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A review of applications of metabolomics in osteoarthritis
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Abstract
Osteoarthritis (OA) represents the most prevalent and disabling arthritis worldwide due to its heterogeneous and progressive articular
degradation. However, effective and timely diagnosis and fundamental treatment for this disorder are lacking. Metabolomics, a
growing field in life science research in recent years, has the potential to detect many metabolites and thus explains the underlying
pathophysiological processes. Hence, new specific metabolic markers and related metabolic pathways can be identified for OA. In this
review, we aimed to provide an overview of studies related to the metabolomics of OA in animal models and humans to describe the
metabolic changes and related pathways for OA. The present metabolomics studies reveal that the pathogenesis of OA may be
significantly related to perturbations of amino acid metabolism. These altered amino acids (e.g., branched-chain amino acids, arginine,
and alanine), as well as phospholipids, were identified as potential biomarkers to distinguish patients with OA from healthy individuals.
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Introduction

Osteoarthritis (OA) represents the most prevalent and disabling
arthritis worldwide, affecting several diarthrodial joints, but pri-
marily the knees and hips. Its worldwide incidence rate is ap-
proximately 1/10 in male and 1/5 in female over 60 years of age
[1]. Our understanding concerning the etiology of OA con-
tinues to grow. Many factors, including age, obesity, gender,
genetics, and joint injury, have shown to contribute to the de-
velopment of OA, among which increasing age and obesity are
the principal factors [2]. OA is now considered a heterogeneous
chronic disease involving multiple joint tissues. It is mainly
characterized by the degradation of articular cartilage,
subchondral bone sclerosis, osteophyte formation, variable de-
grees of synovitis, and ligament degeneration, eventually lead-
ing to disability in the end state of the disease [3]. The high rates
of morbidity and disability associated with OA have led to a
reduced quality of life and a great economic burden on society.
The economic burden of OA has been estimated to be between

1.0 and 2.5% of the gross domestic product for Western coun-
tries [4]. Despite this challenge, there are no effective early
diagnostics or main therapeutics for this disease [5]. These sta-
tistics could be improved if the understanding of the diagnostic
biomarkers and metabolic alterations in OA were clearer [6].

As an emerging field in life science research and a member
of the “-omics” family of sciences, metabolomics provides a
powerful approach to identify small molecules for several dis-
orders [7]. By measuring and mathematically modeling chang-
es in the levels of products of metabolism, both diagnostic and
prognostic biomarkers can be detected and identified for a va-
riety of diseases [8]. Furthermore, metabolomics might provide
an opportunity to explain the underlying pathophysiological
processes associated with diseases [9, 10]. Metabolite research
in OA has had an increase in interest and a relatively rapid
development, as the majority of articles related to OA were
published in recent years. In this review, we aimed to provide
an overview of the studies related to the metabolomics of OA in
animal models and humans to describe the metabolic changes
and related pathways in the pathogenesis of OA.

Metabolomics

Recently, the metabolomics approach has been used to iden-
tify and quantify small molecules in systemic biology for
measuring chemical intermediates or products and providing
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a biochemical “snapshot” of an organism’s metabolic state
[11]. The types of samples are diverse, including biological
fluids (e.g., plasma, urine, and saliva), cells, and tissue ex-
tracts. Metabolomics is an ideal tool to discover biomarkers
and understand the systems-level effects of metabolites owing
to its inherent sensitivity [12]. As a part of the biological
system-based approach, metabolomics belongs to the family
of -omics sciences, which also encompasses genomics, tran-
scriptomics, and proteomics. In general, omics studies can
define networks in which genetic variation (genomics) leads
to changes in gene expression (transcriptomics) to affect pro-
tein expression (proteomics). Quite differently, metabolomics
is a means for measuring chemical intermediates, or metabo-
lites, in a variety of biological samples. In other words, meta-
bolomics tells us what happened instead of what may have
happened. With the aid of metabolomics to overcome the
limitations of other -omics sciences, the family could provide
valuable information on endogenous and exogenous factors
[13]. Consequently, metabolomics brings significant benefits
in the diagnosis, therapy assessment, and an understanding of
the pathogenesis for many disorders, such as cancer [14] and
cardiovascular disease [15]. Furthermore, it may also aid in
monitoring the effects of medical interventions [16] and
studying autophagy [17]. Metabolomics generally involves
three steps: metabolism, spectroscopy, and multivariate statis-
tical analysis [11]. Among these, spectroscopy has proven the
most useful in providing data that gives us a more compre-
hensive understanding of metabolism [18].

