stability: chemical 
and biological approaches

The therapeutic applications of ACNs are often limited 
because of their reduced stability and low solubility in 
aqueous and organic media. Interestingly, ACNs can be 
transformed into acylated or glycosylated derivatives using 
enzymatic, chemical, or chemoenzymatic approaches. For 
example, converting ACNs into bioconjugates via fatty 
acid (FAs) acylation may offer the opportunity to posi-
tively modify these compounds’ physicochemical prop-
erties and biological functionalities (Khoo et al., 2017). 
Bioconjugates, a novel class of hybrid materials consist-
ing of a synthetic macromolecule linked to a biomolecule/

Fig. 2  Microencapsulation of ACNs extracts from various food sources and general chemical structure of ACNs and their anthocyanidins. 
R3 = sugar (glucose, arabinose, galactose, etc.).  Adapted from Kozłowska and Dzierżanowski (2021) with modification
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biological entity such as peptides or proteins, vitamins, 
and nucleic acids, are gaining increasing importance in the 
fields of medicine, biotechnology, and nanotechnology (Li 
and Mahato, 2017).

The stability of ACNs can also be improved through 
intramolecular copigmentation, wherein the color intensity 
of anthocyanidins/ACNs is increased or reinforced in the 
presence of other flavonoids as cofactors or copigments 
(Azman et al., 2022a, b). In this phenomenon, due to color 
intensification, an increase in color intensity with spectral 
shifts towards higher wavelengths can be observed with the 
addition of a copigment to acidic (preferably), neutral, and 
even slightly alkaline ACNs aqueous solutions.

Improving ACNs stability: physical 
approaches

In addition to bioconjugation and copigmentation, the sta-
bility and functional properties of ACNs can be improved 
using microencapsulation. Microencapsulation is a viable 
alternative for enhancing the stability and practical uses of 
ACNs on an industrial scale. In this process, ACNs, being 
the core material (active agent), are entrapped within another 
substance (wall material/coating material) or encapsulants 
such as starches, gelatin, GA, and MD (Estupiñan-Amaya 
et al., 2023; Mahdavi et al., 2016a; Rocha et al., 2019).

Optimization of various parameters (type and concentra-
tion of the encapsulating agent, concentration of the active 
agent, ratio of coating/active material, process time, tem-
perature, etc.) is required to establish the best conditions for 
microencapsulation, offering better yield and good quality 
of the end-use powdered product, which has been exten-
sively reviewed by Tarone et al. (2020). In this context, 
conventional optimization methods are now being replaced 
by modern approaches, such as response surface methodol-
ogy (RSM) and in silico (computer simulation) modeling 
studies, to devise an optimized microencapsulation process 
(Machado et al., 2022; Mahdavi et al., 2016a; Tarone et al., 
2020).

Microencapsulation provides many advantages to the 
final product by diminishing the surroundings and protect-
ing bioactive compounds/ACNs from side effects caused by 
air, light, moisture, and heat. This process can deteriorate the 
vapor of the inside material to the outside environment and 
modify the physical characteristics to make ACNs or related 
bioactive materials more convenient to use. Also, microen-
capsulation is efficient in masking the inside material's flavor 
and forming two phases when mixed with liquid or semi-
solid products (Ray et al., 2016). Powdered particle size can 
be categorized as macro (> 5000 µm), micro (1–5000 µm), 
and nano (< 1 µm) (Jafari et al., 2008).

Spray drying microencapsulation

Spray drying, due to its versatility, cost-effectiveness, and 
ease of operation, is the most common and widely appli-
cable technique for the encapsulation of bioactive such as 
ACNs-rich extracts (Da Rosa et al., 2019; Ravichandran 
et al., 2023) (Fig. 2). Spray drying process is the tradi-
tional method for forming powders from semi-solid or liq-
uid forms. Most of the 15,000 industries have used spray 
dryers to form products, such as luminescence materials, 
oxides, chemicals, fertilizers, and dried foods (Nandiyanto 
et al., 2019).

Additionally, it is a process in which the industry can 
manage acceptable levels of deterioration and decomposi-
tion of volatile compounds such as fruit juice. Spray dry-
ing, which involves encapsulation by creating protective 
‘walls’ around sensitive ingredients, converts liquids into 
solids and enhances their shelf-life and color stability 
while safeguarding them against oxidation (Vasile et al., 
2023). The reduced volume resulting from spray drying 
also simplifies the handling and storage of the compounds.

The principles of spray drying include preparation, 
homogenization, atomization, dispersion, and dehydration 
of the liquid solution. A critical issue during this process 
is wall deposition, which may affect the quality and quan-
tity of the product that needs to be achieved. The occur-
rence of wall deposition depends on the spray dryer’s type, 
size, and operating parameters. Appropriate measures and 
controls are needed to avoid wall deposition, thus prevent-
ing the high maintenance cost and lowering the powder 
yield (Tarone et al., 2020). The efficiency of spray dry-
ing depends on the selection of parameters, such as the 
encapsulating agent and its concentration added to the feed 
(active agent), inlet and outlet temperatures, atomization 
speed or pressure, and feed flow rate (Gawalek, 2022; Pan 
et al., 2022; Vasile et al., 2023). These factors must be 
controlled and manipulated for acceptable physical proper-
ties and a higher powder yield.

Encapsulating agents

The limitation of the spray drying technique is the use of 
high temperatures for drying and air access (Bednarska 
and Janiszewska‐Turak, 2019), which may decompose 
thermally sensitive ACNs (Gawalek, 2022). Therefore, 
encapsulating agents are introduced in the spray drying to 
facilitate powder production, especially for ripe fruits with 
high °Bx value. This high °Bx value corresponded to a low 
glass transition temperature (Tg). When ripe fruits dehy-
drate above Tg, they may exhibit stickiness and adhere to 
dryer walls, resulting in a reduction in the final yield of 
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the product (Zotarelli et al., 2017). To prevent stickiness, 
one option is to control the glass transition temperature so 
that it remains below Tg + 20 °C. High molecular weight 
encapsulating agents can also improve the product’s glass 
transition (Machado et al., 2022).

Encapsulating agents can be divided into groups of 
carbohydrates, proteins, or a combination of both. Car-
bohydrates act as a protective barrier from the external 
environment to the inside material, such as gums, starch, 
modified starches, dextrins, and cellulose (Halahlah et al., 
2023; Lacerda et al., 2016; Villacrez et al., 2013). The 
most essential characteristics of this group are their emul-
sifying activity and solubility properties. These agents 
should exhibit characteristics such as low viscosity, non-
hygroscopic, bland flavor/tasteless, non-reactive with core 
materials, soluble in aqueous solvents, inexpensive, food-
grade, flexible, rigid, thin, and pliable (Tan et al., 2015).

MD has good water solubility and low viscosity and is 
produced by enzymatic or acid hydrolysis of starch (Lac-
erda et al., 2016). The low emulsifying properties of MD 
can be counteracted by substituting it with sodium octe-
nyl succinate (OSA) starch. OSA starch introduces lipo-
philic elements, resulting in amphiphilic properties that 
enhance emulsification (Lacerda et al., 2016; Sweedman 
et al., 2013). Another encapsulating agent in carbohydrates 
is inulin, which is a polysaccharide. This polysaccharide 
consists of fructose units linked by β-(2,1) bonds with glu-
cose in the chain. Inulin is derived from chicory and has 
dietary fiber and prebiotic effects on consumers (El-Kholy 
et al., 2020; Lacerda et al., 2016).

Examples of protein types include whey protein iso-
lates (WPI) and soy protein isolates (SPI) (Robert and Fre-
des, 2015). These proteins excel as encapsulating agents 
because of their distinct attributes and adaptability. Whey 
protein isolates sourced from whey, a byproduct of cheese 
production, are renowned for their high nutritional qual-
ity as complete proteins containing all essential amino 
acids. They also exhibit exceptional emulsifying proper-
ties, stabilize emulsions, and efficiently encapsulate lipo-
philic compounds. Moreover, WPI has a low allergenic-
ity, making it suitable for a wide array of applications, 
and its neutral flavor accommodates the encapsulation of 
diverse ingredients. On the other hand, SPI, derived from 
soybeans, offers versatility by encapsulating a broad spec-
trum of ingredients, including flavors, vitamins, minerals, 
and lipids. With its high protein content, SPI enhances 
the nutritional value of encapsulated products. In contrast, 
its functional properties, such as emulsification and film 
formation, further contribute to its effectiveness in encap-
sulation applications. Being gluten-free and sustainably 
sourced from soybeans, SPI aligns with dietary prefer-
ences and environmentally conscious practices (Bian et al., 
2022).

