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Abstract

Precision medicine aims to personalize treatment for both effectiveness and safety. As a critical component of this
emerging initiative, pharmacogenomics seeks to guide drug treatment based on genetics. In this review article, we give
an overview of pharmacogenomics in the setting of an immunosuppressant frequently prescribed by rheumatologists,
azathioprine. Azathioprine has a narrow therapeutic index and a high risk of adverse events. By applying candidate gene
analysis and unbiased approaches, researchers have identified multiple variants associated with an increased risk for
adverse events associated with azathioprine, particularly bone marrow suppression. Variants in two genes, 7PMT and
NUDTI5, are widely recognized, leading drug regulatory agencies and professional organizations to adopt recommen-
dations for testing before initiation of azathioprine therapy. As more gene-drug interactions are discovered, our field will
continue to face the challenge of balancing benefits and costs associated with genetic testing. However, novel ap-
proaches in genomics and the integration of clinical and genetic factors into risk scores offer unprecedented opportuni-
ties for the application of pharmacogenomics in routine practice.

Key Points

» Pharmacogenomics can help us understand how individuals’ genetics impact their response to medications.

* Azathioprine is a success story for the clinical implementation of pharmacogenomics, particularly the effects of TPMT and NUDT15 variants on
myelosuppression.

* As our knowledge advances, testing and dosing recommendations will continue to evolve, with our field striving to balance costs and benefits to
patients.

* As we aim toward the goals of precision medicine, future research may integrate increasingly individualized traits—including clinical and genetic
characteristics—to predict the safety and efficacy of particular medications for individual patients.
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Precision medicine seeks to identify effective approaches
for patients based on a combination of personal factors,
including genetics and lifestyle. As part of precision
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medicine, pharmacogenomics examines how genes im-
pact patients’ responses to drugs and provides that infor-
mation to clinicians so they can personalize treatments
that maximize drug response and minimize adverse drug
reactions [1-3]. Interpersonal variability in drug response
is often unpredictable; therefore, identifying the mecha-
nisms underlying this variability remains one of the most
complex therapeutic challenges in internal medicine [4].
In rheumatology, many of our current practices include
the prescription of drugs that were efficacious in only ~
50% of patients during randomized clinical trials (e.g.,
mycophenolate treatment for lupus nephritis or anti-TNF
agents treatment for rheumatoid arthritis) [5-9] or of
drugs that have a high rate of adverse events (e.g., aza-
thioprine) [10-18].
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Genes and drug metabolism

Based on drug metabolism, genetic variation can affect indi-
vidual drug response in two key steps: activation and elimina-
tion. First, a functional variant in a gene which encodes an
enzyme responsible for activating a prodrug can affect con-
centrations of the active drug. If there is a loss-of-function
variant or a variant that decreases the function of the activating
enzyme, then the drug might have null or reduced efficacy.
Conversely, gain-of-function variants can result in excessive
drug activation and increase the risks of adverse events [19].
In either case, changes in drug dosing or drug choice might be
necessary. The second way genes can have a large effect on
drug action is due to loss-of-function variants in enzymes that
are responsible for eliminating the active drug from the body.
The resulting increased concentration of the active drug can
lead to adverse events. This risk for adverse events is particu-
larly concerning for drugs with a narrow therapeutic window
(i.e., a small difference between a dose causing side effects
and the therapeutic dose).

Pharmacogenomics approaches

The goal of pharmacogenomics is to use an individual’s ge-
netics to guide prescribing decisions. Pharmacogenomics has
used two broad methods: (1) the study of candidate gene(s)
association studies and (2) unbiased approaches to identify
functionally important variants. Candidate gene association
studies have focused on variations in genes that encode en-
zymes, drug transporters, or drug receptors. The genes are
chosen based on foreknowledge of drug metabolic pathways.
The advantage to this approach is that fewer cases are required
to have sufficient power to detect difference [4]. In contrast,
unbiased approaches—predominantly, genome-wide associa-
tion studies (GWAS), exome sequencing, and whole genome
sequencing—interrogate millions of variants [20]. GWAS are
more costly and complex, and they may obscure causative
variants because they adjust the significance threshold for
multiple comparisons; however, the unbiased approach offers
the opportunity to discover unexpected mechanisms or path-
ways [21].

