ORIGINAL ARTICLE

Genetic association study of systemic lupus erythematosus and disease subphenotypes in European populations

Otsanda Ruiz-Larrañaga¹ · Paola Migliorini² · Maria Uribarri³ · László Czirják⁴ · Maria C Alcaro⁵ · Jokin del Amo³ · Mikel Iriondo¹ · Carmen Manzano¹ · Sergio Escorza-Treviño³ · Andone Estonba¹

Received: 17 September 2015 / Revised: 11 March 2016 / Accepted: 12 March 2016 / Published online: 28 March 2016 © International League of Associations for Rheumatology (ILAR) 2016

Abstract Epidemiological studies suggest a strong contribution of genetic factors in the pathogenesis of systemic lupus erythematosus (SLE). In the last decades, many risk loci have been identified in several genetic association studies following both candidate gene and genome-wide approaches. The present work was conducted by GAPAID (Genes And Proteins for AutoImmunity Diagnostics) consortium with a dual aim: to replicate the association of several previously reported SLE susceptibility loci in an independent European sample and to explore their relation with some disease subphenotypes. A total of 48 single nucleotide polymorphisms (SNP) from 40 associated loci were typed in a cohort of 208 SLE patients and 152 controls from Rheumatology Units of the University Hospital of Pisa (Italy) and University of Pécs Medical Center (Hungary). Regression analyses were performed to detect disease susceptibility loci and to identify genes affecting specific disease manifestations (renal, neurological, or skin involvement; arthritis; secondary Sjögren syndrome; and secondary antiphospholipid syndrome). Association of

Otsanda Ruiz-Larrañaga otsanda.ruiz@ehu.eus

¹ Genetics, Physical Anthropology and Animal Physiology Department, University of the Basque Country (UPV/EHU), Leioa, Spain

- ² Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- ³ Department of Research and Development, Progenika Biopharma S.A., Derio, Spain
- ⁴ Department of Rheumatology and Immunology, University of Pécs, Pécs, Hungary
- ⁵ Department of Research and Development, Toscana Biomarkers S.r.l., Siena, Italy

previously described risk alleles from *HLA* locus has been replicated, while *IRF5*, *BLK*, *ITGAM*, and *IRF8* loci have been found to be consistent with previous published results. In addition, two new subphenotype-specific associations have been detected: SNP rs5754217 (*UBE2L3*) with skin involvement and rs3093030 (*ICAM1-ICAM4-ICAM5*) with hematological disorders. Overall, results from GAPAID project are consistent with previously established associations for *HLA*, *IRF5*, *BLK*, *ITGAM*, and *IRF8* SLE susceptibility loci and report for the first time two subphenotype-specific associations.

Keywords Clinical manifestations · Genetics · Single nucleotide polymorphism · Systemic lupus

Introduction

Systemic lupus erythematosus (SLE) is a complex autoimmune disease affecting multiple organs, characterized by a wide spectrum of clinical manifestations and laboratory findings. Multiple lines of evidence support a strong genetic contribution to the development of the disease, and it is well accepted that SLE occurs in genetically predisposed individuals exposed to certain environmental stimuli. Evidence of familial clustering was the first indication of a genetic susceptibility to SLE. On the basis of twin studies, SLE heritability (that is the relative contribution of genetic variation to the liability of developing the disease) has been estimated to be about 66 % based on the higher monozygotic twins concordance rates (24-56 %) compared to dizygotic twins (2-5 %) [1]. Familial aggregation for SLE, measured by the sibling recurrent risk ratio, varies from 8 to 29 depending upon the disease prevalence in the population used as reference [2].

Several linkage studies and genome-wide association studies have highlighted the impact of genetic polymorphisms on the risk of developing the disease [3–9]. The strong contribution of HLA region is widely known; the risk conferred by *DRB1*1501 (HLA-DR2)* and *DRB1*0301 (HLA-DR3)* genes is confirmed in many European populations. Outside the MHC region, *IRF5* (interferon regulatory factor 5) is one of the most strongly and consistently SLE-associated loci; *STAT4* (signal transducer and activator of transcription 4) has been found to associate with SLE in multiple studies in European or Asian populations [10, 11].

Only a few studies have addressed the influence of diseasepredisposing genes on SLE severity and outcome. Fc Rs I, II, and III have been consistently associated with both susceptibility and severity of SLE. In the case of FcgammaRIIa and Fc gammaRIIIa, the low affinity allele is predisposing not only to SLE but also to lupus nephritis [12, 13], while homozygosity for the valine allele of Fc gammaRIIIa is a risk factor for the progression of renal involvement to end-stage renal disease [14]. On the whole, only limited information is available on the association of risk genes for SLE with specific disease phenotypes.

The GAPAID (Genes And Proteins for AutoImmunity Diagnostics) consortium was created within the European Union's Seventh Framework Programme for Research and Technological Development (FP7), with the aim of developing a novel diagnostic/prognostic platform for patients affected by SLE, based on a genetic array, a serological protein array, and a software combining the clinical data with the genetic and serological information. In this context, the present study describes the genetic study performed on susceptibility to SLE, where 48 single nucleotide polymorphisms (SNP) from 40 different loci have been tested for SLE susceptibility and their association with disease subphenotypes.

