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Potential role of mitochondria in synoviocytes
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Abstract
Synoviocytes are located in the synovium lining layer, which is composed of macrophage-like synoviocytes (MLS) and
fibroblast-like synoviocytes (FLS) with different characteristics. Mitochondria, which exist in most cells, are two membrane-
covered organelles. In addition to providing the necessary ATP for synoviocytes, mitochondria are involved in the regulation of
redox homeostasis and the integration of synoviocytes death signals. In recent years, mitochondrial dysfunction has been found in
rheumatoid arthritis (RA) and osteoarthritis (OA). Interestingly, recent studies have started uncovering that mitochondria that
were previously reported to play a role in chondrocytes or immune cells, but not known to have pronounced roles in
synoviocytes, can actually play crucial roles in the regulation of the pathological properties of the synoviocytes. The purpose
of this review is to summarize our current understanding of the key role of mitochondria in synoviocytes, including mitochondrial
dysfunction in synoviocytes can induce and aggravate inflammatory responses and changes in mitochondrial structure and
function with the involvement of multiple cytokines, signal pathway, and hypoxic state of synovial tissue alter the response of
synoviocytes to apoptotic stimulation. Also, mitochondrial abnormalities in synoviocytes promote the synoviocytes invasion and
proliferation.
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Introduction

The synovium is a special loose connective tissue that attaches
to the edge of articular cartilage and inwardly to the non-
articular area of the capsule, covering the surface of the cap-
sule, internal ligaments, bones, and tendons. Its main function
is to produce synovial hormone and hyaluronic acid, thus
through the synovial fluid to help cartilage obtain nutrition.
Normally, the synovial membrane has two layers: the intimal
lining layer and the sublining layer. Synoviocytes are located
in the synovium lining layer, which is composed of

macrophage-like synoviocytes (MLS) and fibroblast-like
synoviocytes (FLS) with different characteristics [1].

The detailed ontogeny of FLS is unclear, although it has
been reported that FLS are mesenchymal stem cells and
display typical properties of fibroblasts, including expres-
sion of CD90 (Thy-1), type IV, and V collagens, and
vimentin [2]. Fibroblast-like synoviocytes are more abun-
dant than MLS and are mainly characterized by the pro-
duction of lubricin and hyaluronan, the main constituent of
synovial fluid and extracellular matrix [3]. In addition,
FLS also express cadherin-11, vascular adhesion molecule
1(VCAM-1), and are involved in the synthesis and degra-
dation of cartilage and bone [2]. Macrophage-like
synoviocytes most certainly are derived from embryonic
precursor cells, but the detailed ontogeny is still cramped.
Immunohistochemical studies have shown that MLS has
characteristic surface receptors of macrophages, with the
function of phagocytic intracellular debris, foreign bodies,
and cel l del ivery [4] . In vi t ro, macrophage-l ike
synoviocytes express DR antigens, Fc receptors, and
monocyte/macrophage markers CD14 and CD68. MLS
has a limited life span, rarely surviving more than a few
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weeks in vitro. After three or four generations, proliferat-
ing FLS are the dominant cell type [2].

In response to environmental stimuli (include infection
and/or tissue injuries), synoviocytes are activated. Activated
FLS secrete some cytokines to start or exacerbate inflamma-
tion like interleukin (IL)-6, a main proinflammatory factor [5].
In certain disease stimuli, such as rheumatoid arthritis (RA),
activated FLS have characteristics of excessive proliferation
and resistance to apoptosis, which lead to an increase in the
number of FLS [4]. The hyper survival character of FLS in RA
is regarded as tumor-like behavior. In addition, activated FLS
secrete mediators, such as matrix metalloproteinase (MMP)
and VCAM-1, to invade the articular cartilage [2, 6].
Compared with FLS, activated MLS produce mainly proin-
flammatory cytokines, such as IL-1 and tumor necrosis factor
α (TNFα), to accelerate inflammation by recruiting other im-
mune cells and activating FLS [4].