Despite pharmacogenomics being a relatively new field,
the research derived from using biased and unbiased ap-
proaches has yielded substantive information regarding the
links between genetic variants and drug response. As of
December 2019, the Food and Drug Administration’s (FDA)
Table of Pharmacogenomic Biomarkers in Drug Labeling in-
cludes 404 pharmacogenomic biomarkers for 282 drugs [22].
Indeed, numerous rheumatological medications and their as-
sociated recommendations (e.g., testing and concurrent pre-
scription warnings) appear on this table: azathioprine,
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celecoxib, flurbiprofen, lesinurad, pegloticase, piroxicam,
probenecid, and upadacitinib.

Although these discoveries can and should contribute to
therapeutic decision-making, implementing
pharmacogenomics into clinical practice still faces many chal-
lenges. The first challenge is to identify clinically relevant
drug response phenotypes. Technology has brought the re-
sources to manage and interrogate genome data robustly
[23], but determining clinically important phenotypes may
not be feasible or may be too costly in time or labor, particu-
larly if the standard for clinical relevance demands a random-
ized controlled trial showing the benefit of genotyping [24].
Consequently, real-world data obtained in routine clinical care
are an attractive resource. However, the use of real-world data
to define the clinical relevance of pharmacogenomics variants
also has challenges. For example, the clinical variables used to
define response in clinical trials (e.g., DAS28, SLEDAI) may
not be recorded routinely in clinical practice. Moreover, accu-
rate collection of data still requires review of individual med-
ical records in many cases, which is labor intensive. The next
challenge is to determine which gene-drug pairs are actionable
[23]—in other words, identifying a particular genotype leads
to either a change in the recommended dose of a drug or the
substitution of an alternative drug, ideally implemented at the
point of care. Finally, we must consider the potential costs of
incorporating genetic testing in the clinical environment (e.g.,
financial or privacy-related) and carefully balance them with
the potential benefits to patients (e.g. improved disease treat-
ment). Overcoming these challenges is crucial as we move
forward into the precision medicine era.

Pharmacogenomics applied in rheumatology:
the example of azathioprine

Azathioprine and its associated side effects mark the most
successful application of pharmacogenomics to rheumatology
clinical practice and one of the most successful cases in inter-
nal medicine more broadly. In this review, we describe some
of the concepts and history related to azathioprine and present
the rationale supporting current guidelines to illustrate the cur-
rent status and the potential direction of pharmacogenomics in
general.

Thiopurine drugs (azathioprine and its metabolite 6-
mercaptopurine) are immunosuppressants that are used wide-
ly for treating autoimmune conditions (e.g., systemic lupus
erythematosus and ulcerative colitis), forms of cancer, and
preventing organ transplant rejection. Azathioprine is rapidly
converted to 6-mercaptopurine (6-MP) outside of the cell; 6-
MP is then transported inside the cell where it is converted
into thioinosine monophosphate (TIMP). Through a series of
reactions, TIMP is converted, in part, to active metabolites for
treatment, 6-thioguanine nucleotides (6-TGNs: deoxy-
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thioguanosine monophosphate, deoxy-thioguanosine triphos-
phate, thioguanosine diphosphate, thioguanosine
monophosphate, and thioguanosine triphosphate). 6-TGNs
suppress the immune system by incorporating into DNA that
is replicating and RNA that is translating as well as blocking
the de novo pathway of purine synthesis (Fig. 1) [25, 26].
However, as first discovered in 1983, excessive 6-TGNs’ con-
centrations are toxic and can cause bone marrow suppression
[27, 28] and certain types of cancers [29, 30].