The selection of encapsulating agents depends on the sol-
ubility of the bioactive compound of interest, which is either 
hydro- or lipo-soluble. GA is the best encapsulating agent 
for liposoluble bioactive compounds, and hydro-soluble 
compounds such as ACNs and MD with different dextrose 
equivalent (DE) values, GA, or modified starch are com-
monly used. Due to its low hygroscopicity, the prominent 
MD used in spray drying is MD 10-DE (De Souza et al., 
2015).

Encapsulating agents from natural polymers can prevent 
the degradation of ACNs and aid in their delivery to the 
human body for nutraceutical applications (Vergara et al., 
2020). Combining OSA starch, inulin, and MD as encapsu-
lating agents with an encapsulating carbohydrates (EC) ratio 
of 2:1:1 (2/3:1/6:1/6) produced jussara pulp microparticles 
with favorable properties. Specifically, these microparticles 
exhibited excellent color, antioxidant activity, and ACNs 
content, making them a promising encapsulation approach 
for preserving the quality and functionality of the jussara 
pulp (Lacerda et al., 2016).

The production of ACNs-rich powders from various fruit 
sources using spray drying is summarized in Table 1. Over-
all, the SPI encapsulation technique was highly efficient 
for polyphenols (catechins, ellagitannins, gallitannins, and 
quercetin glycosides). This is due to the nature of the charge 
of bioactive compounds, where polyphenols and ACNs 
have negative and positive charges, respectively. Also, the 
polyelectrolyte structure (density and charge type) contrib-
utes to the interaction of SPI with the bioactive polymer. 
Meanwhile, MD was more effective in entrapping ACNs 
owing to the production of larger and smoother particles 
of fruit powder than GA, which produced smaller particles 
and wrinkled surfaces, thus making it easy to be exposed to 
oxygen (Ferrari et al., 2013).

Specific inlet and outlet temperatures are needed to 
maximize encapsulation efficiency and prevent the accel-
eration of ACNs, polyphenols, and antioxidant degradation 
(Gawalek, 2022). Higher inlet temperatures may produce 
lower-quality ACNs powder, such as a dense surface layer, 
thereby reducing the efficiency of powder reconstitution 
(Jafari et al., 2017). In some instances, spray drying using 
a high inlet temperature and aspiration rate may contribute 
to the high yield of microparticles. Consequently, this can 
reduce the stickiness of fruit powder on the cyclone wall 
(Yingngam et al., 2018). A more significant loss of ACNs 
was detected when the air inlet temperature was higher than 
180℃ (Gawalek, 2022). A higher inlet temperature with 
a lower concentration of encapsulating agents below 30% 
(w/w) leads to decreased ACNs stability due to non-enzy-
matic browning and pro-anthocyanidin deterioration (De 
Souza et al., 2015).

A combination of encapsulating agents, such as pro-
tein-based products, protects ACNs better than a single 



2679Microencapsulation trends in anthocyanin extracts

Ta
bl

e 
1 

 P
ro

du
ct

io
n 

of
 A

C
N

s-
ric

h 
po

w
de

r f
ro

m
 d

iff
er

en
t f

ru
its

 u
si

ng
 a

 sp
ra

y 
dr

yi
ng

 te
ch

ni
qu

e

A
C

N
s-

ric
h 

fr
ui

ts
En

ca
ps

ul
at

in
g 

ag
en

t
D

is
so

lu
tio

n 
m

ed
iu

m
 fo

r a
n 

en
ca

ps
ul

at
in

g 
ag

en
t

Sp
ra

y 
dr

yi
ng

 p
ar

am
et

er
s

St
ab

ili
ty

 e
nh

an
ce

m
en

t
Re

fe
re

nc
es

B
la

ck
cu

rr
an

t (
Ri

be
s n

ig
ru

m
 

L.
)

M
D

: D
E1

1,
 D

E1
8,

 D
E2

1 
&

 
In

ul
in

B
la

ck
cu

rr
an

t e
xt

ra
ct

In
le

t/o
ut

le
t t

em
pe

ra
tu

re
: 

15
0/

70
 °C

, 1
60

/7
0℃

, 
18

0/
85
℃

, 2
05

/1
00
℃

- A
ir 

in
le

t t
em

pe
ra

tu
re

s 
(>

 18
0 

°C
) c

au
se

d 
m

or
e 

po
ly

ph
en

ol
 a

nd
 A

C
N

s 
lo

ss
es

- T
he

 h
ig

he
st 

TA
 a

nd
 T

P 
(8

6%
) w

as
 o

bt
ai

ne
d 

w
ith

 
M

D
 D

E 
11

 a
t 1

50
 °C

- M
D

 g
av

e 
hi

gh
er

 T
A

 a
nd

 T
P 

th
an

 In
ul

in

B
ąk

ow
sk

a-
B

ar
cz

ak
 a

nd
 

K
ol

od
zi

ej
cz

yk
 (2

01
1)

Ja
bo

tic
ab

a 
(M

yr
ci

ar
ia

 ja
bo

ti-
ca

ba
) p

ee
l

M
D

, G
A

, G
A

 &
 M

D
, o

r C
ap

-
su

l™
 &

 M
D

D
ist

ill
ed

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

40
, 1

60
, 

an
d 

18
0 

°C
), 

fe
ed

 fl
ow

 ra
te

 
(3

60
 m

L/
h)

, a
sp

ira
to

r a
ir 

ra
te

 (2
8 

 m
3 /h

)

- H
ig

h 
pr

es
er

va
tio

n 
of

 T
A

 a
nd

 
an

tio
xi

da
nt

s i
n 

M
D

 o
r G

A
 

w
he

n 
an

 in
le

t t
em

pe
ra

tu
re

 o
f 

16
0 

°C
 w

as
 u

se
d

Si
lv

a 
et

 a
l. 

(2
01

3)

B
la

ck
be

rr
y 

(R
ub

us
 sp

p.
)

M
D

, G
A

, o
r b

ot
h 

7%
 (w

/w
)

B
la

ck
be

rr
y 

ju
ic

e
In

le
t a

ir 
te

m
pe

ra
tu

re
 

(1
45

 °C
), 

ou
tle

t t
em

pe
ra

-
tu

re
 (7

5–
80

 °C
), 

re
la

tiv
e 

hu
m

id
ity

 (3
2.

8%
), 

flo
w

 ra
te

 
(0

.4
9 

kg
/h

)

- H
ig

h 
TA

 a
fte

r e
nc

ap
su

la
te

d 
w

ith
 7

%
 o

f M
D

- 7
%

 M
D

 c
au

se
d 

lo
ng

 sh
el

f-
lif

e 
du

rin
g 

sto
ra

ge
 fo

r 
15

0 
da

ys
 a

t 2
5 

°C
- T

he
 c

om
bi

na
tio

n 
of

 M
D

 
an

d 
G

A
 im

pr
ov

ed
 sh

el
f-

lif
e 

du
rin

g 
sto

ra
ge

 fo
r 1

50
 d

ay
s 

at
 3

5℃

Fe
rr

ar
i e

t a
l. 