Mitochondria are two membrane-covered organelles that
exist in most cells. Mitochondria are composed of four func-
tional areas: mitochondrial outer membrane (OMM), mito-
chondrial intermembrane space, mitochondrial inner mem-
brane (IMM), and mitochondrial matrix. OMM contains
membrane pore proteins and Bcl-2 family proteins which con-
trol the substances in and out of mitochondria and regulate
mitochondrial apoptosis [7]. Complexes I, II, III, and IV in
the electron transport chain (ETC) of mitochondria and ATP
synthase are mainly located in IMM, where it is the main site
of synthesis of ATP. Mitochondrial intermembrane space
mainly contains cytochrome c (Cyto c), apoptosis-inducing
factor (AIF), second mitochondria-derived activator of
caspases (Smac), and procaspases 3 and 9. These substances
play an important role in mitochondria-mediated apoptosis
[8]. Mitochondrial matrix contains genetic material such as
mitochondrial DNA (mtDNA), as well as many proteins re-
lated to energy metabolism.

In the process of consuming oxygen to synthesize ATP,
mitochondria produce reactive oxygen species (mtROS) due
to proton leakage in ETC. ROS provokes oxidation of biolog-
ical molecules including mitochondrial DNA, lipids, and pro-
teins. Oxidative mtDNA damage causes the formation of pro-
mutagenic DNA adducts such as 8-oxo-7, 8-dihydro-2′-
deoxyguanine (8-oxo-dG). Oxidation of polyunsaturated fatty
acids in mitochondrial membranes results in the production of
4-hydroxynonenal (4-HNE), which can impair structure and
biological properties of DNA, phospholipids, and nucleophil-
ic amino acids of mitochondria [9–11]. In general, mtROS
increases the risk of mtDNA mutation and impairment of
ATP synthesis, which contributes to overall mitochondrial
dysfunction [12].

In addition to providing the necessary ATP for
synoviocytes, mitochondria are involved in the regulation of
redox homeostasis and the integration of synoviocytes death
signals [13]. In recent years, mitochondrial dysfunction has

been found in RA and osteoarthritis (OA) [14, 15].
Interestingly, studies have started uncovering that mitochon-
dria that were previously reported to play a role in
chondrocytes or immune cells, but not known to have pro-
nounced roles in synoviocytes, can actually play crucial roles
in the regulation of the pathological properties of the
synoviocytes. The purpose of this review is to summarize
our current understanding of the key role of mitochondria in
synoviocytes (Fig. 1).

The role of mitochondria in synoviocytes

Mitochondria are the key organelles in synoviocytes for the
synthesis of ATP by aerobic respiration and the regulation of
apoptosis. Many studies have shown that the abnormality of
synoviocytes is related to the changes of mitochondrial mor-
phology, increased mtROS, and the damage of mitochondrial
function. However, whether these changes in mitochondrial
function and structure can directly cause synoviocytes abnor-
malities, or whether changes in related cytokines and signal
pathways caused by mitochondrial abnormalities can directly
promote changes of synoviocytes and cause the occurrence of
related diseases, is still a new field to be studied.

The physiological function of mitochondria in
synoviocytes

Mitochondria, indispensable organelles in mammalian cells,
synthetize ATP to provide energy for cells by performing the
Krebs cycle and oxidative phosphorylation. In addition to
ATP production, mitochondria in synovial cells are also in-
volved in many other important cellular functions. For exam-
ple, mitochondria produce superoxide radicals to synthesize
hydrogen peroxide during electron transport in the respiratory
chain. Hydrogen peroxide is a relatively stable ROS that has
been postulated to play an important role in controlling energy
metabolism, the cell cycle, and the expression of numerous
redox-sensitive genes [16–18]. Moreover, mitochondria play
a crucial role in the regulation of programmed apoptosis of
dysfunctional synoviocytes by regulating the membrane po-
tential, which is vital to maintain the homeostasis.

Mitochondrial dysfunction promotes the
inflammation of synoviocytes

Inflammation of synoviocytes is a cellular and molecular re-
sponse to certain stimuli such as trauma, infection, and other
damage factors. Some studies confirm that the severity of
inflammation in synoviocytes is closely related not only to
the degree of pain, but also to a loss of articular cartilage
and bone destruction [19, 20]. The mechanism of
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inflammation in synoviocytes is complicated and plays an
important role in the pathogenesis of inflammatory joint
disease.