Variants in TPMT can predict leukopenia

The first link between phenotypic variations in the enzyme
thiopurine methyltransferase (7PM7) and variability in 6-
TGN concentrations was observed in 1987 [31]. We now know
that TPMT inactivates intermediate compounds during the me-
tabolism of thiopurine drugs, thereby reducing the final concen-
tration of 6-TGNs at a given dose of the drug (Fig. 1). With this
knowledge, geneticists used candidate gene association studies
to identify variants in TPMT responsible for reduced activity.
Now, they have identified dozens of single nucleotide polymor-
phisms (SNPs) on the TPMT gene that reduce or eliminate its
function, which results in an increased likelihood of
myelosuppression for patients taking azathioprine. Three of
these variants account for 90% of low activity phenotypes in
individuals of European descent: *2, *3A, and *3C (found in
0.2%, 3.4%, and 0.4%, respectively) [32-34]. Accordingly, due

Fig. 1 Azathioprine metabolism.
*6-Mercaptopurine (6-MP), 6-
methyl-mercaptopurine (6-
MMP), 6-thioinosine
monophosphate (TIMP), 6-
thiouracil (6-TU), deoxy-
thioguanosine monophosphate
(TdGMP), deoxy-thioguanosine
triphosphate (TdGTP), nudix
hydrolase 15 (NUDT15),
thioguanosine diphosphate
(TGDP), thioguanosine
monophosphate (TGMP),
thioguanosine triphosphate
(TGTP), thiopurine
methyltransferase (TPMT),
xanthine oxidase (XO)

Intracellular

to the high level of risk, potential users are now routinely tested
for this genetic variation before receiving a prescription.

Despite this real-world application, preemptive 7PMT test-
ing does not eliminate the risk of myelosuppression for most
patients who use azathioprine; indeed, known TPMT variants
appear to account for only 25% of cases of myelosuppression
[35-38]. As such, researchers have focused on using unbiased
approaches to find additional genetic variants causing adverse
events with azathioprine use.

Variants in NUDT15 can predict leukopenia

The limitations of testing for known 7PMT variants are par-
ticularly relevant to Asian populations. Asians have a much
lower frequency of TPMT variants identified with
azathioprine-associated leukopenia compared to Caucasians
(~2% among South/Central Asians versus ~12% of
Caucasians); nevertheless, the rate of leukopenia is higher
among Asians (31-40% among Asians with Crohn’s disease
versus ~ 5% among Caucasians with inflammatory bowel dis-
ease). This points to the limitations of using 7PMT alone to
predict azathioprine toxicity [39-42]. Suspecting genes out-
side TPMT played a role in leukopenia, researchers utilized an
unbiased approach to identify additional genetic variants caus-
ing leukopenia in individuals of Asian descent.

In 2014, Yang et al. found that a missense SNP,
rs116855232, in nudix hydrolase 15 (NUDT15) was strongly
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associated with increased risk for leukopenia among Koreans
(OR =35.6; p=4.88 x 10 %) [43]. The same NUDT15 SNP
was later found to cause azathioprine-associated leukopenia in
individuals of Chinese descent [44—46]. While this particular
SNP is rare in Caucasians, researchers have found other
NUDT15 variants associated with azathioprine-induced
myelosuppression in Caucasians [47, 48]. Indeed, Schaeffeler
et al. observed that NUDT15 variants contributed to 13% of
azathioprine-associated leukopenia among Caucasians; further,
they observed that 7PMT and NUDT15 variants combined to
explain ~50% of hematotoxicity among azathioprine users of
European descent [47]. Having identified the significance of
certain NUDT15 variants, researchers have since been able to
identify the mechanisms by which NUDT15 impacts
thiopurine metabolism. Similar to TPMT, NUDT15 inactivates
thiopurine metabolites, ultimately leading to reduced concen-
trations of cytotoxic 6-TGNs (Fig. 1). [49]

