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Abstract In our previous work, Asterina pectinifera was

fermented with Cordyceps militaris mycelia to improve its

bioactivities and was reported to have strong antioxidant

activities. The aim of the current study was to investigate

its anti-inflammatory effect and mechanisms of action. In

this study, we observed the inhibitory effect of the extract

from fermented A. pectinifera with C. militaris mycelia

(FACM) on nitric oxide (NO) production and its molecular

mechanism in lipopolysaccharide (LPS)-stimulated

RAW264.7 cells. FACM could decrease LPS-induced NO

production. Western blot analysis showed that FACM

could down-regulate LPS-induced expression of inducible

NO synthase without affecting cyclooxygenase-2. More-

over, FACM exhibited anti-inflammatory activity in LPS-

induced RAW264.7 mouse macrophage cells through

proinflammatory mediators including TNF-a and IL-6 via

nuclear factor kappa B pathway. FACM inhibited LPS-

induced phosphorylation of extracellular-signal-regulated

kinase expression. Our results suggest that FACM may be a

potential candidate for inflammation therapy by attenuating

the generation of cytokines, production of NO, and gen-

eration of ROS in RAW264.7 cells.
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Introduction

The starfish species, Asterina pectinifera causes critical

damage to shellfish mariculture [1]. For this reason, the

Korean government has spent about 3.73 million US$ to

remove starfishes from coastal areas from 2006 to 2011 [2].

Previous studies have shown that A. pectinifera extract has

antimicrobial, anticancer, antimelanogenic, and anti-in-

flammatory activities [3–6].

Cordyceps militaris is a kind of Ascomycete, which

parasitizes on insect larvae and grows gradually into a

mature fruiting body [7]. The parasitic complex of fungus

and caterpillar has been used for tonics and medicinal

purposes for centuries in eastern Asia [8, 9]. Cordyceps

extract has been reported to have various biologically

active compounds such as cordycepin, cordycepic acid,

adenosine, vitamins, exopolysaccharides, and enzymes

[10]. Cordycepin is one of the key bioactive compounds

produced by C. militaris and has exhibited antioxidant

activity, anticancer activity, and anti-inflammatory prop-

erties in various cell lines [11–15].

Fermentation has been recognized as a useful tool for

generating biological materials containing health-promot-

ing properties. The culturing techniques are of vital

importance to obtain a good yield of bioactive products

because these resulting bioactive compounds are directly

related to cell proliferation and metabolite biosynthesis

[16–18].

Inflammation causes a wide range of diseases including

cancer, neurological diseases, metabolic syndrome, asthma,

obesity, and cardiovascular diseases [19–23]. Inflammation
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is a complex process regulated by inflammatory mediators

and cytokines secreted from the proinflammatory cells such

as macrophages [24].

Macrophages play important roles in inflammation and

host defence. One of the most critical mechanisms in

macrophages is the production of nitric oxide (NO). NO is

produced when L-arginine converts to L-citrulline by NOS

(nitric oxide synthase) in the presence of O2 and NADPH.

Overproduction of NO leads to numerous inflammatory

diseases, for instance, septic shock, tissue injuries, cerebral

infarctions, diabetes mellitus, and neurodegenerative dis-

orders [25–27].

When infection occurs, the nuclear factor kappa B (NF-

jB) signaling pathway is one of the MyD88-dependent

lipopolysaccharide (LPS)-induced signaling pathways that

is activated after macrophages recognize the infection [28].

When the NF-jB-inhibitory kappa-B alpha (IjB-a) com-

plex, which is located in the cytoplasm, is phosphorylated,

the subunits (p65/p50) of the NF-jB are released [28].

Subsequently, NF-jB p65 enters the nucleus and induces

the expression of genes which encode numerous transcript

genes encode various proinflammatory cytokines including

tumor necrosis factor-alpha (TNF-a), interleukin-1 beta

(IL-1b), and interleukin-6 (IL-6) [29]. Moreover, extra-

cellular-signal-regulated kinase (ERK), which is another

downstream MyD88-dependent LPS-induced signaling

pathway, plays a critical role in inflammation. When ERK

is phosphorylated by (MAPK kinases) MKKs, it stimulates

the transcription factor AP-1. Subsequently, AP-1 enters

into the nucleus and transcript genes encode proinflam-

matory cytokines [24].