(2
01

3)

B
or

do
 G

ra
pe

 (V
iti

s l
ab

ru
sc

a)
M

D
 (1

0–
30

%
) (

w
/w

)
B

or
do

 g
ra

pe
 e

xt
ra

ct
In

le
t t

em
pe

ra
tu

re
 (1

30
, 1

50
, 

an
d 

17
0 

°C
), 

fe
ed

 fl
ow

 ra
te

 
(4

4 
m

L/
m

in
), 

ai
rfl

ow
 (4

0 
L/

m
in

)

- I
nc

re
as

ed
 st

ab
ili

ty
 d

ur
in

g 
sto

ra
ge

 (1
20

 d
ay

s)
 a

t 2
5 

°C
D

e 
So

uz
a 

et
 a

l. 
(2

01
5)

B
ar

be
rr

y 
(B

er
be

ri
s v

ul
ga

ri
s)

M
D

: G
A

 (3
:1

) &
M

D
: g

el
at

in
 (3

:1
)

H
ot

 d
ist

ill
ed

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

50
 °C

), 
ou

tle
t a

ir 
te

m
pe

ra
tu

re
s 

(1
00

 °C
), 

fe
ed

 fl
ow

 ra
te

 
(8

00
 m

L/
h)

- L
on

ge
st 

ha
lf-

lif
e 

(7
 m

on
th

s)
 

in
 4

 °C
 fo

r a
 c

om
bi

na
tio

n 
of

 
M

D
 a

nd
 G

A

M
ah

da
vi

 e
t a

l. 
(2

01
6b

)

Ja
m

un
 (S

yz
yg

iu
m

 c
um

in
i)

M
D

 &
 G

A
 (1

:1
) (

w
/w

)
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (1
10

 °C
), 

ou
tle

t t
em

pe
ra

tu
re

 
(6

0–
75
℃

), 
fe

ed
 fl

ow
 ra

te
 

(1
5–

20
%

)

- I
nc

re
as

ed
 st

ab
ili

ty
 a

t 7
0 

°C
Sh

w
et

ha
 e

t a
l. 

(2
01

6)

Po
m

eg
ra

na
te

 (P
un

ic
a 

gr
a-

na
tu

m
)

G
A

 &
 C

ap
su

l™
 (1

:1
)

Po
m

eg
ra

na
te

 ju
ic

e
In

le
t t

em
pe

ra
tu

re
 (1

62
–

17
0℃

), 
ou

tle
t t

em
pe

ra
tu

re
 

(8
9–

93
 °C

), 
m

as
s fl

ow
 ra

te
 

(1
 k

g/
h)

, a
ir 

flo
w

 ra
te

 (5
00

 
 m

3 /h
)

- I
m

pr
ov

ed
 st

ab
ili

ty
 d

ur
in

g 
sto

ra
ge

 (2
5 

°C
) f

or
 3

 m
on

th
s 

by
 p

re
se

rv
in

g ~
 90

%
 o

f 
A

C
N

s

D
e 

A
ra

új
o 

Sa
nt

ia
go

 e
t a

l. 
(2

01
6)

B
la

ck
be

rr
y 

(R
ub

us
 sp

p.
)

M
D

 D
E 

18
–2

0
U

ltr
ap

ur
e 

w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

50
 °C

), 
fe

ed
 fl

ow
 ra

te
 (4

70
 L

/h
), 

as
pi

ra
to

r r
at

e 
(3

5 
 m

3 /h
)

- P
ro

lo
ng

ed
 h

al
f-

lif
e 

of
 p

ur
e 

A
C

N
s a

t 4
 °C

 (2
24

 d
ay

s)
 

an
d 

35
 °C

 (1
51

 d
ay

s)

W
eb

er
 e

t a
l. 

(2
01

7)



2680 G. Ijod et al.

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
C

N
s-

ric
h 

fr
ui

ts
En

ca
ps

ul
at

in
g 

ag
en

t
D

is
so

lu
tio

n 
m

ed
iu

m
 fo

r a
n 

en
ca

ps
ul

at
in

g 
ag

en
t

Sp
ra

y 
dr

yi
ng

 p
ar

am
et

er
s

St
ab

ili
ty

 e
nh

an
ce

m
en

t
Re

fe
re

nc
es

M
aq

ui
 (A

ri
st

ot
el

ia
 c

hi
le

ns
is

 
(M

ol
.) 

St
un

tz
M

D
 &

 S
PI

 (2
:1

) (
w

/v
)

D
ist

ill
ed

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

20
–

18
0 

°C
), 

fe
ed

 fl
ow

 ra
te

 
(1

 m
L/

m
in

)

- D
ec

re
as

ed
 o

xi
da

tio
n 

fo
r 

69
–7

5 
da

ys
Fr

ed
es

 e
t a

l. 
(2

01
8)

M
ao

be
rr

y 
(A

nt
id

es
m

a 
pu

nc
tic

ul
at

um
 M

iq
.)

M
D

 (D
E1

0)
 1

:5
 (w

/w
)

D
ist

ill
ed

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

40
℃

), 
fe

ed
 fl

ow
 ra

te
 (6

 m
L/

m
in

), 
as

pi
ra

to
r r

at
e 

(2
9 

 m
3 /h

)

- P
re

se
rv

ed
 A

C
N

s a
t 4
℃

 a
nd

 
25

 °C
 d

ur
in

g 
30

 d
ay

s o
f 

sto
ra

ge

Y
in

gn
ga

m
 e

t a
l. 

(2
01

8)

El
de

rb
er

ry
 (S

am
bu

cu
s n

ig
ra

 
L.

)
M

C
, S

A
, G

A
 1

%
 (w

/v
)

El
de

rb
er

ry
 e

xt
ra

ct
In

le
t t

em
pe

ra
tu

re
 (1

15
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (5

8 
°C

), 
fe

ed
 fl

ow
 ra

te
 (4

 m
L/

m
in

)

- F
as

te
r r

el
ea

se
 o

f a
ct

iv
e 

su
bs

ta
nc

es
 in

 M
D

 fo
llo

w
ed

 
by

 G
A

 a
nd

 S
A

- B
et

te
r s

ta
bi

lit
y 

of
 A

C
N

s i
n 

en
ca

ps
ul

at
ed

 th
an

 n
on

-
en

ca
ps

ul
at

ed
 sa

m
pl

e

R
ib

ei
ro

 e
t a

l. 
(2

01
9)

Re
d-

Fl
es

he
d 

A
pp

le
 (M

al
us

 
ni

ed
zw

et
zk

ya
na

)
G

A
 6

%
 (w

/v
) &

M
D

 4
%

 (w
/v

)
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (1
50

 °C
), 

ou
tle

t t
em

pe
ra

tu
re

 (1
00

 °C
), 

fe
ed

 fl
ow

 ra
te

 (1
5 

m
L/

m
in

)

- I
m

pr
ov

ed
 h

ea
t s

ta
bi

lit
y

- I
m

pr
ov

ed
 li

gh
t s

ta
bi

lit
y 

du
r-

in
g 

12
 d

ay
s o

f s
to

ra
ge

X
ue

 e
t a

l. 
(2

01
9)

Po
m

eg
ra

na
te

 (P
un

ic
a 

gr
a-

na
tu

m
)

G
A

 (1
5%

 w
/v

) &
 X

G
 (0

.0
75

%
 

w
/v

)
Em

ul
si

on
In

le
t t

em
pe

ra
tu

re
 (1

70
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (8

5℃
), 

flo
w

 ra
te

(2
0 

m
L/

m
in

)

- D
ec

re
as

ed
 o

xi
da

tio
n 

at
 

25
 °C

 a
nd

 6
0 

°C
 fo

r 3
0 

da
ys

Ye
kd

an
e 

an
d 

G
ol

i (
20

19
)

B
lu

eb
er

ry
 (V

ac
ci

ni
um

 sp
p.

)
M

D
B

lu
eb

er
ry

 e
xt

ra
ct

In
le

t t
em

pe
ra

tu
re

 (1
20

, 1
40

, 
an

d 
16

0℃
), 

ou
tle

t t
em

-
pe

ra
tu

re
 (7

9.
75

, 1
00

, a
nd

 
10

8.
25
℃

), 
fe

ed
 fl

ow
 ra

te
 

(0
.4

5 
L/

h)

- S
ta

bi
liz

ed
 a

t 1
40

 °C
 fo

r 
11

5.
47

 d
ay

s
D

a 
Ro

sa
 e

t a
l. 

(2
01

9)

B
la

ck
be

rr
y 

(R
ub

us
 fr

ut
ic

os
us

)
M

D
 (1

:1
) (

w
/w

)
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (1
70

 °C
), 

ou
tle

t t
em

pe
ra

tu
re

 (1
05
℃

), 
fe

ed
 fl

ow
 ra

te
 (0

.5
 L

/h
)

- H
ig

h 
st

ab
ili

ty
, s

he
lf-

lif
e,

 a
nd

 
lo

w
 A

C
N

s d
eg

ra
da

tio
n 

in
 

lo
w

er
 p

H
- E

ffe
ct

iv
e 

to
 m

in
im

iz
e 

lo
ss

 o
f 

TA
 u

p 
to

 p
H

 5

Sa
nt

os
 e

t a
l. 

(2
01

9)

C
ho

ke
be

rr
y 

(A
ro

ni
a 

sp
p.