A variant in HLA can predict pancreatitis

Leukopenia is not the only serious side effect associated with
azathioprine use. Approximately 4% of patients develop pan-
creatitis after the initiation of azathioprine; notably, unlike leu-
kopenia, pancreatitis is not dose related [50]. Heap et al. con-
ducted a GWAS to identify potential genetic predictors of pan-
creatitis among a cohort of European patients who developed
pancreatitis after thiopurine treatment for Crohn’s disease or
ulcerative colitis; notably, these patients had no additional risk
factors for pancreatitis, including their concurrent medications.
The group found a SNP, rs2647087 (occurring in ~30% of
individuals with European ancestry), within the human leuko-
cyte antigen (HLA) complex (fine-mapping revealed this SNP
was associated with HLADQA1%*02:01-HLA-DRBI1%*07:01
haplotype) significant for the development of pancreatitis
among azathioprine users; they were able to replicate their re-
sults in a group of patients with inflammatory bowel disease
(IBD). The study found no association between TPMT variants
(*3A, *3C, *2, *4, and *8) and pancreatitis [51]. A separate
study confirmed the association between HLA SNP rs2647087
and pancreatitis in a second, independent cohort of patients
with IBD taking azathioprine (OR =0.53% for wild-type,
4.25% for heterozygous, and 14.63% homozygous) [52].

Cost-effectiveness evaluation

Alongside the focus on safety, we must consider cost-
effectiveness when considering implementation of genetic
testing for patients. Identifying potential side effects and effi-
cacy through genetic testing may ultimately save more money,
despite upfront costs. [53]

Analysis of the cost-effectiveness of genetic testing for
azathioprine use has brought some controversy, but the results
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of' most studies favor genotyping. Studies in several healthcare
systems around the world have demonstrated that the aggre-
gate costs associated with testing tend to be lower compared
with the aggregate costs of treatment for patients who are
heterozygous (approximately 1 in 10) or homozygous (ap-
proximately 1 in 300) for TPMT loss-of-function variants
[54, 55]. For example, in the USA, one study compared
TPMT testing, metabolite monitoring, and community care.
TPMT testing was the least costly strategy at year one
($7142 for community care versus $3861 for testing) [56].
Of course, results are not always so definitive. Several studies
in Canada’s single payer system have found only small differ-
ences in the costs associated with screening versus not [57,
58]. Despite the lack of “savings,” these results promisingly
show that patients at the greatest risk may be identified for
relatively neutral costs.

Gene-drug pairs with the strongest evidence to support the
necessity of genetic testing and proven cost-effectiveness of
preemptive genotyping are more likely to be reimbursed by
Medicare (and similar systems in other countries); according-
ly, Medicare reimburses testing for 7PMT variants before pre-
scribing azathioprine. [59]

Clinical recommendations and guidelines

The success in identifying genetic predictors for drug-
associated side effects has led several groups to provide ther-
apeutic guidelines for these drugs. As noted above, the FDA
now requires labeling with guidelines for individuals who
have variants in TPMT and NUDT15. Additionally, the
Clinical Pharmacogenetics Implementation Consortium
(CPIC) and Dutch Pharmacogenetics Working Group
(DPWG) both provide evidence-based recommendations for
dosing or alternative medication options [27, 60]. The most
recent CPIC publication includes dosing guidelines based on
TPMT and NUDT15 metabolizer status (Table 1) [34]. For
example, for patients who are considered TPMT or NUDT15
poor metabolizers (two nonfunctional alleles), CPIC recom-
mends against using azathioprine to treat non-malignant con-
ditions. CPIC also has guidelines for treating patients with
various combinations of TPMT and NUDT15 phenotypes.
Creating these types of evidence-based recommendations are
not only imperative to improving healthcare but also for re-
ducing healthcare costs and encouraging healthcare reim-
bursement from insurance companies and healthcare pro-
grams like Medicare and Medicaid.

Future opportunities: more genes
and the potential role of risk scores

Along with the widely recognized genetic variants de-
scribed above, numerous additional variants may play a
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Table 1 Dosing recommendations for azathioprine
Gene Haplotype Examples of diplotypes Likely phenotype General dosing recommendation
TPMT Two normal function #1/%1 Normal metabolizer * Start with normal dose
alleles « Titrate 2 weeks
* Monitor
One normal function ®]1/%2, *1/%3A, *1/%3B, *1/3C, Intermediate « Start with reduced dose (30-80%)
PLUS one no function *1/*4 metabolizer « Titrate 2-4 weeks
allele * Monitor
Two no function alleles *IAM3A, #2/%3A, *3A/*3C, Poor metabolizer * Consider alternative for non-malignant condition
*3A/%4 « Start with highly reduced dose (10% and/
or alternating days)
« Titrate 4-6 weeks
* Monitor
NUDTI5 Two normal function *1/%1 Normal metabolizer * Start with normal dose

alleles
One normal function ®/%2, *1/%3
PLUS one no function
allele

Two no function alleles YD, KD KB [HT

Intermediate

Poor metabolizer

« Titrate 2 weeks

* Monitor

« Start with reduced dose (30-80%)
« Titrate 2-4 weeks

* Monitor

metabolizer

* Consider alternative for non-malignant condition

« Start with highly reduced dose (10% and/or alter-
nating days)

