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Abstract
Introduction/objectives Systemic lupus erythematosus (SLE) was an autoimmune disease with a large variety of clinical man-
ifestations and involving many organs. Its exact etiology was unclear, and studies had shown that T cells may play an important
role. In this study, we wished to study the regulatory mechanism of circRNA in the T cells from SLE patients.
Method GSE84655was retrieved from the GEO database, and the corresponding probe namewas converted into an international
standard circRNA name by using the practical extraction and report language. The differentially expressed circRNAs (DECs)
were analyzed by using R software. Subsequently, we used multiple bioinformatics methods to obtain the target miRNAs of
circRNAs and the downstream mRNAs of miRNAs. Finally, a circRNA–miRNA–mRNA regulatory network was constructed
and visualized by using Cytoscape 3.6.1 software.
Results There were a total of 29 DECs that had been identified, including 2 upregulated circRNAs and 27 downregulated
circRNAs. After a lot of in-depth analysis, we finally obtained a circRNA–miRNA–mRNA regulatory network consisting of
8 DECs (hsa_circ_0006770, hsa_circ_0002904, hsa_circ_0034044, hsa_circ_0023685, hsa_circ_0049271, hsa_circ_0074491,
hsa_circ_0074559, and hsa_circ_0023461), 4 overlap miRNAs (hsa-miR-326, hsa-miR-569, hsa-miR-638, and hsa-miR-1246),
and 13 target mRNAs (EPHB3, USH1G,UBE4A, DCAF7, TBL1XR1, SLC27A4, SMO, NAA30, RSBN1, PLAG1, SOX2,
GPATCH11, and DYRK1A).
Conclusions This study could provide a novel insight into the role of circRNA and the circRNA–miRNA–mRNA regulation
network in the SLE. However, it also needed to be verified by subsequent experiments and clinical studies.

Key Points
• There were 29 DECs (2 up and 27 down) between T cells of SLE and health control.
• Hsa-miR-338-3p, hsa-miR-767-3p, and hsa-miR-1827 were the most frequent miRNAs.
• We obtained a circRNA–miRNA–mRNA regulatory network for SLE.
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Abbreviations
SLE Systemic lupus erythematosus
DECs Differentially expressed circRNAs
circRNA Circular RNA
miRNA MicroRNA
HMDD Human microRNA Disease Database
PBMC Peripheral blood mononuclear cell

Introduction

Systemic lupus erythematosus (SLE) is a chronic,
multisystemic, complex autoimmune disease, and it can affect
multiple tissues and organs and displays with varying clinical
manifestations [1]. Similar to other autoimmune diseases,
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SLE is also more prevalent in the female groups than male
groups, with a ratio exceeding 9: 1 [2]. Although the exact
etiology of SLE had not been clearly elucidated, there were
numerous studies that had shown that genetic, environmental,
endocrine, and other factors may play very important roles in
the occurrence and development of SLE [3]. T cells can par-
ticipate in the development of SLE not only by affecting other
immune cells through direct contact, but also by secreting pro-
inflammatory cytokines and directly acting on the targeted
tissues [4].

Circular RNA (circRNA) is a special non-coding
RNA which does not have 5′ end caps and 3′ end poly
(A) tails and forming a circular structure with covalent
bonds [5]. The circRNA was first discovered by Sanger
et al. in the higher plant virus RNAs in 1976 [6]. In the
following decades, only a few circRNAs were found
occasionally; however, with the development of high-
throughput sequencing technology and bioinformatics
technology, scholars had discovered a large number of
circRNAs, which were widely distributed in eukaryotic
cells, and thousands of circRNAs had been found in

human cells [7]. CircRNA is rich in microRNA
(miRNA) binding sites, which can act as a miRNA
sponge by binding to miRNA; then, it can prevent the
binding between miRNAs and its target mRNAs and
indirectly regulating the downstream expression of
miRNA target genes [8]. This indicated that circRNA
may affect and regulate the human diseases by regulat-
ing the disease-related miRNAs [7]. Meanwhile, some
latest studies had shown that circRNA was related to
many diseases, such as neurological disorders [9], coro-
nary artery disease [10], cancers [11], and SLE [3] etc.