Most analytical platforms for metabolic profiling are based
on spectroscopic techniques. Currently, there are three leading
methods inmetabolomics studies: nuclear magnetic resonance
(NMR) spectroscopy, liquid chromatography–mass spectrom-
etry (LC–MS), and gas chromatography–mass spectrometry
(GC–MS). These have similar abilities in providing compre-
hensive coverage of an organism’s metabolic state [19]. NMR
spectroscopy has important advantages that include being
non-invasive, non-destructive, not requiring elaborate sample
preparations, and rich in quantitative information over a wide
dynamic range. Therefore, it has played a fundamental role in
the development of metabolomics research [20]. Furthermore,
it is a powerful structural tool to detect information on isomers
and molecular structure, of which similar molecular fragmen-
tation may be difficult to acquire in both GC–MS and LC–
MS. Contrarily, however, NMR spectroscopy also has some
limitations. For example, it is not well suited for low concen-
trations. Besides, the low sensitivity and limited resolution of
individual metabolites from complex samples are challenging
[21].

Mass spectrometry-based metabolomics is superior in sen-
sitivity to NMR. GC–MS is generally considered a versatile
and reproducible analytical platform for low-molecular-
weight and volatile analytes because of its robust, selective,
and sensitive nature [22]. Currently, LC–MS is widely used in

metabolomics for a broad range of metabolites, including not
only metabolites from high- to low-molecular-weight but also
from hydrophilic to hydrophobic molecules, due to its high
sensitivity and reliable quantitation [19]. However, in contrast
to the NMR approach which handles samples quickly and
tends to be more reproducible, mass spectrometry-based tech-
niques require complicated sample preparation steps and
chemical derivation that may lead to both metabolite loss
and differential adduct formation [23]. Overall, these analyti-
cal methods are complementary techniques and work for dif-
ferent analytes depending on the experimental objective and
the sample type being investigated (Table 1).

The metabolomics of OA

As an ideal tool to discover biomarkers and understand the
systems-level effects of several disorders, metabolomics can
also help elucidate OA. Figure 1 illustrates the overall flow-
chart of common metabolomics for OA, including the major
steps from collecting samples to obtaining the most relevant
pathways involved with OA.

OA is best considered a disease of the whole “joint organ.”
Hence, the metabolic changes of OA could arise in various
periarticular tissues, including articular cartilage [22],
subchondral bone [24], and the synovium [25]. Meanwhile,
it is well-established that the types of metabolic samples are
wide ranging and include biological fluids, cells, and tissue
extracts. Evidently, those studies on pathogenic mechanisms
of diseases are particularly focused on animal models [26].
However, several population-based OA studies can be found
in the literature [27]. In 1989, Williamson et al. first used 1H
NMR to investigate synovial fluid (SF) components in pa-
tients with joint diseases [28]. Nevertheless, the variations
seen in humans are much greater than that of experimental
animals, which could pose both problems and advantages
for modeling. Thus, the analytical platforms used in animals
may be more appropriate or affordable than in patients [29].
Significant metabolic changes in OA in various sample types
are discussed below.

