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Abstract Near-infrared (NIR) spectroscopy combined

with chemometrics was used as a technique to predict the

potato flour content in Chinese steamed bread (CSB). The

inner core of CSB was chosen as the measuring position for

acquiring the NIR spectra. Spectra between 4000 and

10,000 cm-1 were analysed using a partial least-squares

regression. The coefficient of determination (RCV
2 ) and the

root mean square error of cross-validation in the calibration

set were found to be 0.7940–0.8955 and 4.22–5.93,

depending on the pre-treatment of the spectra. The external

validation set gave an R2 and a ratio to performance

deviation of 0.8865 and 3.07. Reasonable recovery

(93.1–102.5%) and good intra-assay (3.3–8.3%) and inter-

assay (7.6–17.2%) precision illustrated the feasibility of

this method. The result of this study reveals that NIR

spectroscopy could be used as rapid tool to determine the

potato flour content in CSB ([ 20%).

Keywords Chinese steamed bread � Near-infrared � Partial
least squares regression � Potato flour � Potato staple food

Introduction

Potato (Solanum tuberosum L.) is an important food crop

and the fourth largest staple crop in China after rice, wheat

and maize (Wang et al., 2011). Their higher yield per unit

area and nutritional value have led to an increase in potato

production over the past years (Wang et al., 2015). In the

past, the majority of potatoes in China were consumed in

Chinese cuisine and freshly fried or roasted. Incorporating

potatoes into food production and processing is still in its

infancy. However, potatoes can provide humans with a

large proportion of their dietary daily energy intake com-

pared with other crops. Thus, potato is a good supplier of

many nutrients, including carbohydrates, protein, minerals

and vitamins (Tian et al., 2016). In 2015, recognizing the

importance of the potato industry, the Ministry of Agri-

culture of the People’s Republic of China implemented a

plan to boost potato production and make the tuber one of

the nation’s staple foods. According to the plan, China will

have more than 6.67 million hectares of potato planting

area, and at least 30% could be processed into staple foods.

Thus, the government and research institutes have been

designing and planning potato plantings in accordance with

local resources, diversifying the variety of potato-incor-

porated staple foods (PISF) based on market demand,
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improving consumer demand for PISF production, mod-

ernizing food processing and manufacturing PISFs.

Potato flour has been incorporated into wheat and rice

flour-based foods for nutrition fortification because potato

flour has a higher nutritional value than either wheat or rice

flour (Please see Supplementary Material 1). The first

generation of PISFs, including noodles and Chinese

steamed bread (CSB), are already on the market. These

products were prepared with a high content of potato flour

([ 20%). Generally, the higher the potato flour content, the

higher the price of the PISF. However, there are no sig-

nificant chemical differences between potato and wheat or

rice flours. They all share the same major chemical con-

stituent, namely starch, which makes it difficult to deter-

mine the real potato flour contents in PISFs. Substituting a

lower potato flour content for a higher one, without dis-

closure, can be very lucrative for the manufacturer or

supplier of raw materials because their profit margins can

be greatly increased. Therefore, it is imperative to develop

a rapid determination method for the content of potato flour

in PISFs to prevent major economic fraud and maintain

market order.

Near-infrared (NIR) spectroscopy has been frequently

used for the analysis of agricultural products and other

foods for the past several years (Rady and Guyer, 2015).