In this study, we aimed to study the regulatory mechanism
of circRNA in the SLE T cells, especially the circRNA–
miRNA–mRNA regulatory network. We identified differen-
tially expressed circRNAs (DECs) in the T cells between pa-
tients with SLE and healthy controls by using the limma pack-
age of the R language. Subsequently, we used bioinformatics
prediction methods to find the target miRNAs and mRNAs.
Our results would provide novel information on the role of
circRNA in SLE and provide a theoretical basis for the mech-
anism of circRNA, miRNA, and mRNA interactions in SLE.

GSE84655

Adj.p 0.05 & |log2fold-change (FC)|≥1

29 DECs

(2 upregulated and 27 downregulated)

Circular RNA Interactome

294 DECs predict target miRNAs 87 SLE-related miRNAs

Human microRNA Disease Database

Experimentally confirmed 

diseases related miRNAs

Venny 2.1.0 database

18 Overlap miRNAs

13 Target mRNAs

miRTarBase, TargetScan and miRDB databases

4 related miRNAs 8 related DECs

Cytoscape 3.6.1 software

circRNA-miRNA-mRNA regulatory network

Fig. 1 A flow chart displaying the screening process in this study
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Materials and methods

Microarray data

Gene expression profile dataset GSE84655was retrieved from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/) [12].
The annotation platform was GPL21825: 074301 Arraystar
Human CircRNA microarray V2. The circRNA expression
profiles included 6 SLE T cells and 3 healthy controls T cells.

Differentially expression analysis

The series of matrix file(s) and platform file(s) of GSE84655
was downloaded, and then we converted the corresponding
probe name into an international standard circRNA name by
using the practical extraction and report language (Perl). The
DECs were analyzed by using the Bioconductor limma

package of R software. The criterion for DECs were adjusted
P value < 0.05 and |log2fold-change (FC) | ≥ 1.

Prediction of circRNAs target miRNAs

Studies had shown that there were multiple miRNAs binding
sites in the circRNAs, and the circRNAs can regulate gene
expression through sponge interaction with the target
miRNAs. In this study, we used the Circular RNA
Interactome (https://circinteractome.nia.nih.gov/) [13] to
predict the circRNAs target miRNAs.

SLE-related miRNAs

Human microRNA Disease Database (HMDD), which had
collected about 1206 miRNA genes and 893 diseases from
19,280 papers, was a collection of experimentally confirmed
diseases related to miRNAs [14]. In this study, we utilized the

Fig. 2 Heat map of DECs
between the SLEs and Health
controls. Colors from green to red
mean increasing expression of
DECs between the SLEs and
health controls. DECs,
differentially expressed circRNAs
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HMDD database to search for the SLE-related miRNAs.
Subsequently, we used the Venny 2.1.0 online database
(http://bioinfogp.cnb.csic.es/tools/venny/index.html) to
analyze the intersection of DECs target miRNAs and SLE-

related miRNAs. If the above analyzed DECs were interacting
with these SLE-related miRNAs, they would be more related
to SLE.

Prediction of miRNA target genes

The target genes of the overlap DECs target miRNAs and
SLE-related miRNAs were predicted based on 3 different
miRNAs target gene databases, including miRTarBase [15],
TargetScan [16], and miRDB databases [17]. Only those
genes which were confirmed by all the 3 databases would be
considered as the true candidate target mRNAs.

Construction of the circRNA–miRNA–mRNA
regulatory network

The DECs, the overlap miRNAs, and the target mRNAs of
overlap miRNAs were used to construct a regulatory network
and visualized by using Cytoscape 3.6.1 software [18].

Results

The differentially expressed circRNAs between SLE
patients and healthy controls

A flow chart displaying the screening process is shown in
Fig. 1. In this study, GSE84655 data was analyzed by the R
software, and the criterion for DECs was adjusted P value <
0.05 and |log2fold-change (FC) | ≥ 1; there were a total of 29
DECs identified (Fig. 2). Among these DECs, 2 circRNAs
were upregulated and 27 circRNAs were downregulated
(Table 1).