Metabolomics of tissues in OA

Tissue analysis is a powerful tool to study the localized re-
sponses of diseases and provide relevant metabolic informa-
tion. A previous trial had investigated cartilage from patients
with OA who underwent total knee arthroplasties and from
non-OA healthy individuals using high-resolution magic an-
gle spinning NMR spectroscopy. This trial found that the me-
tabolite levels of alanine, N-acetylcholine, and glycine could
accurately classify OA and healthy [30]. Another study inves-
tigated the synovium from human OA joints by GC–MS and
LC–MS and found alterations in 11 metabolites. Among
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these, seven were present at higher levels in the end-stage of
the OA group compared to the control, while four were rela-
tively lower, which specifically indicated altered activities of
collagen metabolism, branched-chain amino acids (BCAA)
metabolism, energy metabolism, and tryptophan metabolism
[31]. Now subchondral bone has received increasing attention
in OA due to the pathological changes that of subchondral
bone may play an important role in the initiation and progres-
sion of OA. The sclerotic subchondral bone from OA patients

compared with the non-sclerotic subchondral bone was ana-
lyzed byYang et al. and demonstrated that alteration in taurine
and beta-alanine metabolism was clearly found to be associ-
ated with the sclerosis of subchondral bone [32].

Metabolomics of biological fluids in OA

Biological fluids are convenient for metabolic research as they
are relatively easy to obtain from animal and human subjects

Fig. 1 A scheme of the overall flowchart of metabolomics for OA. First,
OA samples are collected and extracted for spectroscopy examinations by
NMR, LC–MS, and GC–MS. Before Fourier transformations, raw
spectral data need to be processed, which includes phase corrections,
baseline corrections, and resonance alignment. Subsequently, sample
data is normalized and subjected to multivariate statistical analysis,

including principle component analysis, a partial least squares
discriminant analysis, and orthogonal signal correction partial least
squares discriminant analysis. Together with univariate data analysis,
characteristic metabolites can be determined. Finally, the metabolic
pathway analysis is applied to determine the most relevant pathways
involved with OA

Table 1 Comparisons between the analytical techniques in metabolomics

Techniques NMR GC–MS LC–MS

Detection range Nanomolar Sub-picomolar concentrations Sub-femtomolar concentrations

Sample preparation Minimum sample preparation, fast, and
non-invasive

Complicated sample preparation steps that may lead to a metabolite loss

Analysis Reproducible due to its non-destructive
nature

Less reproducible due to the chemical derivations necessary

Isomer identification Powerful tool Difficult to acquire Difficult to acquire

Isotope-selective detection Powerful tool Difficult to acquire Difficult to acquire

Utilized in vivo Yes No No

Major limitation Lower sensitivity and limited resolution of
individual metabolites from complex samples

Thermal degradation of analytes Matrix effects, ion suppression, and
differential adduct formation

2571Clin Rheumatol (2021) 40:2569–2579



[33]. These fluids include urine, saliva, cerebrospinal fluid,
SF, semen, plasma, serum, and whole blood. These biofluids
provide potential advantages to monitor the state of biological
organisms. Therefore, in the future, the metabolomics of bio-
logical fluids could play a key role in public health [34].

Blood

Plasma and serum are excellent sources due to the large num-
ber of metabolites that can be detected from them, thus con-
tributing to the novel markers associated with the OA risk [34,
35]. Zhang et al. [36] collected plasma from patients with OA
and healthy donors. They found that six biochemicals are
associated with OA, but arginine played the leading role in
discriminating OA from controls. This study suggested that an
arginine depletion in OA would result in an imbalance be-
tween cartilage repair and damage due to the overactivity of
the arginine-to-ornithine pathway. Zhai et al. [37] studied
serum-based metabolomics of OA in humans. They compared
123 female knee OA cases and 299 controls in the discovery
sample and then designed an independent replication to verify
their results. They found that 14 metabolite concentration ra-
tios were significantly correlated to knee OA, especially the
ratio of the BCAA to histidine, as well as valine to tryptophan,
arginine, and glycine. These findings were later supported by
Zhang et al. (2016a) and extended to the male population.
Maher et al. [34] studied the serum of sheep that had under-
gone meniscal destabilization (MD), anterior cruciate liga-
ment transaction (ACLT), or sham operations after 4 weeks
and 12 weeks using 1H NMR spectroscopy. Their results
suggested that metabolic changes in ACLT were more exten-
sive compared to MD. They documented increased concen-
trations of dimethyl sulfone in MD after 4 weeks. An increase
was also evident in the concentration of 3-methylhistidine and
an obvious decreased level in BCAA in ACLT-induced OA
over both time points. Furthermore, the increased concentra-
tions of glutamine, creatine, and creatinine after 12 weeks are
associated with altered muscle metabolism.