In our previous study, we reported that fermentation of

A. pectinifera with C. militaris mycelia (FACM) could

improve its various radical scavenging activities leading to

strong antioxidant activity [30]. The current study was

designed to investigate the anti-inflammatory activity of

FACM through the regulation of LPS-induced cellular

ROS production and ERK pathway in the RAW264.7

macrophage.

Materials and methods

Materials

Dulbecco’s Modified Eagle’s medium (DMEM) culture

medium and fetal bovine serum (FBS) were obtained from

Life Technologies, Inc. (Carlsbad, CA, USA). LPS isolated

from Escherichia coli 0111:B4 and N-acetyl-L-cysteine

(NAC) were purchased from Sigma-Aldrich (St. Louis,

MO, USA). Polymyxin B (PMB) was purchased from

InvivoGen (San Diego, CA, USA). TNF-a and IL-6 ELISA

kits were bought from R&D Systems (Minneapolis, MN,

USA). The antibodies against inducible NO synthase

(iNOS), cyclooxygenase-2 (COX-2), IjB-a, phospho-p38,
phospho-JNK, phospho-ERK, and b-actin were purchased

from Cell Signaling Technology (Beverly, MA, USA). All

other reagents were of the highest grade commercially

available.

Extraction and isolation

Using the method reported in the previous study, A. pec-

tinifera was fermented with C. militaris mycelia [30].

Briefly, A. pectinifera was cut and washed and then cooled

after autoclaved at 121 �C for 15 min. A. pectinifera was

inoculated with C. militaris mycelia at 10%; then, it was

maintained in an incubator at 25 �C for 20 days. Next, the

fermented product obtained after the fermentation process

was lyophilized using a freeze dryer (Samwon industry,

Seoul, Korea). The lyophilized fermented A. pectinifera

was mixed with distilled water to archive tenfold dilution

and boiled for 2 h. Then, the resultant extract was filtered

through a Whatman No. 41 paper. Finally, the filtrate was

evaporated under reduced pressure using a rotary vacuum

evaporator (EYELA, Tokyo, Japan) at 50 �C, lyophilized
using the freeze dryer, and stored at - 20 �C until use.

Cell culture

The murine macrophage RAW264.7 cells were maintained

in DMEM supplemented with heat-inactivated 10% FBS,

100 U/mL penicillin, and 100 lg/mL streptomycin at

37 �C in an incubator containing humidified atmosphere

with 5% CO2. In all experiments, RAW264.7 cells were

incubated in the presence or absence of different FACM

concentrations 1 h prior to LPS (100 ng/mL) stimulation.

Cell viability

The effects of different FACM concentrations on

RAW264.7 cell viability were evaluated using MTT assay.

Briefly, RAW264.7 macrophages were pretreated with

different FACM concentrations for 1 h and then exposed to

LPS (100 ng/mL) for 20 h. After LPS stimulation for 20 h,

0.5 mg/mL MTT solution was added to each well and the

cells were incubated for another 2 h at 37 �C in an incu-

bator containing humidified 5% CO2 atmosphere. Then, the

supernatants were aspirated and the resultant formazan

crystals in each well were dissolved in 150 lL DMSO.

Absorbance at 540 nm was measured using a microplate

reader (SpectraMax M2/M2e, Molecular Devices, Sunny-

vale, CA, USA). The optical density of MTT formazan

formed in untreated cells was considered as 100% viability.
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Measurement of NO production

NO production levels in the RAW264.7 cell culture

supernatant after different treatments were analyzed by

measuring the accumulation of nitrite (NO2
-) in the cell

culture medium via reaction with Griess reagent using

sodium nitrite (NaNO2) as the standard. The cell culture

medium supernatant was collected and mixed with an equal

amount of Griess reagent (containing 0.1% N-(1-naphthyl)-

ethylenediamine, 1% sulfanilamide, and 5% phosphoric

acid). Then, it was shaken lightly for 10 min at room

temperature. Finally, the absorbance value at 540 nm was

measured using a microplate reader (SpectraMax M2/M2e,

Molecular Devices, Sunnyvale, CA, USA).