NIR covers a broad range of the electromagnetic spectrum

between 780 and 2500 nm and is associated with the

overtones and combination of fundamental O–H, C–H and

N–H bonds, which are the primary structural components

of organic molecules, such as protein, starch and water

(Futami et al., 2016). However, overlapping and broad

absorption peaks make it difficult to complete quantitative

analyses using NIR spectra. Modern multivariate statistical

techniques, including partial least-squares (PLS) regres-

sions and principal components analyses (PCAs), aid in

rapidly analyzing a large number of data values acquired

using different analytical techniques. The combination of

NIR and chemometric methods has been successfully used

in the classification and prediction of potato properties (Ni

et al., 2011), assessment of potato dry matter (Bernhard

et al., 2016; Helgerud et al., 2012; 2015), phytochemical

determination and classification in purple- and red-fleshed

potato tubers (Tierno et al., 2015), detection of potato

resistant starch content (Ayvaz and Rodriguez-Saona,

2015), screening of acrylamide content in commercial

potato chips, discrimination of purple sweet potatoes and

their samples adulterated with the white sweet potato flour

(Ding et al., 2015), quality control of potato chips (Shiroma

and Rodriguez-Saona, 2009) and on-line monitoring of fat,

dry matter and acrylamide contents in potato chips (Ade-

dipe et al., 2016; Pedreschi et al. 2010). However, there

have been limited reports on methods for determining the

potato flour contents of PISFs. Thus, this study aimed to

investigate the practicality of using NIR spectroscopy as a

rapid method for the quantitative analysis of the potato

flour content in a PISF, using CSB as the model.

Materials and methods

Materials

Wheat flour with a high gluten strength (Wudeli Flour Co.,

Ltd., Hebei, China and Luwang Co., Ltd., Shandong,

China) and potato flour (Linkage Potato Co., Ltd., Inner

Mongolia, China; Yanbei Potato Co., Ltd., Zhangjiakou,

China and Sanlai Food Co., Ltd., Shanxi, China) were

purchased. A commercial instant dried yeast (Angel Yeast

Co., Ltd., Hubei, China), flour improving agent (Angel

Yeast Co., Ltd., Hubei, China), food-grade sucrose and salt

were purchased from a local supermarket.

Preparation of CSB

CSB was prepared with 0–42% potato flour and the basic

potato flour-incorporated dough constituents as follows:

Wheat flour (58–100%), potato flour (0–42%) and water

(31–37%) were combined to form a dough according to the

relative ratios. Then, yeast (0.9 g), sucrose (2.5 g), salt

(0.3 g) and a steamed bread flour improving agent (0.6 g)

were added to doughs having different ratios of potato

flour. After all of the ingredients were mixed and kneaded

to form dough, the dough was subsequently fermented,

sheeted, rolled, divided, proofed, steamed and cooled

(Shiau et al., 2015).

Instrumental analysis

The NIR spectra of CSB and potato flour-incorporated CSB

(24 h after CSB preparation) were measured on a NIR

equipment (Antaris II, Thermo Fisher Scientific Inc.,

Massachusetts, USA). An internal gold background, as the

reference, and all of the spectra were measured using an

InGaAs detector. The background was corrected every

hour to eliminate the influence of baseline shifts. The NIR

spectra of samples were recorded at 4 cm-1 intervals over

a spectral range from 4000 to 10,000 cm-1 for the multi-

variate analysis. To improve the signal-to-noise ratio sig-

nificantly, the average of 64 scans was chosen for each

spectrum. The temperature during the test was maintained

at room temperature (25 ± 1 �C), and the humidity was

kept at a stable level by a dehumidifier.
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Chemometric software for data processing

and statistical techniques

The data were processed using the Unscrambler (Version

9.7; Camo Inc., Trondheim, Norway). The chemometric

procedures and test arrangements are discussed below.

Calibration and prediction sample sets

The potato flour (potato granules) content in the CSB

ranged from 0 to 42%. The potato flour contents in the 132

samples of the calibration set were 0%, 2%, 4%, 6%, 8%,

10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%,

30%, 32%, 34%, 36%, 38%, 40% and 42% (w/w). The

calibration set was divided into two groups, wheat flour

(Wudeli Flour Co., Ltd.) with potato flour (Linkage Potato

Co., Ltd.) incorporated and wheat flour (Wudeli Flour Co.,

Ltd.) with potato flour (Sanlai Food Co., Ltd.) incorpo-

rated. The potato flour content in 66 samples from the

validation set also ranged from 0 to 42% (w/w) in 2%

intervals. The wheat flour (Luwang Co., Ltd.) in the

external validation was incorporated with potato flour

(Yanbei Potato Co., Ltd.). In addition, the samples in the

calibration and external validation sets were prepared by

different members of the laboratory to ensure that there

was no association between the calibration and external

validation sets.

The confirmation of measuring position

To determine the best position for acquiring a stable and

credible spectrum of the CSB, three parts (the top, inner

core and the bottom) of the CSB were evaluated by com-

paring the parameters, namely the root mean square error

of calibration (RMSEC), in the calibration model, and the

coefficient of determination between the predicted and the

measured parameters in the calibration (Rc
2). The potato

flour contents in 30 samples (6 samples for each potato

flour content) were set as 0%, 5%, 10%, 15% and 20%.