Urine

Urine samples serve as excellent tools compared to other
biofluids since they are easy to sample and are non-invasive.
Furthermore, urine needs minimum sample preparation due to
its lower protein content. These advantages have ensured the
widespread use of urine as an analytical tool in clinical prac-
tice [38].

A study had examined urine samples by NMR spectrosco-
py from 22 patients with OA and 22 controls who both
underwent the Intensive Diet and Exercise for Arthritis and
suggested that differences in metabolism could be useful in
the progression of OA [39]. The Intensive Diet and Exercise
for Arthritis study showed that a loss of body weight and a

reduction of pain were associated with the levels of
interleukin-6 and C-reactive protein in overweight and obese
adults with knee OA [40]. This group documented increased
concentrations of hydroxybutyrate, pyruvate, and glycerol. In
addition, they reported an increased ratio of creatine-to-
creatinine in patients with OA and elevated levels of
methylhistamine and histidine [39]. Another metabolomic
study based on GC–MS using urine was able to distinguish
patients with OA from healthy controls. This study described
significantly elevated levels of aconitate, isocitrate, citrate,
and histamine in patients with OA compared with the healthy.
In contrast, it also showed lower levels of histidine and gluta-
mine in the urine from patients with OA [41].

Synovial fluid

SF could provide a real-time and joint-specific metabolic pro-
file of OA because it is a bathing solution that is in direct
contact with all the tissues of the entire joint. Therefore, SF
could allow for comprehensive detection of the diseased joint
[42].

Carlson et al. [43] found that 35 metabolites were statisti-
cally important in identifying the separation between human
OA and healthy SF via LC–MS. These metabolites included
phosphatidylcholine (PC), lysophosphatidylcholine (lysoPC),
ceramides, myristate derivatives, and carnitine derivatives.
Enrichment analyses of these significant metabolites suggest
chondroitin sulfate degradation with arginine, proline, and
nitric oxide (NO) metabolism upregulated in OA. Another
study conducted byMickiewicz et al. [44] utilized NMR com-
pared SF collected from patients with OA and post mortem
samples. Remarkable decreases of methionine, N-
phenylacetyl glycine, ethanol, creatine, O-acetyl-carnitine,
and 3-hydroxybutyrate concentrations were observed in the
OA. Alternatively, fructose and citrate concentrations were
higher in OA than in non-OA controls. In an ovine model,
the NMR assessed significantly dysregulated in an anterior
cruciate ligament reconstruction injury through SF. Theymea-
sured 65 metabolites, and 6 of them, that were isobutyrate,
glucose, hydroxyproline, asparagine, serine, and uridine, were
relevant to early post-injury degenerative. Moreover, a large
percent of them were associated with the hypoxic and acidotic
conditions result from injured and inflamed joint [45].

In summary, several types of biological fluids and tissue
extracts of OA have been examined and have shown signifi-
cant metabolic changes between OA and non-OA (Table 2).

Metabolic pathways likely contributing to OA

During the initiation and development of OA, the majority of
metabolomic profiling approaches reveal changes associated
with energy metabolism (e.g., glucose metabolism,
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tricarboxylic acid cycle (TCA), and ß-oxidation pathway),
lipid metabolism, the eicosanoid pathway, amino acid metab-
olism, and other metabolic factors [5]. The present studies
reveal that the pathogenesis of OA may be significantly relat-
ed to perturbations of amino acid metabolism. These altered
amino acids (e.g., BCAA, arginine, and alanine), as well as
phospholipids, were identified as potential biomarkers to dis-
tinguish patients with OA from healthy counterparts.