The circRNA–microRNA interactions in SLE

There are many miRNA binding sites on the circRNA; thus, it
can act as a miRNA sponge. An important biological function
of circRNA is that it can prevent the interaction between
miRNA and its target mRNA, and then regulating the
miRNA downstream target genes. Therefore, we use the

Table 1 The DECs between SLE patients and healthy controls

CircRNA ID logFC adj. P.Val

Upregulated CircRNA

hsa_circ_0005128 2.17 < 0.01

hsa_circ_0003525 2.07 < 0.01

Downregulated CircRNA

hsa_circ_0023461 − 5.02 6.99E−07
hsa_circ_0049356 − 4.95 1.87E−07
hsa_circ_0048430 − 4.86 8.68E−08
hsa_circ_0076767 − 4.60 4.73E−07
hsa_circ_0008410 − 4.44 2.24E−07
hsa_circ_0038011 − 4.41 4.81E−07
hsa_circ_0049271 − 4.32 2.21E−06
hsa_circ_0000086 − 3.80 1.00E−05
hsa_circ_0074491 − 3.73 2.21E−06
hsa_circ_0015278 − 3.39 < 0.01

hsa_circ_0023685 − 3.08 2.21E−06
hsa_circ_0006603 − 3.03 1.00E−05
hsa_circ_0029377 − 3.03 3.26E−05
hsa_circ_0023990 − 2.81 3.26E−05
hsa_circ_0001644 − 2.79 3.26E−05
hsa_circ_0046968 − 2.79 3.57E−06
hsa_circ_0061817 − 2.69 8.24E−05
hsa_circ_0060828 − 2.62 3.83E−05
hsa_circ_0003979 − 2.62 1.11E−05
hsa_circ_0006770 − 2.61 8.18E−05
hsa_circ_0002904 − 2.59 3.26E−05
hsa_circ_0005008 − 2.58 < 0.01

hsa_circ_0092328 − 2.56 3.26E-05

hsa_circ_0000368 − 2.45 < 0.01

hsa_circ_0074559 − 2.44 < 0.01

hsa_circ_0034044 − 2.42 < 0.01

hsa_circ_0000895 − 2.35 < 0.01

Table 2 The three most frequent
target miRNAs of DECs miRNA Num circRNA

hsa-miR-338-3p 9 hsa_circ_0049356, hsa_circ_0023461, hsa_circ_0074491, hsa_circ_0023685, hsa_
circ_0003979, hsa_circ_0002904, hsa_circ_0006770, hsa_circ_0061817, hsa_
circ_0034044

hsa-miR-767-3p 9 hsa_circ_0048430, hsa_circ_0023461, hsa_circ_0074491, hsa_circ_0023685, hsa_
circ_0049271, hsa_circ_0002904, hsa_circ_0006770, hsa_circ_0015278, hsa_
circ_0034044

hsa-miR-1827 8 hsa_circ_0023461, hsa_circ_0023685, hsa_circ_0006770, hsa_circ_0061817, hsa_
circ_0074559, hsa_circ_0000368, hsa_circ_0015278, hsa_circ_0034044
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Circular RNA Interactome database to predict the target
miRNA molecules related to DECs. The results showed that
DECs can regulate a large number of target miRNAs
(Supplement Table 1). By assessing the frequency of
miRNAs that targeted these DECs, we found that the 3 most
frequent miRNAs were hsa-miR-338-3p that interacted with 9
DECs, hsa-miR-767-3p that interacted with 9 DECs, and hsa-
miR-1827 that interacted with 8 DECs (Table 2).

Overlap of DECs predict target miRNAs and HMDD
disease-related miRNAs

The Human microRNA Disease Database (HMDD) contained
various disease-related miRNAs, and the relationship between
these miRNA molecules and diseases had been experimentally
confirmed. And we obtained 87 SLE-related miRNAs from the
HMDD database (Supplement Table 2). If the DECs had an
interactionwith these SLE-relatedmiRNAs, theDECsmaymore
likely have a relationship with SLE. So we used the Venn dia-
gram to get the intersection between the DECs predict target
miRNA and SLE-related miRNAs, as shown in Fig. 3; there
were 18 overlap miRNAs between these two kinds of
miRNAs. And these miRNAs were associated with 21 DECs
(Fig. 4), and the specific details can be found in Table 3.

Construction of the circRNA–miRNA–mRNA
regulatory network

There were only 4 overlap miRNAs (hsa-miR-326, hsa-miR-
569 hsa-miR-638, and hsa-miR-1246) that had the same target
mRNAs in the 3 different miRNA target databases (Table 4).
Finally, we obtained a circRNA–miRNA–mRNA regulatory

network consisting of 8 DECs, 4 overlap miRNAs, and 13
target mRNAs (Fig. 5).