)
M

D
 D

E 
10

, M
D

 D
E 

15
, G

A
 

an
d 

M
D

 D
E 

10
 &

 G
A

 o
r 

M
D

 D
E 

15
 &

 G
A

C
ho

ke
be

rr
y 

ju
ic

e
In

le
t t

em
pe

ra
tu

re
 (1

60
 o

r 
20

0 
°C

), 
ou

tle
t t

em
pe

ra
tu

re
 

(8
0–

16
0℃

 o
r 1

00
–2

00
℃

)

- H
ig

h 
TA

 d
ur

in
g 

sto
ra

ge
 fo

r 
2 

m
on

th
s a

t 4
℃

 in
 M

D
 1

0 
w

ith
 a

n 
in

le
t t

em
pe

ra
tu

re
 o

f 
16

0℃
- H

ig
h 

TA
 d

ur
in

g 
sto

ra
ge

 
fo

r 2
 m

on
th

s a
t 2

5℃
 w

he
n 

G
A

 a
nd

 M
D

 D
E 

10
 (3

:1
) 

w
ith

 a
n 

in
le

t t
em

pe
ra

tu
re

 o
f 

16
0 

°C

B
ed

na
rs

ka
 a

nd
 Ja

ni
sz

ew
sk

a‐
Tu

ra
k 

(2
01

9)



2681Microencapsulation trends in anthocyanin extracts

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
C

N
s-

ric
h 

fr
ui

ts
En

ca
ps

ul
at

in
g 

ag
en

t
D

is
so

lu
tio

n 
m

ed
iu

m
 fo

r a
n 

en
ca

ps
ul

at
in

g 
ag

en
t

Sp
ra

y 
dr

yi
ng

 p
ar

am
et

er
s

St
ab

ili
ty

 e
nh

an
ce

m
en

t
Re

fe
re

nc
es

Pu
rp

le
 p

ot
at

o 
(S

ol
an

um
 

tu
be

ro
su

m
 L

.)
M

D
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (9
2–

18
8 

°C
), 

ai
r fl

ow
 ra

te
 (6

00
 

L/
h)

, f
ee

d 
flo

w
 ra

te
 (3

 m
L/

m
in

)

- I
nc

re
as

ed
 b

io
ac

ce
ss

ib
ili

ty
 

of
 A

C
N

s d
ur

in
g 

in
 v

itr
o 

di
ge

sti
on

- P
re

se
rv

ed
 4

8%
 o

f A
C

N
s 

du
rin

g 
sto

ra
ge

 fo
r 1

38
 d

ay
s 

at
 6

0℃

Ve
rg

ar
a 

et
 a

l. 
(2

02
0)

B
la

ck
 se

ed
le

ss
 b

ar
be

rr
y 

(B
er

-
be

ri
s v

ul
ga

ri
s)

M
D

 (7
.5

 &
 1

5%
), 

G
A

 (3
 &

 
6%

), 
W

PI
 (8

 &
 1

6%
)

B
ar

be
rr

y 
ju

ic
e

In
le

t t
em

pe
ra

tu
re

 (1
30
℃

), 
ou

tle
t t

em
pe

ra
tu

re
 (8

0℃
), 

ai
r fl

ow
 ra

te
 (6

00
 L

/h
),

- I
nc

re
as

ed
 W

PI
 a

nd
 M

D
-

en
ha

nc
ed

 e
nc

ap
su

la
tio

n 
effi

ci
en

cy
- P

re
se

rv
at

io
n 

of
 T

A
 a

nd
 T

P 
w

er
e 

op
tim

iz
ed

M
irz

ae
i e

t a
l. 

(2
02

1)

B
la

ck
cu

rr
an

t (
Ri

be
s n

ig
ru

m
 

L.
)

W
PI

 1
0%

 (w
/w

)
D

ei
on

iz
ed

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

20
℃

), 
ou

tle
t t

em
pe

ra
tu

re
 (8

5 
°C

)
- H

ig
h 

TA
 in

 e
nc

ap
su

la
te

d 
sa

m
pl

e
- T

P 
an

d 
an

tio
xi

da
nt

s w
er

e 
pr

es
er

ve
d 

be
tte

r t
ha

n 
co

nt
ro

l

W
u 

et
 a

l. 
(2

02
1)

Re
d 

ca
bb

ag
e 

(B
ra

ss
ic

a 
ol

er
ac

ea
 L

. v
ar

. c
ap

ita
ta

 L
. 

f. 
ru

br
a)

M
D

 &
 G

A
R

aw
 e

xt
ra

ct
 o

r c
on

ce
nt

ra
te

d 
ex

tra
ct

In
le

t t
em

pe
ra

tu
re

 (1
30

 °C
), 

fe
ed

 fl
ow

 ra
te

 (8
 m

L/
m

in
), 

as
pi

ra
to

r r
at

e 
(7

5.
03

1 
 m

3 /h
), 

ai
r p

re
ss

ur
e 

0.
14

 m
Pa

- H
ig

h 
st

ab
ili

ty
 o

f m
ic

ro
en

-
ca

ps
ul

at
ed

 T
A

- M
D

 is
 b

et
te

r t
ha

n 
G

A
 in

 
he

at
 st

ab
ili

ty

M
ac

ha
do

 e
t a

l. 
(2

02
0)

M
an

go
ste

en
 (G

ar
ci

ni
a 

m
an

-
go

st
an

a 
L.

) p
er

ic
ar

p
G

A
 &

 M
D

 o
r I

N
 &

 M
D

 o
r 

PE
C

 &
 M

D
 (3

:3
7)

 (w
/w

)
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (1
50

 °C
)

- M
D

 a
nd

 IN
 e

xh
ib

ite
d 

su
pe

rio
r p

hy
si

co
ch

em
ic

al
 

pr
op

er
tie

s
- M

D
 a

nd
 IN

 in
cr

ea
se

d 
th

e 
st

ab
ili

ty
 o

f A
C

N
s d

ur
in

g 
sto

ra
ge

 a
t 4

 °C

Sa
ku

ln
ar

m
ra

t e
t a

l. 
(2

02
1a

)

R
ab

bi
te

ye
 b

lu
eb

er
ry

 (V
ac

-
ci

ni
um

 v
irg

at
um

)
W

PI
 (1

0%
), 

SP
I (

4%
), 

H
M

P 
&

 W
PI

 (1
0:

1,
 1

0:
2,

 1
0:

4)
 o

r 
SP

I &
 H

M
P 

(4
:1

, 4
:2

, 4
:4

) 
(w

/v
)

D
ist

ill
ed

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

65
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (7

0 
°C

), 
fe

ed
 fl

ow
 ra

te
 (4

 m
L/

m
in

)

- C
om

bi
na

tio
n 

of
 H

M
P 

an
d 

SP
I i

nc
re

as
ed

 e
nc

ap
su

la
tio

n 
effi

ci
en

cy
- I

nc
re

as
ed

 st
ab

ili
ty

 o
f A

C
N

s 
in

 c
om

bi
na

tio
n 

w
al

l t
ha

n 
si

ng
le

 w
al

l d
ur

in
g 

60
 d

ay
s 

of
 st

or
ag

e

Pa
n 

et
 a

l. 
(2

02
2)

C
ho

ke
be

rr
y 

(A
ro

ni
a 

m
el

an
o-

ca
rp

a 
L.

)
M

D
 D

E 
11

 (6
0%

)
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (1
50

, 1
55

, 
16

0,
 1

65
, 1

70
, 1

75
, 1

80
 a

nd
 

18
5 

°C
), 

ou
tle

t t
em

pe
ra

-
tu

re
 (8

9℃
), 

fe
ed

 fl
ow

 ra
te

 
(1

0–
15

 L
/h

), 
dr

yi
ng

 a
ir 

flo
w

 
ra

te
 (4

60
  m

3 /h
)

- H
ig

he
st 

TP
C

 p
re

se
rv

ed
 a

fte
r 

en
ca

ps
ul

at
ed

 w
ith

 in
le

t 
te

m
pe

ra
tu

re
 1

50
–1

50
 °C

- H
ig

h 
st

ab
ili

ty
 o

f T
A

 in
 th

e 
en

ca
ps

ul
at

ed
 sa

m
pl

e 
w

he
n 

ex
po

se
d 

to
 1

50
–1

65
 °C

G
aw

al
ek

 (2
02

2)



2682 G. Ijod et al.

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
C

N
s-

ric
h 

fr
ui

ts
En

ca
ps

ul
at

in
g 

ag
en

t
D

is
so

lu
tio

n 
m

ed
iu

m
 fo

r a
n 

en
ca

ps
ul

at
in

g 
ag

en
t

Sp
ra

y 
dr

yi
ng

 p
ar

am
et

er
s

St
ab

ili
ty

 e
nh

an
ce

m
en

t
Re

fe
re

nc
es

Ro
se

lle
 (H

ib
is

cu
s s

ab
da

ri
ffa

 
L.