Branched-chain amino acids

Leucine, isoleucine, and valine are essential amino acids,
meaning they are not produced by our bodies and must be
taken in as part of our diet. They are also known as BCAA
due to their non-linear aliphatic side chains. They make up
approximately one-third of skeletal muscle essential amino
acids and are essential fuels for body energy metabolism. A
number of studies have indicated that significantly dysregu-
lated BCAA concentrations are linked to OA [47, 48]. Recent
studies have rekindled BCAA as biomarkers associated with
obesity since weight reduction improves the BCAA profile.
Moreover, BCAA have been suggested as a major predictor of
insulin resistance and cardiovascular diseases [49].
Meanwhile, obesity has long been recognized as a strong risk
factor for knee OA, type 2 diabetes, and cardiovascular dis-
eases, and cardiovascular diseases could lead to metabolic OA
[50, 51]. BCAA are activators of the mammalian target of
rapamycin (mTOR) signaling pathway that regulates a variety
of biological functions, such as autophagy [52]. The increased
BCAA levels could lead to reduced autophagy and change
cell survival and overall tissue homeostasis. BCAA promote
mononuclear cell migrations via an activation of mTOR1,
which suggests a potential for increased inflammation in
OA. BCAA supplements are associated with the increased
production of the main proinflammatory cytokines involved
in the pathophysiology of OA, including IL-1 and 2, tumor
necrosis factor–alpha, and interferon-gamma [53], which are

implicated in the degeneration of the articular cartilage matrix
[54]. Figure 2 shows a schematic overview of the BCAA
metabolic pathway in relation to OA.

Arginine

Arginine is classified as a semi-essential amino acid in
humans and serves as the precursor for the synthesis of many
molecules, including urea, NO, proline, glutamate, creatine,
and agmatine [55]. Arginine may lead to inflammation-
associated diseases, including OA, due to the functions of
anti-inflammation and anti-oxidation [56]. Furthermore, re-
cent evidence suggests that arginine concentrations are de-
creased in patients with OA, which has likely contributed to
the progression of OA [57, 58]. Furthermore, there are com-
peting metabolic pathways for arginine as a substrate by argi-
nase (ARG) and NO synthase (NOS). ARG catalyzes L-
arginine into L-ornithine in the liver to facilitate the generation
of urea. Ornithine can form a metabolic precursor for proline,
a key amino acid especially enriched in collagen that contrib-
utes to collagen and polyamine synthesis and cell proliferation
resulting in fibrosis [59, 60]. Meanwhile, arginine is catabo-
lized to NO and citrulline by NOS [61]. However, the role of
NO in the development of OA remains inconclusive. Some
studies have suggested that NO and its redox derivatives may
play protective roles in a joint [62]. However, other studies
have shown a destructive role in mediating the inflammatory
response and apoptosis, inhibiting the synthesis of both colla-
gen and proteoglycan, and activating matrix metalloprotein-
ases [43, 63]. A schematic overview of the arginine metabolic
pathway in relation to OA is shown in Fig. 3.

Phospholipids

Phospholipids are important components of the SF that con-
tribute to articular joint lubrication [43]. Kosinski et al. found
that SF contains several phospholipid classes including PC,

Table 2 Summary of the metabolites altered in OA samples

Experimental model Specimen Techniques Upregulated metabolites Downregulated metabolites References

Human Cartilage NMR – N-acetyl, alanine [30]

Human Synovium GC–MS/LC–MS Prolylhydroxyproline, glutamine,
acetylcarnitine

4-methyl-2-oxopentanoate [31]

Human Plasma UPLC–MS – Arginine, PC, lysoPC [36]

Human Serum LC–MS BCAA – [37]

Human Plasma LC–MS BCAA, lysoPC PC [46]

Human Urine NMR Hydroxybutyrate, pyruvate glycerol Methylhistamine, histidine [39]

Human Urine GC–MS Aconitate, isocitrate, citrate, histamine Histidine, glutamine [41]