Measurement of proinflammatory cytokine

production

The murine macrophage RAW264.7 cells were plated in

24-well plates at a density of 4 9 105 cells per well and

incubated after either LPS stimulation or 1 h pretreatment

of FACM (6.25, 12.5, and 25 lg/mL) with LPS stimulation

for 18 h. PMB (10 lM) was used as the positive control.

Polymyxin B is an antibiotic primarily used for resistant

Gram-negative infections. It has a bactericidal action

against many Gram-negative bacilli. After the incubation

period, the cell-free supernatants were subsequently

employed in the proinflammatory cytokine level determi-

nation assays, which were performed with a mouse

enzyme-linked immunosorbent assay (ELISA) kit (R&D

Systems, Minneapolis, MN, USA) according to the man-

ufacturer’s instructions.

Measurement of intracellular ROS

The intracellular ROS accumulation in RAW264.7 cells

was determined using the fluorescent dye DCFH-DA.

Briefly, after the relevant treatments, the cells were incu-

bated with 10 lM of DCFH-DA for 30 min at 37 �C in the

dark. Then, the cells were washed twice with PBS and the

intracellular levels of ROS were determined by measuring

the fluorescence using a flow cytometer (FACSCalibur,

Becton & Dickinson Co., Franklin Lakes, NJ, USA). NAC

has been known to act as an antioxidant/free radical

scavenger or reducing agent.

Western blotting

After relevant treatments with FACM and/or LPS, the cells

were washed with ice-cold phosphate-buffered saline

(PBS). Then, they were harvested and lysed immediately.

The total protein concentration was assessed using a

Bradford protein assay kit (Bio-Rad, Hercules, CA, USA).

Following cell lysis, lysed cells were mixed with SDS/

PAGE loading buffer and boiled for 5 min at 100 �C. Total
protein (20–30 lg) was resolved by SDS/PAGE; then,

separated proteins were transferred onto a polyvinylidene

difluoride (PVDF) membrane (GE Healthcare Life Sci-

ences, Little Chalfont, Buckinghamshire, UK). Next, the

PVDF membrane was washed with Tris-buffered saline

Tween (TBS-T, 20 mM Tris–HCl, 150 mM NaCl, and

0.05% Tween 20). Later, nonspecific sites on the mem-

brane were blocked by incubating the PVDF membrane

with a blocking solution containing 5% skim milk in TBS-

T for 1 h at room temperature. After blocking treatment,

the membrane was washed with TBS-T and incubated with

diluted primary antibodies at 4 �C overnight. After over-

night incubation, the membrane was washed with TBS-T

and incubated in a solution containing species-appropriate

HRP-conjugated secondary antibodies for 1 h. Finally, the

membrane was washed again with TBS-T and reacted with

enhanced chemiluminescence reagent for the detection of

protein bands with an image analyzer (Davinch-Wes-

ternTM, Youngwha Scientific Co., Seoul, Korea). Densito-

metric values were normalized using b-actin.

Statistical analysis

Values are presented as the mean ± standard deviation

(SD) from triplicate determinations. All the data were

analyzed by analysis of variance (ANOVA) followed by

Dunnett’s test to determine the significance of differences

using GraphPad Prism 5; p\ 0.05 was considered as sta-

tistically significant.

Results and discussion

Effect of FACM on the viability of RAW264.7 cells

MTT assay was used to assess the cytotoxic effect of

FACM on murine macrophage RAW264.7 cells. FACM

showed no significant cytotoxicity on RAW264.7 cells at

concentrations less than 25 lg/mL in the presence or

absence of LPS after 20 h incubation [Fig. 1(A), (B)]. In

contrast, higher FACM concentrations ([ 25 lg/mL)

showed a significant cytotoxicity on RAW264.7 cells.

Hence, FACM concentrations ranging from 6.25 to 25 lg/
mL were selected for use in subsequent experiments.

Inhibition of LPS-induced NO production by FACM

in LPS-stimulated RAW264.7 cells

For the primary screening, we evaluated the effect of

FACM on LPS-induced NO production. LPS markedly

enhanced NO production in RAW264.7 cells. However,
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pretreatment with FACM could significantly suppress the

LPS-mediated production of NO [Fig. 1(C)]. Compared

with PMB, a representative LPS-induced TLR4 activation

inhibitor, FACM displayed a similar effect on NO.