Recent studies suggest that mitochondria have powerful
immune activities. Because they share a common ancestor,
the main components of mitochondria have many similarities
with bacteria. Therefore, when mitochondrial components are
released into the cytoplasm, they may act as damage-
associated molecular patterns (DAMPs), which will be recog-
nized by innate immune receptors [21]. Like bacterial DNA,
endogenously oxidized mtDNA instead of nuclear DNA stim-
ulate nuclear factor kappa-B (NF-κB), an important signaling
pathway associated with inflammation and decreased apopto-
sis, and resulted in the production of TNFα as a result of its
content of unmethylated CpG motifs [22]. Because mtDNA is
close to electron transport chain reaction and mtDNA damage
repair efficiency is low, it is easy to become the target of
oxidative damage. Oxidative mtDNA results in the formation
of 8-oxo-dG, a pro-mutagenic DNA adducts. Studies have
shown that the number of mutations of MT-ND1 gene for
mitochondrially encoded NADH dehydrogenase 1 of FLS mi-
tochondria fromRA patients is approximately twice that of the
OA group, which may influence cellular function, contribut-
ing to the acquisition of transformed properties of FLS. In
addition, some mtDNA mutation of FLS has resulted in po-
tential non-self major histocompatibility complex (MHC)
peptide epitopes, which will be recognized by the immune

system, aiding in the recruitment of T cells and inflammatory
factors [23–25].

Mitochondria-derived ROS, which is known as mtROS, is
produced as a byproduct of the mitochondrial electron trans-
port chain. mtROS has an established role in inflammation, as
it has been shown to activate the NLRP3 inflammasome, one
pathway for the secretion of IL-1β and generation of active
caspase-1 [26]. Studies indicate that ROS can mediate IL-1β-
induced cyclooxygenase-2(COX-2) expression in human sy-
novial fibroblasts [27]. In addition, mtROS are strongly im-
plicated in TNF-α and may mediate the activation of NF-κB
[28]. Marta et al. reported that mitochondrial dysfunction in-
duced by oligomycin (OLI), an inhibitor of mitochondrial
ATP synthase, significantly stimulated mtROS production as
well as low-grade expression of inflammatory cytokines such
as COX-2, prostaglandin E2 (PGE2), and IL-8 in cultured
synoviocytes. This phenomenon seems to depend on the pro-
duction of mtROS and the activation of NF-κB. Furthermore,
resveratrol, a natural antioxidant, significantly reduced the
inflammatory response by decreasing mtROS production
and NF-κB activation [29]. The experiment confirmed that
mitochondrial dysfunction could induce a low-grade inflam-
matory response and synergistically intensify the expression
of cytokine-induced inflammatory mediators in normal hu-
man synoviocytes. Additionally, animal studies have shown
that OLI-induced mitochondrial dysfunction can increase
mtROS, 4-hydroxy-2-nonenal(4-HNE), as well as the

Fig. 1 Structure and function of mitochondria. Mitochondria are
composed of four functional areas: OMM, mitochondrial
intermembrane space, IMM, and mitochondrial matrix. OMM contains
membrane pore proteins which control the flow of material in and out of
mitochondria and regulate mitochondrial apoptosis. Complexes I, II, III,
and IV in the ETC of mitochondria and ATP synthase are mainly located
in IMM, where it is the main site of synthesis of ATP. Mitochondrial
intermembrane space mainly contains Cyto c and other proapoptotic
factors. Mitochondrial matrix contains genetic material such as mtDNA,

as well as many proteins related to energy metabolism. In the process of
consuming oxygen to synthesize ATP, mitochondria mtROS due to
proton leakage in ETC. ROS provokes oxidation of biological
molecules including mitochondrial DNA, lipids, and proteins. OMM,
mitochondrial outer membrane; IMM, mitochondrial inner membrane;
ETC, electron transport chain; Cyto c, cytochrome c; mtDNA,
mitochondrial DNA; and mtROS, mitochondria produce reactive
oxygen species
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expression of nuclear factor erythroid 2-related factor 2
(Nrf2), an oxidative stress-related transcription factor, which
induces an inflammatory response in the rat knee joint [30].
Studies suggest that mitochondrial dysfunction of FLS medi-
ated by tumor necrosis factor like cytokine 1A/tumor necrosis
factor receptor 2(TL1A/TNFR2) axis may amplify the expres-
sion of IL-1β, IL-6, and IL-8 by regulatingmtROS production
[31]. In addition, tumor necrosis factor receptor 1(TNFR1)
mutant mouse fibroblasts show evidences of altered mito-
chondrial function, with increased mtROS generation and
sustained mitogen-activated protein kinases (MAPK) activity,
which enhances innate immune responses [32].