Human Synovial fluid NMR Fructose, citrate Methionine, N-phenylacetyl glycine,
ethanol, creatine, 3-hydroxybutyrate

[44]

Ovine Synovial fluid NMR Isobutyrate, glucose Hydroxyproline [45]

UPLC-MS ultra-performance liquid chromatography-tandem mass spectrometry
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lysoPC, and phosphatidylethanolamine. Moreover, PC is
the key phospholipid class in SF. Compared with the con-
trols, SF from patients with OA had higher levels of
phospholipids. Therefore, phospholipids, such as PC and
lysoPC, may be associated, at least in part, with the path-
ogenesis of OA [64, 65]. PCs are converted into lysoPCs
by phospholipase A2 (PLA2) [66]. The increased lysoPC-
to-PC ratio [46] suggests an increased activity of PLA2 to
convert PCs to lysoPCs, which reveals either an increased
lysoPC concentration or a decreased PC concentration.
Furthermore, the deficiency in PCs, especially unsaturated
PCs, could lead to articular cartilage damage [67]. PLA2
acts as a chemoattractant at the sites of inflammation and
promotes the inflammatory reaction [36], which suggests
that PLA2 may be an important effector contributing to
OA development. Subsequently, lysophosphatidic acid
(LPA) is generated by autotaxin from lysoPCs [68]. An
increased level of autotaxin has been detected in patients
with OA compared to normal controls [69], and LPA is
involved in the development of neuropathic pain and con-
tributes to inflammation [70, 71]. In addition, the in-
creased activity of PC to lysoPC could release free fatty
acids, such as arachidonic acid, which may lead to OA
joint symptoms, such as cartilage degradation [72]. A

schematic overview of the phospholipid metabolic pathway
in relation to OA is shown in Fig. 4.

Alanine

Alanine, one of the 20 amino acids that constitute the proteins
of the human body, is synthesized in the liver and obtained
from diet. The synthesis of carnosine in skeletal muscle is
limited by the availability of beta-alanine. In addition, as a
functional amino acid, alanine plays an important role in cell
growth and physiological metabolism [73]. It is generally be-
lieved that alanine is dysregulated in OA [74, 75]. Through the
alanine-glucose cycle, alanine is converted into glutamate and
pyruvic acid. Subsequently pyruvic acid participates in the
Cori cycle, and then both of them enter the TCA cycle to
regulate energy metabolism [76]. Evidently, a decreased level
of alanine concentration in cartilage was found that may be
associated with degradation of the collagen framework with
OA progression [30]. Adenosine triphosphate (ATP), besides
being the elementary source of energy in humans, has also
been shown to play a vital role in regulating chondrocyte
function and repairing damaged cartilage [77], for the reason
that the decrease of alanine may be attributed to the depletion
of ATP in chondrocytes derived from cartilage. On the

Fig. 3 Schematic overview of the
arginine metabolic pathway in
relation to OA. NOS and ARG
catalyze the conversion of
arginine to NO and ornithine,
respectively. Subsequently,
ornithine is converted by OAT
into proline, a contributor to
collagen and polyamine
synthesis, resulting in articular
degradation. However, the role of
NO in the development of OA is
still inconclusive

Fig. 2 Schematic overview of the
BCAA metabolic pathway in
relation to OA. BCAA are
activators of the mTOR signaling
pathway that regulates autophagy.
The increased BCAA levels
would result in reduced
autophagy to change tissue
homeostasis through this
pathway. BCAA promote
mononuclear cell migration via an
activation of mTOR1 that
suggests the potential for
increased inflammation in OA
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contrary, an increased level of alanine concentration related to
the sclerosis of subchondral bone was also found [32]. We
know that alanine can provide energy to increase work perfor-
mance and power output in the muscle cell [78]. Energy con-
sumption was increased in bone cells due to the increased
activity of the osteoblast and osteoclast in the sclerotic
subchondral bone. Therefore, it is supposed that alanine might
have a similar role to increase energy consumption in both
muscle cell and bone cells. This points out the significant
effect of alanine in the pathogenesis, suggesting an abnormal
alanine metabolism occurring in OA. Further, carefully de-
signed studies are required to identify the different perfor-
mances of alanine in different lesions of OA joint. In this
way, we can use alanine as an indicator to fix the lesion to
implement symptomatic treatment in the earlier stages of dis-
ease. Figure 5 shows a schematic overview of the alanine
metabolic pathway in relation to OA.