Inhibitory effects of FACM on LPS-induced

production of proinflammatory cytokines

Proinflammatory cytokines are mainly produced by acti-

vated macrophage cells, and they are involved in the up-

regulation of inflammatory reactions [31]. To further

investigate the anti-inflammatory effect of FACM, the

levels of TNF-a and IL-6 in the culture medium of

RAW264.7 cells were measured by ELISA. FACM could

significantly reduce the levels of LPS-mediated TNF-a and

IL-6 production in a dose-dependent manner [Fig. 2(A),

(B)], and the effectiveness was approximate to the positive

control PMB at 10 lg/mL. Proinflammatory cytokines such

as TNF-a and IL-6 are mainly released from macrophages

when they are activated by LPS or other bacterial com-

ponents in an event of infection [31]. Our findings implied

that FACM could participate in the anti-inflammatory

response, possibly through the reduction of IL-6 and TNF-

a expression.

Measurement of intracellular ROS

Pathogenesis of many diseases is associated with increased

ROS accumulation including inflammatory diseases [32].

The imbalance between the free radical production and

removal in the cellular system leads to cellular damage by

oxidizing macromolecules such as proteins, lipids, and

DNA in the cell. Exposing the cells to LPS leads to an

increased production of cellular ROS [33], and excess ROS

levels are associated with the expression of various

inflammations.

The LPS-induced ROS generation in RAW264.7 cells in

the presence or absence of FACM was detected using the

Fig. 1 Effect of FACM on the viability (A, B) and NO production

(C). The FACM (6.25–100 lg/mL) was tested for its cytotoxic effect

on RAW264.7 cells using MTT assay. Cells were treated with only

FACM for 20 h or pretreated with FACM for 1 h and then exposed to

LPS for 20 h. The FACM was tested for its inhibitory effects on LPS-

induced NO production using the Griess reagent. The cells were

pretreated with FACM for 1 h and then exposed to LPS for 18 h. Data

are expressed as the mean ± SD of three independent experiments.
###p\ 0.01 versus control group, ***p\ 0.001 versus LPS group
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fluorescent indicator DCFH-DA. As shown in Fig. 3,

RAW264.7 cells exposed to LPS (100 ng/mL) showed a

significant increase in the intracellular ROS level

(83.22 ± 2.26%). In contrast, NAC (positive control,

20 mM) reduced the cellular ROS production

(12.14 ± 2.16%). The addition of FACM (6.25–25 lg/mL)

could attenuate the LPS-induced ROS generation in

RAW264.7 cells in a dose-dependent manner.

Inhibitory effect of FACM on LPS-induced iNOS

expression

To investigate whether the inhibitory effect of FACM on

NO production is mediated by the expression level of

related inflammatory mediators, the effect of FACM on

LPS-induced iNOS expression level in RAW 264.7 cells

was investigated by Western blotting. RAW264.7 cells

were pretreated with various concentrations (6.25, 12.5,

and 25 lg/mL) of FACM for 1 h, followed by LPS

(100 ng/mL) stimulation for 18 h. The iNOS protein level

was markedly upregulated by the LPS treatment. As shown

in Fig. 4, FACM could attenuate the high iNOS expression

levels upregulated by LPS induction. However, FACM had

no effect on the COX-2 expression levels in RAW264.7

cells (data not shown). COX-2 is associated with the con-

version of arachidonic acid to prostaglandin E2 [34]. COX-

2 is believed to be responsible for the production of

proinflammatory prostaglandins in various models of

inflammation [35]. As reported in this study, the inhibition

of NO production through the down regulation of iNOS

protein expression level while there is no effect on COX-2

protein expression level has been previously reported [36]

and it is possible due to the fact that FACM could possibly

contain more than a single biologically active compound

that could exert effects on different molecules to different

extents in the LPS-induced inflammatory signaling path-

way, leading to its final anti-inflammatory property.