These CSBs were prepared using wheat flour (Wudeli

Flour Co., Ltd.) and potato flour (Linkage Potato Co., Ltd.).

Calibration step: cross validation

In the present study, the linear prediction models between

the spectral data and the potato flour content of the CSB

were constructed using a PLS analysis. The calibration

models in this study were developed using PLS regressions

with leave-one-out cross validation, which creates sample

subsets that are missing one sample and the analysis pre-

dicts the missing sample, iteratively, until every sample in

the calibration set has been left out once (Porfire et al.,

2012). First, one sample was randomly chosen by the

software and removed from the calibration set, while the

rest of the spectra were used to construct a PLS model.

Then, this procedure was repeated over again until every

sample in the calibration set had been left out.

The leverage was computed and used to detect outlying

samples in the original data set, when the model calculation

was complete. Outliers are samples with high leverage and

studentized residuals, which compromise the precision of

the model (Adedipe et al., 2016). The parameters, such as

RMSEC, the root mean square error of cross-validation

(RMSECV), RMSEP, the root mean square error of pre-

diction (RMSEP), Rc
2 and the coefficient of the cross-val-

idation (Rcv
2 ) were used to evaluate the performance of the

PLS models. In addition, the ratio to performance deviation

(RPD) was introduced to measure the precision of the PLS

model based on the root mean square values (Williams and

Sobering, 1993):

RPD ¼ d=RMSEP ð1Þ

where d represents the standard deviation of the validation

set. An RPD value of\ 1 indicates that the established

model has no predictive power; 1 B RPD value\ 2 indi-

cates that the established model can only separate the lower

from higher values; 2 B RPD value\ 3 indicates that a

reasonable model is already established; and 3\RPD

value indicates that an excellent model already established

(Landsberg and Waring, 1997).

To improve the reliability, accuracy and stability of the

calibration models, data were pre-processed before analy-

ses. The steps used are as follows (Krepper et al., 2017;

Sunoj et al., 2016):

(1) Automatic baseline correction, automatic smooth

processing (Savitzky–Golay, three data points) and

normalization;

(2) First derivative (Savitzky–Golay, polynomial = 2)

was calculated by different data point gaps (5, 9 and

13 pts); and

(3) Second derivative (Savitzky–Golay, polyno-

mial = 2) was calculated by different data point

gaps (5, 9 and 13 pts).

The optimum number of PLS factors was determined by

plotting the RMSECV against the number of factors and

determining the minimum of the plot (Winkler-Moser

et al., 2015). Additionally, the best model for the deter-

mination of the potato flour content should have the highest

RPD (Mantanus et al., 2010).

External validation step

The external validation of the method was checked by

adding the NIR spectra of 198 new samples (potato flour

content: 2–40%) to the optimal model (Bin et al., 2016).
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These samples were prepared with wheat flour and potato

flour from different sources (different brands). Finally, the

RMSEP, the coefficient of determination (R2) for the val-

idation and the RPD of the model were evaluated.

Analytical characteristics test

The analytical characteristics of this method were evalu-

ated according to our previous report (Liu et al., 2013).

Recovery %ð Þ ¼ P-NIR=P-SSð Þ � 100% ð2Þ

where P-NIR represents proportion of potato flour in

sample detected by NIR spectroscopy, and P-SS represents

proportion of potato flour in sample spiked by laboratory

personnel. The intra-assay relative standard deviation

(RSD) was determined for each proportion in three repli-

cates. The inter-assay RSD was evaluated for each pro-

portion prepared by 20 laboratory personnel.

PCA analysis

PCA analysis was carried out using the Unscrambler

(Version 9.7, Camo Inc., Trondheim, Norway). To deter-

mine the number of principal components that are statis-

tically significant in capturing the underlying features in

data sets, a leave-one-out cross validation method (Wold

et al., 2001) was performed.