* Titrate 4-6 weeks

* Monitor

Adapted from Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018

Update

role in myelosuppression or other adverse effects associat-
ed with azathioprine use. Researchers are continuing to
examine the potential links between side effects and pro-
teins known to be involved in the metabolic pathway of
azathioprine. For example, xanthine oxidase/
dehydrogenase (XDH), aldehyde oxidase (AOX1), and
molybdenum cofactor sulfurase (MOCOS) are enzymes
involved in the metabolism of azathioprine. MOCOS is
an enzyme that sulfurates the molybdenum cofactor for
AOX1 and XDH, which compete with TPMT to inactivate
certain azathioprine metabolites [61, 62]. Initial studies
have shown that variants in AOXI and MOCOS can impact
effective dosage among transplant candidates; however,
additional studies are required to determine if these vari-
ants in these genes play a role in azathioprine-associated
side effects. Additional studies have noted the potential for
variants in the genes ABCC4, ITPA, GST, IMPDHI, IL6,
and FTO [43, 49, 51, 62-92] to impact azathioprine me-
tabolism and its side effects. Nevertheless, more research is
needed to determine whether they should be tested in clin-
ical practice.

Because of the interaction between genetics and environ-
ment, the most useful information for clinicians and patients
may lie in risk scores that consider genetic, clinical, and envi-
ronmental characteristics. As a proof-of-concept, we recently
published a pilot study that generated such a score for
azathioprine-associated leukopenia [93]. As discussed above,

genetic testing to determine TPMT metabolizer status has be-
come the standard of care for patients initiating azathioprine;
however, even with the addition of NUDT1I5 testing, almost
half of leukopenia cases remain unexplained [47, 94, 95]. We
hypothesized that a risk score composed of multiple clinical
factors and additional candidate genes could improve the pre-
diction of azathioprine-associated leukopenia. The risk score
included demographic characteristics, medications that inter-
act pharmacokinetically or pharmacodynamically with azathi-
oprine, leukopenia-associated comorbid conditions, and ge-
netic variants coding for enzymes involved in azathioprine
metabolism (including 7PMT and NUDT15). We generated
multiple models using information from electronic health re-
cords, including patients with a wide range of indications, and/
or the results of genetic testing. The model that included all
clinical variables and genetic information performed the best
in both the discovery and replication phases of the study.
These results indicate that a multivariable score that incorpo-
rates important clinical variables and genetic data outperforms
scores based on traditional genetic testing (e.g., TPMT
metabolizer status).

Many steps are required before implementing risk scores in
clinical practice; these include larger studies and GWAS anal-
ysis for additional genetic information. Also, while we have
determined some of the genetic variants that lead to azathio-
prine adverse events, further research is needed to examine
whether additional genetic information, as well as proteomic
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and metabolomic approaches, could improve prediction of
adverse events in real-world clinical practice. Although these
efforts require an investment of time and resources, we can
look forward to risks scores—based on complex clinical and
genetic information—that can more effectively determine
rheumatology patients’ risk for serious side effects.

Conclusion and future directions

Along with this focus on safety, we also anticipate more studies
regarding the impact of genetics on the efficacy of medications.
As we work toward the goal of precision medicine, future re-
search ultimately may combine genetic and clinical data into a
generalized recommendation score that accounts for the efficacy
and risk of individual drugs for individual patients. In closing,
we see promise, in particular for the multiple drugs with com-
plex metabolism and narrow therapeutic indices that are strong
candidates for applied pharmacogenomics in theumatology.
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