)
M

D
, G

A
, K

O
N

, M
D

 &
 G

A
 

(1
:1

) o
r M

D
 &

 IN
 (1

:1
) o

r 
M

D
 &

 K
O

N
 (1

:1
) (

w
/w

)

Ro
se

lle
 e

xt
ra

ct
In

le
t t

em
pe

ra
tu

re
 (1

50
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (9

1 
°C

), 
fe

ed
 fl

ow
 ra

te
 (5

00
 m

L/
h)

- M
D

 a
nd

 K
O

N
 e

nh
an

ce
d 

TP
, 

TA
, a

nd
 a

nt
io

xi
da

nt
s i

n 
th

e 
en

ca
ps

ul
at

ed
 sa

m
pl

e
- H

ig
h 

pr
es

er
va

tio
n 

of
 A

C
N

s 
af

te
r e

nc
ap

su
la

tin
g 

w
ith

 M
D

 
an

d 
G

A

N
gu

ye
n 

et
 a

l. 
(2

02
2)

A
m

er
ic

an
 e

ld
er

be
rr

y 
(S

am
bu

-
cu

s n
ig

ra
 su

bs
p.

 c
an

ad
en

si
s)

 
po

m
ac

e 
an

d 
ju

ic
e

SP
I 8

%
 &

 T
S 

8%
 (w

/v
)

El
de

rb
er

ry
 ju

ic
e 

or
 p

om
ac

e 
ex

tra
ct

In
le

t t
em

pe
ra

tu
re

 (1
20

 °C
), 

ou
tle

t t
em

pe
ra

tu
re

 
(6

7–
77

 °C
), 

fe
ed

 fl
ow

 ra
te

 
(1

0 
m

L/
m

in
)

- T
he

 h
ig

he
st 

TP
C

, p
ro

an
th

o-
cy

an
id

in
, a

nd
 A

C
N

s c
on

te
nt

 
w

er
e 

ob
ta

in
ed

 in
 S

PI
 th

an
 

TS

R
av

ic
ha

nd
ra

n 
et

 a
l. 

(2
02

3)

Pu
rp

le
 c

or
n 

(Z
ea

 m
ay

s L
.)

M
D

, M
D

 &
 G

A
 (1

:1
) o

r M
D

 
&

 W
PI

 (3
:7

)
Pu

rp
le

 c
or

n 
ex

tra
ct

In
le

t t
em

pe
ra

tu
re

 (1
40

 °C
), 

ou
tle

t t
em

pe
ra

tu
re

 (5
0 

°C
), 

pe
ris

ta
lti

c 
pu

m
p 

sp
ee

d 
(3

50
 

r/h
)

- I
nc

re
as

ed
 st

or
ag

e 
an

d 
di

ge
s-

tio
n 

st
ab

ili
tie

s
- H

ig
he

st 
st

ab
ili

ty
 o

f M
D

 d
ur

-
in

g 
25
℃

D
en

g 
et

 a
l. 

(2
02

3)

A
nd

ea
n 

bl
ue

be
rr

y 
(V

ac
ci

ni
um

 
m

er
id

io
na

le
 S

w
)

M
D

, G
A

 o
r M

D
 &

 G
A

 (1
:1

) 
(w

/w
)

A
nd

ea
n 

bl
ue

be
rr

y 
ju

ic
e

In
le

t t
em

pe
ra

tu
re

 (1
70

 °C
), 

ou
tle

t t
em

pe
ra

tu
re

 (8
0 

°C
), 

in
le

t a
ir 

flo
w

 (3
2 

 m
3 /h

), 
co

m
pr

es
se

d 
ai

r c
au

da
l (

41
4 

L/
h)

- H
ig

h 
A

C
N

s c
on

te
nt

 a
nd

 
re

co
ve

ry
 (~

 97
%

) i
n 

th
e 

M
D

 
sa

m
pl

e
- M

D
:G

A
 c

om
bi

na
tio

n 
ca

us
ed

 
hi

gh
 T

PC
, s

ca
ve

ng
in

g 
ac

tiv
-

ity
, a

nd
 re

co
ve

ry
 o

f T
PC

Es
tu

pi
ña

n-
A

m
ay

a 
et

 a
l. 

(2
02

3)

N
at

iv
e 

po
ta

to
 c

lo
ne

s (
So

la
nu

m
 

tu
be

ro
su

m
 sp

p.
 a

nd
ig

en
a)

M
D

 &
 G

A
 (9

:1
) (

w
/w

)
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (1
20

 °C
), 

in
le

t a
ir 

flo
w

 ra
te

 (1
41

 L
/h

)
- ~

 90
%

 o
f e

nc
ap

su
la

tio
n 

effi
ci

en
cy

- I
nc

re
as

ed
 th

er
m

al
 st

ab
ili

ty
- I

nc
re

as
ed

 st
ab

ili
ty

 o
f A

C
N

s, 
ph

en
ol

ic
 a

nd
 a

nt
io

xi
da

nt
s

Li
ga

rd
a-

Sa
m

an
ez

 e
t a

l. 
(2

02
3)

B
ilb

er
ry

 (V
ac

ci
ni

um
 m

yr
til

-
lu

s)
G

X
, G

G
M

, G
A

, G
G

M
 +

 C
M

C
 

(1
:0

.7
) o

r G
X

 +
 C

M
C

 
(1

:0
.7

) (
w

/w
)

H
ot

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

50
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (7

0 
°C

), 
fe

ed
 fl

ow
 ra

te
 (1

0–
15

 m
L/

m
in

), 
co

m
pr

es
se

d 
ai

r p
re

s-
su

re
 (5

–8
 b

ar
)

- H
ig

h 
TA

, T
P,

 a
nd

 a
nt

i-
ox

id
an

t a
ct

iv
ity

 in
 

sa
m

pl
es

 e
nc

ap
su

la
te

d 
w

ith
 G

X
 o

r G
G

M
 th

an
 

G
A

, G
G

M
 +

 C
M

C
, a

nd
 

G
X

 +
 C

M
C

H
al

ah
la

h 
et

 a
l. 

(2
02

3)

Ro
se

lle
 (H

ib
is

cu
s s

ab
da

ri
ffa

 
L.

)
M

D
 (1

00
%

), 
M

D
 &

 P
A

G
 

(9
5:

5,
 8

5:
15

 &
 7

0:
30

), 
M

D
 

&
 G

A
 (8

5:
15

) (
w

/v
)

Ro
se

lle
 e

xt
ra

ct
In

le
t t

em
pe

ra
tu

re
 (1

80
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (8

0 
°C

), 
fe

ed
 fl

ow
 ra

te
 (1

2 
rp

m
)

- H
ig

h 
an

tio
xi

da
nt

, T
P 

an
d 

TA
 

in
 sa

m
pl

e 
en

ca
ps

ul
at

ed
 w

ith
 

PA
G

 a
nd

 M
D

- I
m

pr
ov

ed
 st

ab
ili

ty
 o

f a
nt

io
x-

id
an

ts
 w

he
n 

PA
G

 w
as

 a
dd

ed
 

du
rin

g 
sto

ra
ge

 (6
0 

da
ys

) a
t 

25
℃

 a
nd

 e
xp

os
ed

 to
 li

gh
t

Va
si

le
 e

t a
l. 

(2
02

3)

G
ra

pe
 (V

iti
s s

pp
.)