Hypoxia is a basic metabolic environment common in
many inflammatory diseases. In this environment, the func-
tional state of synoviocytes is highly susceptible. Hypoxia
increases mitochondrial membrane potential by activating mi-
tochondrial ATP-sensitive potassium channels, thus inducing
ROS overproduction. Hypoxia-induced mitochondrial dys-
function drives mitochondrial genome mutagenesis in rheu-
matoid arthritis fibroblast-like synoviocytes (RAFLS) [25, 33,
34]. Studies indicate that some mitochondrial mutation of
synoviocytes has resulted in potential non-self MHC peptide
epitopes, which may be recognized by the immune system
[23, 35]. In addition, synovial tissue mtDNA mutation fre-
quency correlated with synovial fluid expression of TNFα
and interferon γ (IFNγ), two common pro-inflammatory cy-
tokines [36]. Synoviocytes exposed to 1% hypoxia exhibited
elevated accumulation of 8-oxodG and 4-HNE [25]. 4-HNE
significantly increased secretion of IL-8, a key pro-
inflammatory factor [18]. TNF blocking therapy can signifi-
cantly inhibit oxidative stress and hypoxia-induced mitochon-
drial mutations, thereby improving inflammation [37].
Furthermore, TNFα significantly induces mtDNA mutation,
coupled with increased ROS production, mitochondrial mem-
brane potential, and mitochondrial mass in RAFLS [36].

All together, these evidences suggest that mitochondrial
dysfunction promotes the release of proinflammatory media-
tors and the aggregation of inflammatory cells, thus promoting
the inflammation of synoviocytes. Notably, these inflamma-
tory mediators, released by mitochondrial dysfunction, in turn
stimulate the new synoviocytes, leading to mitochondrial
damage in new synovial cells, creating a vicious cycle (Fig. 2).

Abnormal mitochondrial structure and function
inhibit the apoptosis of synoviocytes

Apoptosis is the activation of the death pathway of cells in-
duced by specific endogenous and exogenous signals. As the
main executor of endogenous pathway of programmed cell
death, mitochondria have many mediators to regulate apopto-
sis. The key for the initiation of mitochondrial-mediated apo-
ptosis pathway is the increased permeability of the outer mem-
brane of mitochondria, which leads to the apoptotic factors of

mitochondria, such as Cyto c, AIF, and Smac, into the cyto-
plasm. (Fig. 3).

Structural changes in mitochondria may play an important
role in the resistance to apoptosis of synoviocytes. In 1988, a
team of researchers linked mitochondrial abnormalities to
synoviocytes by finding large, abnormally expanded mito-
chondria in early RAFLS [38]. Studies which were performed
to assess the role of extracellular cytochrome c proposed that
the decrease of Cyto c level reflects its consumption in syno-
vial tissue to resist apoptosis [39]. In addition, the experiment
demonstrates the decreased expression of Cyto c in TL1A-
treated RAFLS, which might contribute to making RAFLS
more resistant to apoptosis [31]. Interestingly, Kim et al. re-
ported that IL-17, a well-known pro-inflammatory cytokine,
impairs apoptosis in RAFLS via mitochondrial dysfunction-
mediated autophagy (a phenomenon in which cells clear aging
and damaged mitochondria) [40].