Results and discussion

NIR spectra of potato and wheat flours

The raw NIR spectra of potato and wheat flours are pre-

sented in Fig. 1A. The NIR spectroscopy showed that the

peak at approximately 4015 cm-1 belongs to a combina-

tion of the C–H and C–C stretching vibrations (Xu et al.,

2015). The peak at 4308 cm-1 could also be ascribed to a

combination of the C–H and C–C stretching vibrations (Xu

et al., 2015). The peaks at approximately 4747 cm-1 and

5168 cm-1 represented the combination of the C–O stretch

and O–H deformation and a combination of the baseband

of the O–H stretch and the first overtone of C–O defor-

mation (Li et al., 2012), respectively. A few bands between

5418–5931 cm-1 and 5982–6811 cm-1 belonged to the

first overtones of the C–H stretch of various groups and the

first overtone of the O–H stretch or N–H stretch, respec-

tively. The last peak at approximately 8320 cm-1 repre-

sented the second overtones of the C–H stretches of various

groups (Vagnini et al., 2009). The raw NIR spectra of the

potato and wheat flours showed insignificant differences,

which meant that the determination of potato flour in CSB

was obstructed without the aid of chemometrics.

The confirmation of measuring position

Owing to different water evaporation rates, three positions,

the top, inner core and bottom layer of CSB, exhibited

different surface layer textures. Thus, it was necessary to

determine the part that was most suitable for acquiring the

NIR spectra. For each position, the PLS model was cal-

culated, and the results are summarized in Table 1.

According to the observed RMSECV and Rcv
2 values, the

NIR spectra from the top layer and inner core showed good

performance. Additionally, the inner core produced the

most accurate determination of potato flour in CSB. Thus,

the inner core of CSB was chosen as the position for

acquiring the NIR spectra.

Fig. 1 NIR spectra of potato and wheat flour (A), RMSECV (root-

mean-square error of cross-validation), RCV
2 (coefficient of determi-

nation of cross-validation) and RPD (the ratio to performance

deviation) plotted as a function of the number of factors used in the

PLS (partial least squares) model (B)
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Calibration and validation of the PCA and PLS

procedures

Optimization of the calibration model

In the present study, the full spectral range of

4000–10,000 cm-1 was used to determine the potato flour

content in CSB. The spectral pre-treatments and the num-

ber of PLS factors were investigated in this study to

determine their affects. Before calibration, outliers should

be removed. Therefore, the leverage values of the PCA

were carefully checked. After the removal of the outliers,

the PLS models were recalculated for each pre-treatment.

Various spectral pre-treatments for the determination of the

potato flour content in CSB are summarized in Table 2.

Prediction results based on the spectral data sets after

treatments with different pre-processing methods were

compared with the ones using raw spectra. The worst

prediction, with RCV
2 = 0.794 and RMSECV = 5.93, was

obtained by directly using the raw spectra. However, the

calibration results from different spectral treatments were

very close. Positive correlations were found between the

values predicted with the NIR models and the proportion of

potato flour additions, which produced desirable Rcv
2 and

RMSECV values of 0.8592–0.8955 and 4.22–5.09,

respectively. Regression models based on the first and

second derivatives of the NIR spectra resulted in improved

PLS prediction model performances. In general, the NIR-

reflectance measurement of a sample measures the diffu-

sively reflected (the primary source of information in the

NIR spectra) and specularly reflected (mirror-like reflec-

tions that do not contain any chemical information) radi-

ation. The selected pre-processing methods can remove

some, but not all, of the undesired scatter or particle-size

information in the spectra. The most basic method for

derivation is finite differences, in which the first derivative

is estimated as the difference between two subsequent

spectral measurement points. The second order derivative

Table 1 Results of calibration

and cross-validation of the PLS

models at the different

measuring position of CSB

Test position PLS factors Calibration Cross-validation

Rc
2 RMSEC(%) Rcv

2 RMSECV(%)

The top layer 10 0.9855 0.8588 0.9531 1.5443

Inner core 10 0.9943 0.5323 0.9615 1.4432

The bottom layer 10 0.9719 1.1858 0.8122 3.1074

aCoefficient of determination in calibration
bRoot-mean-square error of calibration
cCoefficient of determination in cross-validation
dRoot-mean-square error of cross-validation