Conclusions and future direction

Metabolomics has been applied to several disorders.
Here, we have described the evidence in both animals
and humans showing the potential of metabolomics as a
promising tool for investigating OA. Many metabolic
samples have been evaluated, such as blood, urine, SF,
and tissue extracts. Table 2 summarizes the metabolic
changes of OA in different sample types. Considering
that OA is recognized as a tremendous heterogenous
and multifactorial disease, multiple markers are essen-
tial. Hopefully, useful biomarkers can be provided for
OA, therefore, allowing both diagnosis and prognosis.
The current literature data suggest that the metabolic
pathogenesis of OA may be significantly related to per-
turbations of amino acid metabolism. These altered ami-
no acids (e.g., BCAA, arginine, and alanine), as well as

Fig. 4 Schematic overview of
phospholipid metabolic pathway
in relation to OA. PCs are
converted into lysoPCs by PLA2,
and arachidonic acid, belonging
to free fatty acid, is produced by
the conversion of PCs to lysoPCs.
Deficiencies in PCs and the
eicosanoid pathway may lead to
articular degradation. Subsequent
metabolism of lysoPCs via
autotaxin generates LPA, which
is involved in the development of
neuropathic pain and contributes
to inflammation

Fig. 5 Schematic overview of
alanine metabolic pathway in
relation to OA. Through the
alanine-glucose cycle, alanine is
converted into glutamate and
pyruvic acid. Subsequently
pyruvic acid participates in the
Cori cycle, and then both of them
enter the TCA cycle to regulate
energy metabolism
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phospholipids, were identified as potential biomarkers to
distinguish OA from healthy individuals.

Recently, the ingestion of amino acids has actively been
investigated in nutritional science, and BCAA, as well as ar-
ginine, could be used as novel nutraceuticals for OA as men-
tioned above. A present clinical study has shown that exercise
therapy combined with BCAA supplements could lead to a
significant improvement in contralateral hip abductor muscle
strength in women with hip OA [79]. The elderly are more
susceptible to OA, and the BCAA uptake response is reduced
with aging [80]. Therefore, BCAA supplements may be effec-
tive for OA. Unlike BCAA, the body can synthesize L-argi-
nine, but exogenous supplements of L-arginine may also be
necessary. Oral supplementation with L-arginine is a benefit
to cardiovascular functions and may help treat certain medical
conditions [81, 82]. Meanwhile, L-arginine supplementation
is used to enhance both tissue growth and general perfor-
mance, potentiate the ergogenic potential and muscle toler-
ance to high intensive work and the gas exchange threshold,
decrease the recovery performance period, and improve
wound healing [83]. Arginine is also a potentially novel
anti-obesity amino acid and may be beneficial for the treat-
ment of obesity, which is a risk factor of OA [84]. Moreover,
PCs are converted into lysoPCs by PLA2, which also produce
LPA and free fatty acids. Thus, PLA2 may be a novel target to
develop new drugs to improve OA. In parallel, LPA could be
an attractive therapeutic target for both pain and OA patho-
genesis. Alanine is identified as a potential biomarker of OA.
As mentioned, the performance of alanine varies at different
lesions of the OA joint, such as cartilage and subchondral
bone. Therefore, it is likely used as an indicator to fix the
lesion region to implement symptomatic treatment in the ear-
lier stages of the disease. While carefully designed studies are
required to confirm these findings, metabolomics is an excit-
ing field in systems biology that may broadly apply to clinical
applications in the foreseeable future and minimize the nega-
tive effects of OA in society.
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