The Bcl-2 family protein is a key regulatory molecule of
cell apoptosis, and mitochondria are the targets for its regula-
tion of the internal apoptotic pathway. The integrity of the
mitochondrial outer membrane is regulated by the balance
between pro-apoptotic factors and anti-apoptotic factors in
the Bcl-2 family protein [41, 42]. Evidence also suggests that
enhanced expression of anti-apoptotic factors of Bcl-2 family
members such as Bcl-2 and Bcl-xl in synoviocytes contributes
to the survival of synoviocytes [43, 44]. The potential mech-
anisms of Bcl-2 family member expression change have been
examined. The recent research shows that IL-17 reduces the
expression of the genes for oxidative phosphorylation com-
plex components, which may result in impaired respiratory
capacity in mitochondria of FLS. Furthermore, IL-17 is a po-
tent inhibitor of apoptosis of synoviocytes by increasing the
expression of Bcl-2 [40]. IL-15, a cytokine with antiapoptotic
properties, can also increase the expression of Bcl-xl and Bcl-
2, thus promoting the apoptosis of synoviocytes [45]. In ad-
dition, study confirms that IL-6/sIL-6R complex might con-
tribute to inhibit apoptosis in FLS via increased expression of
Bcl-2 and NF-κB activation [46]. Similarly, TL1A/TNFR2-
mediated mitochondrial dysfunction contributes to making
FLS more resistant to apoptosis via increased expression of
Bcl-2 and downregulation of apoptotic factor caspase-8 [31].

NF-κB, a signal pathway known to have an anti-apoptotic
effect, has been shown to be activated by TNFα, which might
upregulate the anti-apoptotic molecules A1, thus promoting
the resistance of synoviocytes to apoptosis. Inhibition of
NF-κB activation sensitized FLS to TNFα-induced apoptosis
via cleavage and activation of Bid, a pro-apoptotic of Bcl-2
family members, by caspase-8. In addition, the activation of
NF-κB was found to block the activation of caspase-8 [8, 47,
48].

It has been confirmed that hypoxia induces the Bcl-2/ade-
novirus E1B 19-kd protein-interacting protein 3 (BNIP-3) ex-
cessive expression, so as to promote apoptosis of
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synoviocytes. But its proapoptotic effects may be inhibited by
TNFα and IL-1β [49]. This provides a link between inflam-
mation and resistance to apoptosis.

In general, the resistance of synoviocytes to apoptosis is a
rather complex process in which changes in the structure and
function of mitochondria play an important role. Cytokines
such as IL-15, IL-17, IL-6, TNFα, and TL1A, signal path-
ways such as NF-κB, and hypoxic state of the synovial tissue
are also involved (Fig. 3).

Mitochondrial abnormalities promote the
invasiveness of synoviocytes

Synoviocytes invasion is an important cause of cartilage and
bone destruction, and the mechanisms are complex. FLS pro-
duce several enzymes such as matrix metalloproteinases
(MMP) and collagenases that are important for their invasive
features and contribute to tissue destruction. In addition, the
invading synoviocytes express several adhesion molecules,
such as VCAM-1 and various integrins that influence adjacent
chondrocytes to produce enzymes that degrade the local ex-
tracellular matrix [4, 50]. Henrotin, Y. E et al. reported that
ROS produced by FLS stimulates FLS to secrete MMP, in-
hibits cartilage matrix synthesis, and accelerates bone resorp-
tion [51]. In addition, hypoxia-induced abnormal mitochon-
drial morphology and mitochondrial dysfunction induce lac-
tate secretion in FLS, which in turn induced FLS invasion

[52]. Thus, mitochondrial abnormalities promote the invasive-
ness of synoviocytes.

Mitochondrial abnormalities promote synoviocytes
proliferation

Synovial proliferation occurs mainly due to the accumulation
of FLS and MLS. Compared with FLS, MLS has little or no
proliferation in vitro [4]. By and large, synoviocytes prolifer-
ation is difficult to prove. Growth of the synoviocytes popu-
lation is more likely due to an imbalance between cell prolif-
eration, survival, and death. Basic fibroblast growth factor
(bFGF) is a kind of heparin-binding protein that promotes cell
division and can induce the proliferation and differentiation of
many kinds of cells [53]. Studies suggest that hypoxia-
induced abnormal mitochondrial morphology of RAFLS
might induce secretion of bFGF in vitro, thus leading to
synoviocytes proliferation [52]. 4-HNE, an important product
of mitochondrial dysfunction, also has been shown to signif-
icantly increase bFGF secretion [18]. In addition, research
suggests that ROS produced by mitochondria can increase
mtDNA mutational burden. If the mutation occurs in genes
promoting cell survival, mtDNA mutational may promote
synoviocytes proliferation [35]. All together, these experi-
ments confirmed the relationship between mitochondrial ab-
normalities and synoviocytes proliferation.