Inhibitory effect of the FACM on LPS-induced

activation of MAPKs

The MAPKs, including ERK1/2, JNK1/2, and p38 MAPK,

signaling pathway has a key role in regulating the pro-

duction and secretion of inflammatory mediators in LPS-

stimulated macrophages [37]. Previous studies have

reported that LPS-induced activation of MAPKs up-regu-

lates the synthesis of proinflammatory cytokines (TNF-a,

IL-6, and IL-1b) and iNOS expression level [33]. The

MAPKs could be activated by LPS, a key stimulator of the

inflammation response in macrophages as well as many

cell types [36]. To determine whether MAPKs are affected

by FACM, phosphorylation levels of ERK1/2, JNK1/2, and

p38 MAPK were analyzed using Western blotting. As

shown in Fig. 5, the expression of phosphorylated ERK1/2,

JNK1/2, and p38 MAPK protein levels were increased by

the LPS treatments, whereas these increased phospho-

rylation levels of MAPK proteins induced by LPS

were attenuated by PMB pretreatment (positive control,

10 lg/mL). However, our results showed that FACM

could only attenuate the increased phosphorylation level

of ERK1/2 induced by LPS but not the p38 and JNK

protein levels.

Effect of FACM on IjB-a degradation

Because IjB-a degradation is thought to be the key step in

NF-jB activation, we investigated the effect of FACM on

IjB-a degradation. NF-jB is inactivated in the cytosol by

binding with IjB-a. Induced phosphorylation level of IjB-
a leads to its subsequent ubiquitination and degradation via

the proteasome pathway leading to translocate freed NF-

Fig. 2 Inhibitory effect of FACM on LPS-induced production of

proinflammatory cytokine IL-6 (A) and TNF-a (B). The release of the
proinflammatory cytokine IL-6 into the supernatants from RAW264.7

cells incubated with FACM (6.25, 12.5, and 25 lg/mL) and PMB

(10 lg/mL) with or without LPS (100 ng/mL) for 18 h was examined

by the ELISA method. Data are expressed as the mean ± SD of three

independent experiments. ###p\ 0.01 versus control group,

**p\ 0.01, ***p\ 0.001 versus LPS group
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jB into the nucleus [28]. To determine whether FACM

could possibly affect NF-jB activation, the degradation of

IjB-a was assessed. RAW264.7 cells were pretreated with

different FACM concentrations for 1 h before exposure to

LPS for 30 min, and the IjB-a protein levels were exam-

ined using Western blotting analysis. As shown in Fig. 6,

stimulation with LPS for 30 min induced the degradation

of the IjB-a protein. Pretreating the cells with FACM

could protect the LPS-induced IjB-a degradation and PMB

(as a positive control) also rescued IjB-a from its LPS-

induced degradation. These findings indicate that FACM

has an effect on IjB-a/NF-jB activation pathway. These

results indicate that FACM inhibits NO production and

iNOS expression through the suppression of NF-jB
activity mediated by blocking of IjB-a degradation. Our

current study may contribute to the knowledge of under-

standing the FACM’s anti-inflammatory property by rec-

ognizing its ability to down-regulate NO production

through iNOS signaling pathways and suppression of cel-

lular ROS production.

Fig. 3 Inhibitory effect of FACM on LPS-induced ROS production.

RAW264.7 cells were pretreated with FACM for 1 h and incubated

with LPS (100 ng/mL) for 18 h. The medium was then replaced with

fresh medium containing DCFH-DA (10 lM). After incubation for

30 min, the level of intracellular ROS was determined using a flow

cytometer. (A) Control, (B) LPS (100 ng/mL), (C) LPS (100 ng/

mL) ? FACM (6.25 lg/mL), (D) LPS (100 ng/mL) ? FACM

(12.5 lg/mL), (E) LPS (100 ng/mL) ? FACM (25 lg/mL), and

(F) LPS (100 ng/mL) ? NAC (20 mM). Values are expressed as

the mean ± SD of three independent experiments

Fig. 4 Inhibitory effects of FACM on LPS-induced iNOS expression.

Expression levels of iNOS protein in RAW264.7 cells incubated with

the FACM (6.25, 12.5, and 25 lg/mL) or PMB (10 lg/mL) in the

presence/absence of LPS (100 ng/mL) for 18 h were examined by

Western blot analysis
Fig. 5 Inhibitory effect of FACM on LPS-induced activation of

MAPKs. Effects of FACM on LPS-induced activation of MAPKs,

including ERK, p38, and JNK, in RAW264.7 were examined after

cell treatments with different FACM concentrations (6.25, 12.5, and

25 lg/mL) in the presence or absence of LPS (100 ng/mL) for 30 min

using Western blot analysis
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