Discussion

SLE was an autoimmune disease with very complex patho-
genesis mechanisms and clinical manifestations [19]. The ex-
act cause of SLE was not yet clear, but it had been proved that
the immune system dysregulation was involved in [7]. For its
circular structure, circRNA can avoid the influence of RNA
exonuclease and it was more stable than the linear RNA [10].
More and more scholars had started to focus on the relation-
ship between circRNA and disease pathogenesis. Researchers
found that circRNA was linked to many diseases, such as
neurological disorders [9], coronary artery disease [10], can-
cers [11], etc. In addition, circRNA had also been found to be
linked to a variety of autoimmune diseases, including multiple
sclerosis [20], rheumatoid arthritis [21], and SLE [3]. Some
researchers had also performed microarray analysis of
circRNA in the plasma or peripheral blood mononuclear cell
(PBMC) of SLE patients and found that there were a large
number of differentially expressed circRNA molecules in the
plasma or PBMC of SLE patients, and these molecules might
play an important role in the early diagnosis and development
of SLE [7, 8, 19, 22, 23]. Li et al. also briefly analyzed the
GSE84655 data, but they mainly discussed the function of
hsa_circ_0045272 in SLE and did not perform an in-depth
analysis and interpretation of the circRNA–miRNA–mRNA
network [3]. In this study, a variety of bioinformatics methods
were used to compare the expression of circRNA in T cells of
SLE and health control populations and to construct a

Fig. 3 Venn diagram analysis of
DEC predict target miRNAs and
SLE-related miRNAs. The blue
circle represents the DEC predict
target miRNAs, and the yellow
circle represents the SLE-related
miRNAs. The intersection of the
two circles represents the over-
lapping miRNAs between the two
kinds of miRNAs, and the spe-
cific miRNA names are listed in
the right box. DECs, differentially
expressed circRNAs
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circRNA–miRNA–mRNA regulatory network that may be
related to SLE.

CircRNA contained miRNA binding sites and could act as
a competitive endogenous RNA (ceRNA), which bind to the
miRNA and acted as a miRNA sponge in the cell, which in
turn released the inhibitory effect of miRNA on the target gene
and upregulated the expression level of the target gene [3]. In
this study, we used the Circular RNA Interactome database to
predict the circRNAs target miRNA molecules. The more
DECs that the miRNA could bind to, the more likely it was
involved in SLE pathogenesis. By assessing the frequency of
these DECs target miRNAs, the top 3 miRNAswere hsa-miR-

338-3p, hsa-miR-767-3p, and hsa-miR-1827. Previous studies
had shown that these 3 miRNAs were mainly related to tu-
mors and our study was the first to explore their relationship
with SLE [24–26].

The miRNAwas an evolutionarily conserved small mole-
cule with a length of 18 to 25 nucleotides [23]. A series of
studies had confirmed that miRNAs were associated with var-
ious diseases, such as cancer, diabetes, heart disease, and au-
toimmune disease etc. [27–30]. We extracted 87 SLE-related
miRNAs from HMDD database. If the DECs we analyzed
were interacting with these reported SLE-related miRNAs,
they were more likely to be SLE-related circRNAs. There

Fig. 4 The overlap miRNAs and DECs. The blue nodes represent the overlap miRNAs and the green and pink nodes represent the up- and downreg-
ulated circRNAs, respectively
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were 21 DECs associated with 18 SLE-related miRNAs.
Next, we predicted the target genes of these 18 miRNAs.
Only 4 miRNAs had the same target genes in the 3 distinct
miRNA target gene prediction databases. Finally, we obtained
a circRNA–miRNA–mRNA network consisting of 8 DECs
(hsa_circ_0006770, hsa_circ_0002904, hsa_circ_0034044,
hsa_circ_0023685, hsa_circ_0049271, hsa_circ_0074491,
hsa_circ_0074559, and hsa_circ_0023461), 4 overlap
miRNAs (hsa-miR-326, hsa-miR-569, hsa-miR-638, and
hsa-miR-1246), and 13 target mRNAs (EPHB3, USH1G,
UBE4A, DCAF7, TBL1XR1, SLC27A4, SMO, NAA30,
RSBN1, PLAG1, SOX2, GPATCH11, and DYRK1A). For
the 8 DECs and 13 target mRNAs, there were no relevant
studies reporting that they were linked to SLE before.
Sharaf-Eldin et al. found that the serum expression level of
hsa-miR-326 was significantly downregulated in the