M
D

 D
E 

10
, R

B
C

G
ra

pe
 ju

ic
e

In
le

t t
em

pe
ra

tu
re

 (1
40

 °C
), 

ou
tle

t t
em

pe
ra

tu
re

 (7
9℃

), 
fe

ed
 fl

ow
 ra

te
 (4

.7
 m

L/
m

in
)

- T
he

 in
co

rp
or

at
io

n 
of

 R
B

C
 

w
ith

 M
D

 in
cr

ea
se

d 
TA

, 
TP

, a
nd

 a
nt

io
xi

da
nt

s i
n 

th
e 

en
ca

ps
ul

at
ed

 sa
m

pl
e

A
lm

ei
da

 e
t a

l. 
(2

02
3)



2683Microencapsulation trends in anthocyanin extracts

Ta
bl

e 
1 

 (c
on

tin
ue

d)

A
C

N
s-

ric
h 

fr
ui

ts
En

ca
ps

ul
at

in
g 

ag
en

t
D

is
so

lu
tio

n 
m

ed
iu

m
 fo

r a
n 

en
ca

ps
ul

at
in

g 
ag

en
t

Sp
ra

y 
dr

yi
ng

 p
ar

am
et

er
s

St
ab

ili
ty

 e
nh

an
ce

m
en

t
Re

fe
re

nc
es

O
xa

lis
 e

xt
ra

ct
 tu

be
rs

 (S
ol

a-
nu

m
 tu

be
ro

su
m

)
Ta

ro
 st

ar
ch

(1
5–

33
.1

%
) (

w
/v

)
D

ist
ill

ed
 w

at
er

In
le

t t
em

pe
ra

tu
re

 (9
0–

16
0℃

), 
pu

m
p 

flo
w

 ra
te

 (7
 m

L/
m

in
)

- B
et

te
r r

el
ea

se
 o

f A
C

N
s d

ur
-

in
g 

in
 v

itr
o 

stu
dy

- H
ig

h 
TA

 a
nd

 e
nc

ap
su

la
tio

n 
effi

ci
en

cy
 w

he
n 

20
.9

%
 (T

ar
o 

st
ar

ch
) a

nd
 in

le
t t

em
pe

ra
tu

re
 

(1
25
℃

) w
er

e 
us

ed

Ro
sa

le
s-

C
hi

m
al

 e
t a

l. 
(2

02
3)

Ta
rt 

ch
er

ry
 (P

ru
nu

s c
er

as
us

)
M

D
 D

E 
9–

12
 &

 G
A

 (3
0%

 
w

/v
)

D
ist

ill
ed

 w
at

er
In

le
t t

em
pe

ra
tu

re
 (1

75
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (8

5 
°C

), 
pu

m
p 

flo
w

 ra
te

 (6
 m

L/
m

in
)

- I
nc

re
as

ed
 T

P,
 T

A
, a

nd
 

an
tio

xi
da

nt
s w

er
e 

ob
ta

in
ed

 
w

he
n 

M
D

 (1
5%

) w
as

 
co

m
bi

ne
d 

w
ith

 G
A

 (1
5%

), 
fo

llo
w

ed
 b

y 
m

ic
ro

ni
za

tio
n 

us
in

g 
H

PH
- M

ic
ro

ni
ze

d 
sa

m
pl

e 
ha

d 
a 

hi
gh

er
 e

nc
ap

su
la

tio
n 

effi
ci

en
cy

 c
om

pa
re

d 
to

 th
e 

no
n-

m
ic

ro
ni

ze
d 

sa
m

pl
e

Si
ng

h 
et

 a
l. 

(2
02

3b
)

Pi
nk

 p
ep

pe
r (

Sc
hi

nu
s t

er
eb

in
-

th
ifo

lia
)

M
D

, M
D

 &
 G

A
 (1

:1
) (

w
/w

)
A

 m
ix

tu
re

 o
f p

in
k 

pe
pp

er
 a

nd
 

gr
ee

n 
pr

op
ol

is
 e

xt
ra

ct
In

le
t t

em
pe

ra
tu

re
 (1

80
 °C

), 
ou

tle
t t

em
pe

ra
tu

re
 (9

0 
°C

), 
pu

m
p 

flo
w

 (3
3.

39
 L

/h
)

- C
om

bi
na

tio
n 

of
 M

D
 a

nd
 G

A
 

in
cr

ea
se

d 
th

e 
en

ca
ps

ul
at

io
n 

effi
ci

en
cy

- H
ig

h 
an

tio
xi

da
nt

s w
er

e 
ob

se
rv

ed
 a

fte
r t

he
 c

om
bi

na
-

tio
n 

of
 M

D
 a

nd
 G

A
- C

om
bi

na
tio

n 
of

 M
D

 a
nd

 
G

A
 c

au
se

d 
th

e 
sl

ow
 re

le
as

e 
of

 T
P 

an
d 

TA
 in

 si
m

ul
at

ed
 

ga
str

ic
 fl

ui
d

La
ur

ea
nt

i e
t a

l. 
(2

02
3)

M
D

 M
al

to
de

xt
rin

; D
E 

D
ex

tro
se

 e
qu

iv
al

en
t; 

SP
I S

oy
be

an
 p

ro
te

in
 is

ol
at

es
; G

A 
G

um
 a

ra
bi

c;
 S

PP
 S

oy
 p

ro
te

in
 p

ow
de

r; 
SM

P 
So

ym
ilk

 p
ow

de
r; 

PE
C

 P
ec

tin
; I

N
 In

ul
in

; H
M

P 
H

ig
h 

m
et

hy
l p

ec
tin

; 
W

PI
 W

he
y 

pr
ot

ei
n 

is
ol

at
es

; M
C

 M
od

ifi
ed

 c
hi

to
sa

n;
 S

A 
So

di
um

 a
lg

in
at

e;
 C

M
C

 C
ar

bo
xy

m
et

hy
lc

el
lu

lo
se

; G
G

M
 G

al
ac

to
gl

uc
om

an
na

n;
 G

X 
G

lu
cu

ro
no

xy
la

n;
 P

AG
 P

ro
so

pi
s a

lb
a 

ex
ud

at
e 

gu
m

; R
BC

 
R

ic
e 

br
an

 c
on

ce
nt

ra
te

; K
O

N
 K

on
ja

c;
 T

A 
To

ta
l a

nt
ho

cy
an

in
s;

 T
P 

To
ta

l p
he

no
lic

s;
 T

S 
Ta

pi
oc

a 
st

ar
ch

; H
PH

 H
ig

h-
pr

es
su

re
 h

om
og

en
iz

at
io

n



2684 G. Ijod et al.

encapsulating agent. Combining encapsulating agents is 
assumed to create a strong interaction, leading to a syn-
ergistic effect in improving stability. The temperature and 
presence of light also influence the stability of ACNs dur-
ing storage. Low temperatures and dark conditions during 
storage improve the stability of ACNs and prolong their 
shelf-life. Overall, optimizing spray drying conditions, par-
ticularly drying temperature, is crucial to ensure polyphenol 
encapsulation, as presented in Table 1.

Physicochemical, functional food, 
and nutraceutical attributes of encapsulated 
ACNs–rich powder

Moisture content, water activity, and particle size are the 
most critical parameters for producing microencapsulated 
ACNs powders. The low moisture content of microencap-
sulated fruit powder is vital to achieve excellent stickiness, 
flowability, and storage stability and prevent microbial 
growth. This is due to the higher water activity, which pro-
vides more free water space for microbial growth. Notably, 
the water activity level of the microencapsulated powder 
produced by spray drying is below 0.3, effectively inhibiting 
microbial growth (Todorović et al., 2022).

Furthermore, the particle size of the powder affects the 
texture and nutritional properties of the food product. The 
optimal size range for microencapsulated powder produced 
by spray drying is 10−100 μm (Da Rosa et al., 2019). Solu-
bility is also salient because it provides desirable properties 
such as dispersibility, solubility, and wettability. These prop-
erties contribute to the rehydration of food ingredients; thus, 

a low moisture content of the powder is desired (Mahdavi 
et al., 2016a). As shown in Fig. 3, good solubility of the 
microencapsulated pomegranate powder was achieved when 
GA was used as an encapsulating agent. However, its optical 
properties are poor compared to encapsulation with waxy 
starch and MD and without cellulose (Yousefi et al., 2010).

Santos et al. (2019) found that using MD in blackberry 
spray drying efficiently preserved the physicochemical char-
acteristics of the end-use powder product. This was due to 
the MD characteristics having a less hygroscopic nature, 
which resulted in improved ACNs retention, low moisture 
content, and excellent powder reconstitution. With these 
properties, this spray-dried blackberry powder is easily 
soluble in water and can be effectively applied to produce 
juice fruit powder.