Fig. 2 Mitochondrial dysfunction promotes the inflammation of
synoviocytes. Mitochondria-derived ROS that be known as mtROS, are
produced as a byproduct of the mitochondrial electron transport chain.
Hypoxia-induced mitochondrial dysfunction drives mtROS overproduc-
tion and results in elevated accumulation of 4-HNE, which promotes the
expression of IL-8. TL1A/TNFR2 axis may amplify the expression of IL-
1β, IL-6, and IL-8 by regulating mtROS production. mtROS are strongly

implicated in TNF-α and may mediate the activation of NF-κB.
Similarly, ROS can mediate IL-1β-induced COX-2 expression in human
synovial fibroblasts. TL1A/TNFR2, tumor necrosis factor like cytokine
1A/tumor necrosis factor receptor 2; mtROS, mitochondria produce reac-
tive oxygen species; 4-HNE, 4-hydroxynonenal; IL, interleukin; TNF-α,
tumor necrosis factor α; NF-κB, nuclear factor kappa-B; COX-2, cyclo-
oxygenase-2
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Mitochondria are involved
in the pathogenesis of diseases

The mitochondria in RA pathogenesis

RA is a complex autoimmune disease characterized by syno-
vial hyperplasia and infiltration of inflammatory cells, leading
to pannus and destruction of articular cartilage and bone [54].
A large number of scientific studies have confirmed that the
continuous activation and invasion of RAFLS play a very
important role in the inflammatory response and cartilage
and bone damage, so it has been regarded as the main target
cell of RA by scholars in recent years.

Over the past few years, a growing body of research has
strongly suggested that mitochondrial dysfunction plays an
important role in RA. Injury and necrosis of synoviocytes
induce the release of mitochondrial damage-associated molec-
ular patterns (DAMPs), such as N-formyl peptides, mtDNA,
and ATP, from damaged mitochondria, which trigger innate
or adaptive immune responses by activating cell surface re-
ceptors or intracellular receptors, thus promote the release of
proinflammatory mediators and the aggregation of inflamma-
tory cells [55]. In addition, the hypoxic environment in the
synovial membrane can also cause mitochondrial dysfunction

of synoviocytes and increase of mtROS, leading to the forma-
tion of oxidative stress. Oxidative stress results in peroxida-
tion of biological molecules including DNA, lipids, and pro-
teins such as 4-HNE and 8-oxo-dG. These molecules further
promote glycolysis and perpetuate inflammation [56, 57].
Experimental and clinical studies report that compared with
OA, synoviocytes of RA has the obvious anti-apoptotic ability
in vivo and in vitro [58]. Several studies have found that
changes in mitochondrial function and structure can promote
the resistance of synoviocytes to apoptosis. In addition, cyto-
kines such as IL-15, IL-17, IL-6, TNFα, and TL1A, signal
pathway such as NF-κB, and hypoxic state of the synovial
tissue are also involved.

The incidence of RA increases with age. Some studies
suggest that RA may be caused by premature aging of the
immune system. Mitochondrial dysfunction is a feature of
aging. Induction of ROS and mtDNA mutations in synovium
are relevant to RA pathogenesis. However, mtDNA mutation
frequency in RA was independent of age [59]. In addition, the
increase of mtDNA mutations was found only when com-
pared with OA and not when compared with psoriatic arthritis
[35, 36].

Mitochondria have also become a key target for the treat-
ment of RA.Methotrexate (MTX), a basic drug of the disease-

Fig. 3 Abnormal mitochondrial function inhibits the apoptosis of
synoviocytes. TNFα activate Bid by caspase-8, which impairs
mitochondrial integrity by promoting the aggregation of Bax and Bak.
The activation of NF-κB by TNFα upregulates the anti-apoptotic mole-
cule A1; TL1A, IL-17, IL-6, and IL-15 upregulate the anti-apoptotic
molecule Bcl-2; IL-15 upregulates the anti-apoptotic molecule Bcl-xl;
together, these factors maintain mitochondrial integrity by inhibiting the
aggregation of Bax and Bak. Following the deficiency of mitochondrial
integrity, cytochrome c is released, activating caspase 9 and subsequently