neuropsychiatric systemic lupus erythematosus, and it could
be a new diagnostic biomarker [31]. However, Chen et al.
used the miRNA expression profiles to analyze the differential
expression of miRNAs in PBMCs from SLE patients and
normal controls; they found the expression level of hsa-miR-
326 was significantly overexpressed in the SLE patients [32].
Hikami et al. found that there was a polymorphism site
(rs1057233) in the 3-untranslated region of SPI1, which just
located in the hsa-miR-569 target binding site, and the
rs1057233 was associated with the susceptibility to SLE
[33]. Steen et al. used high-throughput chip technology to
compare the expression levels of miRNAs in plasma of SLE
patients and normal controls and found that hsa-miR-638 sig-
nificantly increased in plasma of SLE patients [34].
Meanwhile, Ishibe et al. also used high-throughput chip tech-
nology to compare the expression levels of miRNAs in the
plasma of SLE patients and normal controls and found that
hsa-miR-1246 significantly decreased in plasma of SLE pa-
tients [35].

In summary, we first obtained 29 DECs by comparing the
expression of circRNAs in the T cells from patients with SLE
and health controls. Subsequently, we used a variety of differ-
ent bioinformatics methods to obtain 18 confirmed SLE-
related miRNAs and 21 corresponding DECs. Finally, we
constructed a circRNA–miRNA–miRNA network consisting
of 8 DECs, 4 miRNAs, and 13 mRNAs. This study could be
available for some help for the diagnosis, treatment, and

Table 3 The overlap miRNAs and DECs

Overlap
miRNAs

circRNA

hsa-miR-7 hsa_circ_0023461, hsa_circ_0006770, hsa_circ_0034044, hsa_circ_0005128

hsa-miR-21 hsa_circ_0023461, hsa_circ_0074559

hsa-miR-31 hsa_circ_0006770, hsa_circ_0015278, hsa_circ_0034044

hsa-miR-145 hsa_circ_0029377, hsa_circ_0006770, hsa_circ_0074559, hsa_circ_0034044

hsa-miR-155 hsa_circ_0006770, hsa_circ_0034044

hsa-miR-192 hsa_circ_0049271, hsa_circ_0074559

hsa-miR-203 hsa_circ_0076767, hsa_circ_0006770, hsa_circ_0034044, hsa_circ_0005128

hsa-miR-223 hsa_circ_0006770, hsa_circ_0034044

hsa-miR-224 hsa_circ_0049271

hsa-miR-326 hsa_circ_0074491, hsa_circ_0023685, hsa_circ_0002904, hsa_circ_0006770, hsa_circ_0034044

hsa-miR-335 hsa_circ_0023461, hsa_circ_0006770, hsa_circ_0074559, hsa_circ_0034044

hsa-miR-494 hsa_circ_0048430, hsa_circ_0049356, hsa_circ_0023461, hsa_circ_0003979, hsa_circ_0006770, hsa_circ_0074559, hsa_circ_
0034044,

hsa-miR-569 hsa_circ_0023461, hsa_circ_0006770, hsa_circ_0034044

hsa-miR-579 hsa_circ_0000086, hsa_circ_0006770, hsa_circ_0074559, hsa_circ_0034044

hsa-miR-629 hsa_circ_0023685, hsa_circ_0006770, hsa_circ_0003525, hsa_circ_0034044

hsa-miR-638 hsa_circ_0049271, hsa_circ_0006770, hsa_circ_0074559, hsa_circ_0034044

hsa-miR-758 hsa_circ_0076767, hsa_circ_0023461, hsa_circ_0006770, hsa_circ_0074559, hsa_circ_0034044

hsa-miR-1246 hsa_circ_0006770, hsa_circ_0034044

Table 4 The miRNA target genes

miRNA Target gene

hsa-miR-326 EPHB3, USH1G,UBE4A, DCAF7, TBL1XR1,
SLC27A4, SMO

hsa-miR-569 NAA30, RSBN1, PLAG1

hsa-miR-638 SOX2

hsa-miR-1246 GPATCH11, DYRK1A
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prognosis of SLE patients. However, it also needed to be ver-
ified by subsequent experiments and clinical studies.
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