The microencapsulation of ACNs provides multiple 
benefits to human health. For example, the addition of 
encapsulated ACNs powders into yogurt, ice cream, 
or other desserts can serve as a prebiotic, assisting in 
addressing digestive system issues. Using inulin to encap-
sulate ACNs in cornelian cherry fruit extract has an anti-
diabetic effect at 1 mg/mL. It is suitable as a food ingredi-
ent for diabetic consumers (Enache et al., 2020). Besides, 
this product suits a vegan diet and consumers with lac-
tose intolerance and diabetic problems (Dias et al., 2020; 
Enache et al., 2020). In the simulated gastrointestinal 
studies by da Rosa et al. (2019), microencapsulated blue-
berry extracts successfully improved ACNs digestion than 
unencapsulated blueberry extracts. Oancea et al. (2018) 
also reported that using WPI as an encapsulating agent 
could facilitate the release of ACNs into the intestine. 
The presence of various enzymes and different pH levels 

Fig. 3  Effect of encapsulating 
agent on the microstructure 
of microencapsulated ACNs 
powder with (a) GA (12%, w/v), 
(b) waxy starch (12%, w/v), and 
(c) MD (12%, w/v) without cel-
lulose from Yousefi et al. (2010)
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in the human digestive system makes it a complex sys-
tem. This affects the stability and bioavailability of the 
ACNs. Combining encapsulating agents, as opposed to 
single encapsulating agents, is a successful approach. The 
synergistic effects of these encapsulating agents improve 
the stability and bioavailability of the ACNs. This imple-
mentation enables a controlled-release mechanism that 
efficiently administrates ACNs to targeted organs or 
systems, thereby promoting the overall improvement of 
human health (Fig. 4) (Da Rosa et al., 2019; Enache et al., 
2020; Mansour et al., 2020; Oancea et al., 2018). Given 
these potential health advantages, producing microencap-
sulated ACNs powder with high solubility is essential and 
possesses sustained-released properties for its effective 
use in dry mixes or instant health foods.

Other innovative microencapsulation 
techniques

In addition to spray drying, various microencapsulation 
approaches have been studied and verified for their effi-
ciency in encapsulating ACNs. Promising techniques 
for ACNs include freeze-drying, SC–CO2, coacervation, 
drum-drying, and electrospraying microencapsulation. 
Each approach has unique benefits regarding quality, 
compound preservation, and encapsulation effectiveness. 
The following section will discuss their principles, ben-
efits, and prospective uses for protecting the durability 
and efficacy of ACNs in detail.

Freeze‑drying

The freeze-drying technique (Fig. 5a) relies on the sublima-
tion of water from frozen material and has been explored 
as an alternative approach for encapsulating ACNs (Fredes 
et al., 2018). This process involves freezing, sublimation, 
desorption, and storage (Bhatta et al., 2020). The sublima-
tion phase efficiently extends shelf life and preserves the 
quality of heat-sensitive food materials. As a simple tech-
nique for encapsulating water-soluble essences such as 
ACNs and other natural aromas or medications, freeze-dry-
ing is one of the most convenient methods for drying ther-
mosensitive substances that are unstable in aqueous solution 
(Azarpazhooh et al., 2018; Estupiñan-Amaya et al., 2020) 
(Table 2).

As shown in Table 2, MD frequently provided excellent 
ACNs retention and stability results, particularly at low 
DE values. A low DE generates low hygroscopicity in the 
ACNs-rich powder, which minimizes moisture absorption 
and accelerates powder deterioration. Moreover, MD is 
highly soluble, blending effortlessly with water and produc-
ing potent combinations when combined with ACNs.

The concentration of the encapsulating agent affects 
ACNs stability, as a high amount of the encapsulating agent 
serves as a solid wall to protect the core molecule. Regular 
integration of encapsulating agents improves ACNs retention 
during storage. This combination initiates the construction 
of a dual-property wall that regulates compound delivery 
while simultaneously increasing compound stability. This 
synergistic effect was observed when MD was combined 
with the different encapsulation agents.

Fig. 4  Oral intake and mecha-
nisms of microencapsulated 
ACNs in the human digestive 
system
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Supercritical carbon dioxide (SC‑CO2)

SC-CO2 is an emerging method that is inert, non-toxic, 
non-flammable, low cost, environmentally friendly, versa-
tile, and free from toxic excess in the yield of the prod-
uct formed (Fig. 5b) (Da Fonseca Machado et al., 2018). 
SC-CO2 has excellent solvents such as carbon dioxide  (CO2), 

ethane, water, propane, and dimethyl ether, which can be 
categorized as having gas-like low viscosity, intermediate 
diffusivity, and liquid-like high density. This technique may 
overcome the disadvantages of the conventional spray drying 
technique by applying the processing medium with the con-
ditions above its critical point, 31.1 °C and 7.4 mPa (Jang 
and Koh, 2023), to precipitate and encapsulate the ACNs 

Fig. 5  Schematic diagram of (a) a typical freeze-drying mechanism, (b) supercritical conditions, (c) ACNs coacervation, (d) double drum dry-
ing mechanism, (e) a typical electrospraying mechanism.  Adapted from Bigazzi et al. (2020) with modifications
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(Da Fonseca Machado et al., 2018). A supercritical fluid is 
above its critical point where gas and liquid exist in the equi-
librium phase, and this fluid is known as a pure substance 
(Wang et al., 2020). This technique's efficiency depends on 
the active ingredient's thermodynamic properties, encapsu-
lating agents, suitable co-solvents, and the materials used.

As shown in Table 2, the ACNs exhibited more excellent 
stability when encapsulated in polyethylene glycol (PEG) 
and polyvinylpyrrolidone (PVP) using  CO2 as the solvent 
and ethanol as a co-solvent. It is worth noting that these 
two solvents are generally recognized as safe (GRAS). The 
improved ACNs retention during SC–CO2 encapsulation can 
be attributed to the solubility of PEG and PVP in ethanol. 
PVP and PEG are both soluble in ethanol, which facilitates 
their combination with ACNs to create a stable solution 
before encapsulation.

Coacervation

Coacervation microencapsulation involves the separation of 
one or more hydrocolloids from the original solution. Fol-
lowing this separation, the newly created coacervate phase 
surrounds and encapsulates the active ingredient, which is 
either suspended or emulsified within the same reaction 
medium (Fang and Bhandari, 2010) (Fig. 5c). Coacerva-
tion encapsulation can be accomplished using a single col-
loidal solute such as gelatin, or through a more intricate 
method involving substances such as gelatin and gum acacia. 
Although complex coacervation often lacks specific shapes 
and is deemed an expensive method for encapsulating food 
items, it is important to weigh its potential advantages. Spe-
cifically, they can be valuable for encapsulating sensitive and 
high-value functional ingredients, including ACNs (Devi 
et al., 2023).

Devi et al. (2023) also found that using the dual emulsion 
method followed by complex coacervation with gelatin and 
acacia gum enhanced the microencapsulation of ACNs from 
black rice bran. This approach improved the encapsulation 
efficiency and thermal stability and ensured better stability 
of ACNs during storage at both 7℃ and 37℃. The microcap-
sules exhibited decreased moisture content, hygroscopicity, 
and solubility. Additionally, their appearance was charac-
terized by smooth, circular, or intact surfaces and firm and 
agglomerated structures. The findings in Table 2 indicate 
that the coacervation formulation effectively extended the 
shelf life of ACNs, especially under high-temperature condi-
tions, compared to ACNs that were not encapsulated within 
a coacervation complex. This indicates that the coacerva-
tion formulation formed between the different encapsulating 
agents strengthens their heat stability, thereby improving the 
protection of the core materials. Also, the selection of gum-
based materials significantly influences the complexity and 

stability of coacervation formulations. This factor is crucial 
for dealing with sensitive compounds.

Drum drying

Drum drying is widely employed in food and chemical sec-
tors to produce powdered or granular substances. This pro-
cess involves spreading a liquid or slurry in a thin, even 
layer on the surface of a heated revolving drum to dry the 
material. The material underwent drying upon contact with 
the internally heated surface of the rotating drum (Fig. 5d) 
(Sakulnarmrat et al., 2021b; Sakulnarmrat and Konczak, 
2022). Encapsulating agents are often used to protect ACNs 
during microencapsulation. Meanwhile, Senevirathna et al. 
(2021) produced purple sweet potato powder with the addi-
tion of citric acid rather than encapsulating it with encapsu-
lating agents. In comparison to the control, the powder made 
with 0.6% citric acid had a higher concentration of ACNs, 
antioxidant activity, and an intense red color. As a result, it 
can be determined that factors such as steam pressure, drum 
rotation speed, and citric acid content influence the powder 
quality, which can be optimized using RSM.