caspase 3, which performs DNA fragmentation via a CAD. In addition,
Smac/DIABLO and Omi/HtrA2 can block the activity of IAPs. AIF and
EndoG can perform DNA fragmentation directly. TNFα, tumor necrosis
factor α; NF-κB, nuclear factor kappa-B; TL1A, tumor necrosis factor
like cytokine 1A; IL, interleukin; CAD, caspase-activated DNase;
Smac/DIABLO, Second mitochondria-derived activator of caspases/
direct inhibitor of apoptosis-binding protein with low pI; Omi /HtrA2,
heat requirement A2 protein; IAPs, inhibitor of apoptosis proteins
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modifying anti-rheumatic drug (DMARD), induces apoptosis
of synoviocytes by the alteration of the intracellular ROS
levels. Studies have shown that whether methotrexate can
induce synoviocytes apoptosis is an indication of the effec-
tiveness of the drug [60]. As a proinflammatory cytokine with
the function of increasing mitochondrial ROS production,
TNF-α plays a crucial role in the pathogenesis of rheumatoid
arthritis. Successful anti-TNF-α treatment alters the levels of
early mitochondrial genome alterations, improving synovial
hypoxia and joint inflammation [37, 61]. In addition, C.
Derambure et al. reported that pre-silencing of genes involved
in the electron transport chain (ETC) pathway is associated
with responsiveness to abatacept, a selective T cell co-
stimulation modulators [62]. Topatinib is a novel oral small
molecule drug for RA, blocking cytokine signal in the cell by
inhibiting JAK1, inhibiting abnormal immune signal trans-
duction. Experiments report that tofacitinib significantly de-
creased mitochondrial membrane potential, mitochondrial
mass, and reactive oxygen species production by RAFLS
and differentially regulated key mitochondrial genes [63]. In
particular, studies have pointed out that apoptosis induction of
fibroblast-like synoviocytes by mitochondrial pathway is an
important molecular-mechanism for herbal medicine along
with its components in treating rheumatoid arthritis [64].

The mitochondria in OA pathogenesis

Osteoarthritis (OA) is a chronic degenerative disease charac-
terized by chronic pain and dysfunction. The main patholog-
ical features of osteoarthritis include osteophyte formation,
subchondral osteosclerosis, abnormal vascularization, and de-
generation of articular cartilage [65]. Numerous studies have
confirmed that mitochondrial dysfunction in chondrocytes can
play an important role in OA pathogenesis, including dis-
abling respiratory chain activity and resulting in chondrocyte
biosynthesis defects, producing ROS to induce the inflamma-
tion of cartilage, degrading extracellular matrix by inducing
chondrocytes to secrete matrixmetalloproteinase, and promot-
ing apoptosis of chondrocytes by activating mitochondrial
mediated apoptosis pathway [66–68]. However, involvement
in the super early pathogenesis of OA, synovitis, and
synovial-related inflammatory factors can also induce the deg-
radation and destruction of articular cartilage, thus promoting
the development of OA [1]. Therefore, in recent years, more
and more scholars have shifted their focus from cartilage to
synovium.

Mitochondrial dysfunction in synoviocytes promotes the
development of OA by promoting the inflammatory response
of synoviocytes and reducing the survival ability of
synoviocytes. In cultured synoviocytes, hypoxia can induce
the loss of mitochondrial membrane potential (MMP), thus
promoting the generation of ROS, which might active the
NF-kB signal pathway and increase the level of TNF-α-

induced proinflammatory cytokines such as C-C chemokine
ligand 5 (CCL5), IL-1β, and IL-6 [69]. These results suggest
that hypoxia-induced mitochondrial dysfunction in
synoviocytes may play a role in inducing inflammation, con-
tributing to osteoarthritis pathogenesis. Because NO is in-
creased in OA, and NO is known to induce the generation of
ROS, studies were performed to investigate the effects of NO
on survival and activity of osteoarthritis FLS. Sodium nitro-
prusside (SNP), a NO donor compound, at 0.5 mM increase
the activity of complexes I and III, but reduce citrate synthase
activity, which indicates a decrease in mitochondrial mass.
Furthermore, SNP decrease Bcl-2 and procaspase-3 protein
expression [70]. This experiment showed that NO could in-
duce mitochondrial dysfunction, thus reducing the survival
rate of osteoarthritis FLS.