Table 2 Results of calibration

and validation of the PLS

models on the raw spectra and

spectra with various

pretreatments

Mathematical pretreatment Outliner PLS factors Calibration Cross-validation

RC
2a RMSECb RCV

2c RMSECVd

Raw spectra 4 6 0.8277 5.38 0.7940 5.93

Spectra pre-treatmentf 3 6 0.8870 4.36 0.8592 4.90

First derivative (5pts)f,g 2 6 0.9210 3.64 0.8955 4.22

First derivative (9 pts)f,g 2 6 0.9106 3.87 0.8721 4.67

First derivative (13 pts)f,g 3 6 0.8853 4.39 0.8482 5.09

Second derivative (5 pts)f,g 2 6 0.9220 3.62 0.8922 4.29

Second derivative (9 pts)f,g 2 6 0.9131 3.82 0.8930 4.31

Second derivative (13pts)f,g 2 6 0.8986 4.12 0.8737 4.64

aCoefficient of determination in calibration
bRoot-mean-square error of calibration
cCoefficient of determination in cross-validation
dRoot-mean-square error of cross-validation
eStandard deviation ratio of cross-validation
fPre-treatments of spectra include automatic baseline correction, automatic smooth processing and

normalisation
gPts, different data point gaps
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is then estimated by calculating the difference between two

successive points of the first-order derivative spectra. Both

derivation techniques can improve the prediction behavior

of the model by increasing the signal-to-noise ratio. Thus,

the prediction behavior of the model was improved after

the pre-treatment (Li et al., 2010).

The pre-processing method of the first derivative (5 pts)

was selected as the spectral pre-treatment method that

resulted in the best prediction performance, having the

lowest RMSECV of 4.22 and the highest Rcv
2 of 0.8955, for

the PLS prediction model. Furthermore, 20 PLS factors

were introduced into the PLS model to optimize of the

number of PLS factors. The RMSECV, RCV
2 and RPD

values were recorded as functions of the PLS factors for

determining the potato flour content in CSB using the pre-

processing method of the first derivative (5 pts) as pre-

sented in Fig. 1B. The RMSECV value decreased sharply

within the initial 12 PLS factors. Adding more PLS factors

to the model improved its linearity, resulting in RCV
2 and

RPD increasing and RMSECV decreasing as the number of

PLS factors increased (Rinnan et al., 2009). However, too

many PLS factors ([ 8) led to the model running the risk of

over-fitting (Feng et al., 2015; Hacisalihoglu et al., 2016).

The RPD values were relatively high (3.65–6.77) when

there were 8–20 PLS factors. To balance the advantages

and disadvantages, in this study, the optimal number of

PLS factors was set as eight.

PCA

To produce a clear 2D map, not all of the samples were

used in the PCA. The score plot of the first two PCs of the

PCA was carried out by analyzing 36 samples (0%, 6%,

10%, 20%, 30% and 40%) with the pre-treatment of the

first derivative (5 pts), as can be seen in Fig. 2A. PC1 and

PC2 account for 96.54% and 2.84% of the total variation

among these samples, respectively. CSBs with different

potato flour contents were located at different parts of the

2D map. The whole wheat CSB lay on the positive side of

both PCs (top right corner), and the 40% potato flour-in-

corporated CSB lay mostly along the negative value area of

PC1 and positive value area of PC2 (top left corner).

However, others did not produce apparent regional distri-

butions. The X-loadings plot indicates how well a variable

was taken into account by the model components, and it

was used to understand how much each variable con-

tributed to meaningful variation in the data and to interpret

variable relationships (Wójcicki et al., 2015). The PCA

loading spectra of the first two factors are shown in

Fig. 2B. They accounted for 99.38% of the total variation

and revealed characteristics among the samples. The

highest negative loading in PC1 was found at approxi-

mately 5299 cm-1, as presented in Fig. 2B. Positive

loadings on PC 2 were found in the range of

4169–5546 cm-1 and 6807–7262 cm-1. These regions

could help us to understand the differences between the

potato and wheat flours, which requires intensive study.

External validation

An external validation was carried out to check the pre-

dictive ability of the optimal PLS model by retraining the

NIR spectroscopy of 198 samples in the external validation

Fig. 2 Two-D scores plots (A) and the loading plots (B) of PCA

results (total 36 samples, 0%, 6%, 10%, 20%, 30% and 40%) and NIR

predicted value vs. Actural potato flour content (C) in the calibration

set (open square) and external validation set (filled circle)
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set, and the results are shown in Fig. 2C. The optimal PLS

prediction model was performed with eight PLS factors

and produced satisfactory R2 and RPD values of 0.8865

and 3.07, respectively, in the external validation. NIR

technology provides a potential analysis tool for the pre-

diction of the potato flour content in CSB.