Based on the findings in Table 2, it can be summarized 
that even though a similar combination of encapsulating 
agents was incorporated during drum drying, the encapsu-
lation efficiency was different, probably because of the dif-
ferent sources of ACNs, which possess different properties 
and interactions with encapsulating agents. Therefore, opti-
mization must be performed to select the best concentration 
of both encapsulating agents to address this issue.

Electrospraying

Electrospraying encapsulation involves the formation of nan-
odroplets by using a high-voltage electric field. The voltage, 
solution feed rate, solution properties, humidity, tempera-
ture, and separation from the needle tip to the collector are 
only a few variables that might influence the ultimate output 
(Atay et al., 2018). The electrospraying equipment included 
a syringe pump, voltage power supply, collector, and syringe 
(Fig. 5e). The electrospraying process requires injecting a 
syringe-fed mixture of ACNs and encapsulating agents into 
a liquid medium before an electric field is applied at the 
nozzle. Therefore, it overcomes the surface tension and pro-
duces a cone-shaped droplet called a Taylor cone. Increasing 
the electric field causes the Taylor cone to become fragile 
and expels tiny droplets of encapsulated ACNs. Therefore, 
the solvent evaporates in the air, causing the droplets to 
coagulate as small particles and accumulate in the collector 
(Atay et al., 2018; González-Cruz et al., 2020).

The solution properties, including viscosity, surface ten-
sion, pH, and electrical conductivity, are crucial elements 
that must be considered to ensure that ACNs can undergo 
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electrospraying. Improper solution properties cause unde-
sirable particles to form, eventually reducing encapsulation 
efficiency (Atay et al., 2018). As reported by González-Cruz 
et al. (2020), the addition of 10 – 20% zein successfully 
encapsulated ACNs from blueberries; further increases in 
concentration caused instability and clogging in the nozzle. 
Adding ACNs to 10 – 30% agave fructans or WPI resulted 
in instability during the electrospraying process. Based 
on Table 2, it can be inferred that various factors must be 
considered during the encapsulation of ACNs by electro-
spraying. Using a combination of encapsulating agents has 
improved protective properties and the controlled release of 
ACNs. Nonetheless, when employing a single encapsulating 
agent, the concentration and molecular weight of the agent 
play critical roles in achieving high-quality encapsulated 
ACNs.

Encapsulation efficiency across various 
microencapsulation techniques

The encapsulation efficiency (EE) is a crucial parameter that 
determines the ability of the microencapsulation process to 
protect targeted compounds. The data presented by various 
authors in Table 1 and Table 2 for various microencapsula-
tion techniques employed for encapsulating ACNs were used 
to illustrate the potential of their encapsulation efficiency 
(Fig. 6). SD and drum drying consistently showed high EE 

values ranging from 91.14%–99.80% and 98.85%–98.86%, 
respectively. In contrast, FD exhibited slightly more vari-
ability in EE, ranging from 85.00 to 98.33%. Although FD 
yielded a high EE in some studies (98.33%), some authors 
reported values lower than 90%, indicating an inconsist-
ency in achieving at least 90% EE. Other techniques, such 
as SC-CO2, showed an EE higher than 90%. Coacervation 
and electrospraying display varying degrees of efficiency, 
indicating the influence of the process parameters and for-
mulation characteristics. The aforementioned techniques 
had the lowest EE, ranging from 44.77%–86.00% and 
52.65%–76.90%, respectively. Considering the EE data, SD 
is the best and most promising choice for ACNs encapsu-
lation, owing to its consistently high efficiency, relatively 
straightforward process, and cost-effectiveness.

Current status of product application 
with microencapsulation techniques

The increasing awareness and demand for healthy products 
among consumers requires the food industry and research-
ers to determine a solution for incorporating and protecting 
bioactive compounds, such as ACNs, in products. Therefore, 
microencapsulation is a promising solution for protecting 
ACNs. Many researchers have compared and determined the 
effects of different parameters and microencapsulation tech-
niques on the stability of ACNs after incorporation into the 
product (Mihalcea et al., 2020; Sakulnarmrat et al., 2021a; 
Santos et al., 2022). For instance, Sakulnarmrat and Konc-
zak (2022) incorporated ACNs from lamduan into gummy 
jellies after double-drum drying with different encapsulat-
ing agents. The combination of MD and GA (60:40) was 
selected as the best combination and applied to gummy jel-
lies. The shelf-life stability of the gummy jellies was studied 
for eight weeks at different temperatures (25℃ and 35℃). 
The highest lamduan encapsulated powder (30 g/kg) added 
to gummy jellies showed the most extended shelf life and 
retention of ACNs at both temperatures after eight weeks of 
storage. These findings corroborated the idea that encapsu-
lating ACNs before application to food products retained and 
enhanced their stability and functionality. Other examples 
of ACNs sources, microencapsulation techniques, and their 
applications in various products are shown in Table 3.

Advantages and disadvantages of spray 
drying compared to other methods

Like any other method, spray drying has unique strengths 
and limitations compared to alternative techniques. It is 
quicker, more affordable, versatile, and appropriate for large-
scale production than freeze-drying, SC–CO2, coacervation, 
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– Xue et al. (2019), 5 – Pan et al. (2022), 6 – Laureanti et al. (2023), 
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drum drying, and electrospraying microencapsulation. How-
ever, the potential deterioration of heat-sensitive substances 
and low encapsulation efficiency during the encapsulation 
process are noteworthy disadvantages of spray drying. How-
ever, the choice of method always depends on the specific 
properties of the product being dried and the desired char-
acteristics of the final dried product.

Conventional spray drying is the most popular and prac-
tically viable technique for microencapsulating ACNs and 
other bioactive components. High-quality powders with low 
moisture content, water activity, particle size, and morphol-
ogy can be produced using spray drying. The selection of 
encapsulating agents may vary from case to case and mainly 
depends on the nature of the feed material/active agent to 
be microencapsulated. Various encapsulating agents are 
used on specific fruits at specific concentrations or ratios. It 
can be concluded that the best encapsulating agent is MD, 
with an inlet temperature of < 180℃. This was due to MD 
characteristics with low viscosity, moisture, hygroscopicity, 
and good solubility. These can help reconstitute and entrap 
bioactive compounds from deterioration during processing. 
Thus, it can easily be used as a food ingredient. Although 
there are many emerging technologies for microencapsula-
tion, spray drying is still widely practiced in most indus-
tries due to its low operation cost, high yield, speed, and 
efficiency.

Overall, spray drying is more effective than other tech-
niques for microencapsulation due to its ability to encapsu-
late bioactive compounds rapidly and individually. However, 
ACNs extraction requires longer, and the solvents are expen-
sive and risky. Moreover, it is recommended that appropriate 
encapsulating agents for specific fruits be used to increase 
the stability of ACNs-rich powder, which is costly. Stor-
age surroundings are also necessary for stabilizing the ACN 
compound; thus, suitable storage, such as vacuum-pack 
packaging, can be used to prevent oxidation. Therefore, it is 
recommended to add an antioxidant agent, such as tocoph-
erol, into the fruit extract and encapsulating agents before 
the spray drying. Studies have focused on powdered prod-
ucts' physicochemical and nutritional characteristics derived 
from the spray-drying microencapsulation of ACNs-rich 
fruits. However, functional foods and nutraceutical qualities 
are frequently overlooked. Therefore, there is a need to ana-
lyze and explore the functional food and nutra-pharmaceu-
tical prospects of ACNs-rich microencapsulated powdered 
products for specific food applications. Moreover, it can be 
noted that different process variables for spray drying micro-
encapsulation of ACNs-rich fruits have been optimized by 
the researchers using conventional methods. However, with 
new software development, modern tools such as RSM and 
computer simulation techniques are needed to allow rapid 
evaluation and optimization of the plans and design of the 
spray drying-based microencapsulation process. Using 

artificial neural networking (ANN) to validate such designs 
can provide more value for optimizing such processes.
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