Aging and OA are closely linked; mitochondrial dysfunc-
tion is characterized by reduced mitochondrial integrity (qual-
ity, quantity, and DNA content) and impaired function of
electron transport chains in both aging and OA. The re-
searchers confirmed that age-related elevated levels of ROS
and oxidative stress can disrupt normal physiological signal-
ing such as insulin-like growth factor 1 (IGF1) and mitogen-
activated protein kinase (MAPK) signaling pathways, which
contribute to osteoarthritis [71]. In addition, considering the
close link between aging and mtDNA, the researchers inves-
tigated the correlation between OA and the 4977-bp mtDNA
deletion. They concluded that accumulation of the 4977-bp
deletion of mtDNA in knee cartilage increases with age,
which may be involved in the occurrence of OA [72]. In
particular, studies have shown a relationship between
mtDNA haplogroups and OA [67]. The group of Jie Fang
has demonstrated recently that Cluster TJ can help reduce
the prevalence, slowing down the radiographic changes; how-
ever, the impacts came mainly from type J and type T, respec-
tively [73]. In addition, folate deficiency induces apoptosis of
synoviocytes by promoting the overproduction of ROS from
NADPH oxidase/mitochondrial complex II and calcium per-
turbation [74].

In conclusion, mitochondria play an important role in
synoviocytes, whose dysfunction can not only induce synovi-
tis, but also promote the apoptosis of synoviocytes, which
promotes the occurrence and development of OA.

The mitochondria in psoriatic arthritis pathogenesis

Psoriatic arthritis (PsA) is an inflammatory joint disease associ-
ated with psoriasis, with a psoriatic rash accompanied by pain,
swelling, tenderness, stiffness, and dyskinesia. The end-stage of
this disease can lead to impaired skeletal sites of rigidity and
deformation [75]. The pathogenesis of the disease is unclear.
Studies have shown that an increased number of FLS and oste-
oclasts in the synovial membrane of PsA patients, and deregula-
tion of apoptosis may contribute to the perpetuation of the
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inflammatory process, which means that PsA may have some
similar mechanisms to rheumatoid arthritis [76, 77].

Mitochondrial dysfunction could contribute to the pathogen-
esis of psoriasis (Ps) and Ps-arthritis (PsA). Recent studies report-
ed that altered levels of oxidative metabolites, for example, hy-
droperoxides and carbonyl groups, were detected in PsA patients
when compared to healthy person [77]. A similar study, showed
a higher ROS production and DNA damage were found in sy-
novial fluid of PsA patients when compared to an OA group
[78]. In addition, similar to RA, hypoxia-induced mitochondrial
dysfunction can induce oxidative stress and the production of
pro-inflammatory cytokines in synovial fluid of PsA patients
[79]. These studies confirm the role ofmitochondrial dysfunction
in PsA. In particular, to test the association between mtDNA
variants and Ps/PsA, Pablo and his colleague found a significant-
ly lower frequency of haplogroup J among patients with PsA.
Haplogroup J contains somemtDNA functional variant linked to
a reduced ROS production, so this also suggests that mtDNA
may have a role in PsA [80].

Conclusion

Mitochondria in synoviocytes are important mediators in the
pathogenesis of OA and RA. The integrity and proper func-
tioning of the mitochondria are important for maintaining the
function of synoviocytes. Mitochondrial dysfunction in
synoviocytes can induce and aggravate inflammatory re-
sponses. Changes inmitochondrial structure and functionwith
the involvement of multiple cytokines, signal pathway, and
hypoxic state of synovial tissue alter the response of
synoviocytes to apoptotic stimulation. In addition, mitochon-
drial abnormalities in synoviocytes promote the synoviocytes
invasion and proliferation.

Although the important role of mitochondria in
synoviocytes has been confirmed by scholars in recent years,
the data on their specific mechanisms are limited and need to
be further explained. Moreover, considering the role of mito-
chondria in promoting inflammation and causing oxidative
damage, it will also be necessary to explore more specific
mechanisms of natural anti-inflammatory and antioxidant
drugs on mitochondria.
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