Analytical characteristics of the PLS method

To better understand the practicality of using NIR spectra

for determining the potato flour content in CSB, recovery

and both intra- and inter-assay RSDs of this model were

evaluated. As demonstrated in Table 3, recoveries of

between 93.1 and 102.5% were obtained in tests between

the actual potato flour contents and NIR-predicted values.

The intra-assay RSD for each proportion, prepared in

triplicate, ranged from 3.3 to 8.3%, and the inter-assay

RSD for each proportion, prepared by different laboratory

personnel, ranged from 7.6 to 17.2%. Thus, the NIR

technology exhibited satisfactory sensitivity and repeata-

bility levels for samples with potato flour contents greater

than 20%, thereby providing a feasible way of distin-

guishing CSBs with high ([ 20%) potato flour contents.

Table 4 showed the effect of moisture content on the potato

flour content in CSB which was predicted by the NIR

model. Samples with a potato flour content ranged from

13.5 to 38.2% were thermally dried to 3 level of moisture

content. As we can seen from the table, the predicted

values from the NIR model was decreased as the decrease

of moisture content. The moisture content had a significant

influence on the NIR models for prediction of composition

of materials. The reason may ascribe to the change in

intensity and positions of absorbance of –OH influenced by

the interaction between water and other components

(Williams, 2009).

The ability of NIR technology combined with PLS

regression to determine the potato flour content in CSB was

investigated. The ideal calibration model with eight PLS

factors (RCV
2 = 0.9256, RPD = 3.65) for the determination

of potato flour content in CSB was developed using NIR

spectra from 4000 to 10,000 cm-1 and a pre-processing

combination of baseline correction, smooth processing,

normalization, and a first derivative with five data point

gaps. CSB prepared using potato and wheat flour of dif-

ferent brands were used for the external validation, and the

optimal calibration showed a good prediction performance

(R2 = 0.8865, RPD = 3.07). This is the first application of

NIR spectroscopy combined with the chemometric method

to determine the potato content in a PISF. Moreover, this

work described a quick and non-destructive analysis

method compared with the tedious routine analyses, such

as gel electrophoresis and PCR.

To make the application of this NIR methodology more

representative and practical, it is advisable to consider

more factors, such as the storage time and method (re-

frigeration and freezing) of the CSB, the raw material form

(mashed potato and potato flour prepared using different

processing methods), the brand (the more brands that are

considered in the preparation, the more accurate the cali-

bration) and other (moisture, starch retrogradation, and

adulteration of potato starch). In addition, more research

should be performed to confirm the general applicability of

Table 3 Analytical

characteristics of the proposed

method

Parameters Potato flour content (%)

12.9 21.4 23.3 33.1 40.2

Recovery (%)a 93.1 ± 3.8 98.5 ± 4.2 99.3 ± 3.1 101.2 ± 2.5 102.5 ± 1.4

Intra-assay RSD (%)b 8.3 3.6 6.2 4.5 3.3

Inter-assay RSD (%)c 17.2 9.3 8.4 7.6 9.8

aRecovery was calculated from following equation: (proportion of potato flour in sample detected by NIR

spectroscopy/proportion of potato flour in sample spiked by laboratory personnel) 9 100%
bIntra-assay relative standard deviation (RSD) was measured on each potato flour content in three replicates
cInter-assay relative standard deviation (RSD) was evaluated on each proportion prepared by 20 laboratory

personnel

Table 4 Influence of moisture

content on the stability of the

proposed method

Moisture content (%) Potato flour content (%)

13.5 22.6 30.5 38.2

30–33 12.6 ± 1.3 21.3 ± 1.7 29.2 ± 0.8 37.5 ± 2.3

24–28 11.3 ± 0.9 20.4 ± 2.3 28.5 ± 2.5 35.8 ± 2.8

18–22 10.2 ± 1.1 19.8 ± 1.9 27.5 ± 2.1 33.2 ± 2.6
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NIR for potato flour content determination in other staple

foods.
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