Materials and methods

Ethic statement

This study was approved by the Ethics Committee of the University Hospital of Pisa (reference number: 45066/2012) and the Hungarian Scientific and Research Ethics Board (reference number: 24973-1/2012 EKU). The procedures followed were in accordance with the Helsinki Declaration of 1975. All the patients gave written informed consent.

SLE case-control population

A cohort of 208 SLE patients (cases) and 152 healthy blood donors (controls) was recruited between August 2012 and October 2013 from two centers, the Clinical Immunology Unit, Department of Clinical and Experimental Medicine of the University of Pisa (Italy) and the Department of Rheumatology and Immunology of the University of Pécs (Hungary) (Table 1). All SLE patients fulfilled the American College of Rheumatology (ACR) classification [15]. Gender and age data from all individuals were collected, as well as several clinical data retrospectively evaluated from SLE patients such as the age of patients at the onset of the disease, organ involvement, and secondary antiphospholipid syndrome (APS) (Table 1). The occurrence of arthritis (erosive or not) in clinical history was scored. Renal involvement was diagnosed on the basis of proteinuria, hematuria, and/or creatinine increase and/or hypertension and was in most cases (more than 80 % pts) confirmed by kidney biopsy. Hematological involvement was diagnosed in the presence of thrombocytopenia and/or hemolytic anemia and/or leucopenia. Neurological involvement was diagnosed in the presence of neuropsychiatric manifestations such as seizures,

Table 1 Clinical data of individuals included in the study

Variable	Italian cases $(N=62)$	Hungarian cases $(N=146)$	Total cases $(N=208)$	Italian controls $(N=100)$	Hungarian controls $(N=52)$	Total controls $(N=152)$
Age (at inclusion) (years)	43.6 (±14.5)	45.4 (±13.7)	44.9 (±13.9)	39.5 (±11.3)	39.7 (±9.9)	39.5 (±10.8)
Sex, female (%)	87.1	91.1	89.9	28	80.8	46.1
Age onset (years)	30.5 (±13.7)	32.3 (±13.6)	31.8 (±13.6)	n.d.	n.d.	n.d.
Nephritis (%)	70.7	39.0	48.0	n.d.	n.d.	n.d.
Central nervous system (CNS) involvement (%)	24.1	47.3	40.7	n.d.	n.d.	n.d.
Hematological disorders (%)	67.7	70.5	69.7	n.d.	n.d.	n.d.
Skin involvement (%)	71.4	63.7	65.8	n.d.	n.d.	n.d.
Arthritis (%)	52.6	61.0	58.6	n.d.	n.d.	n.d.
Secondary antiphospholipid syndrome (APS) (%)	30.5	39.0	36.6	n.d.	n.d.	n.d.

psychoses, cerebrovascular disease, and myelopathy. Skin involvement included generalized or malar rash, discoid lesions, and cutaneous vasculitis.

SNP selection and genotyping process

A total of 48 SNPs from 42 loci previously associated with SLE, in European ancestry populations, have been included in

Table 2 Selected SNPs

GAPAID project (Table 2). Genetic markers were principally selected from candidate gene, genome wide and replication association studies published at the time of the project. Some of the previously reported subphenotype-specific associations regarding those clinical features evaluated in the present study were also considered. The final list included several well known susceptibility loci such as 1q25.1, *PTPN22*, *TNFSF4*, *STAT4*, *PXK*, *BANK1*, *HLA*, *TNFAIP3*, *IRF5*,

Gene	Location	SNP ID	Disease/subphenotype association
LOC100506023	1q25.1	rs10798269	Disease [4]
FCGR2A	1q23	rs1801274	Disease [4, 7]
FCGR2B		rs1050501	Disease [16]
FCGR3A		rs396991	Nephritis [17]
IL-10	1q31-q32	rs3024505	Disease [7]
LY9	1q23.3	rs509749	Disease [18]
NCF2	1q25	rs10911363	Disease [19]
PTPN22	1p13.2	rs2476601	Disease [4, 7]
TNFSF4	1q25	rs2205960	Disease, nephritis [7, 20]
CTLA4	2q33	rs231775	Disease [21]
NFE2L2	2q31	rs4894215	Immunologic disorders [22]
PDCD1	2q37.3	rs11568821	Disease [23]
STAT4	2q32.2-	rs7574865	Disease [25] Disease, age onset < 30, nephritis, immunologic disorders [
	q32.3		5, 7, 24]
PXK	3p14.3	rs6445975	Disease [4, 7]
TMEM39A	3q13.33	rs1132200	Disease [8]
BANK1	4q24	rs10516487	Disease [6, 7, 19]
		rs17266594	
IL21	4q26-q27	rs907715	Disease, hematological disorders [20, 25]
TNIP1	5q32-q33.1	rs6889239	Disease [19]
HLA (CFB)	6p21.3	rs1270942	Disease [4]
HLA (HLA-DQA1)		rs2187668	Disease [5]
HLA (MSH5)		rs3131379	Disease [4]
PERP	6q24	rs6922466	Disease [26]
PRMD1/ATG5	6q21	rs6568431	Disease [7]
TNFAIP3	6q23	rs2230926	Disease [3]
ICA1	7p22	rs10156091	Disease [4, 7, 19]
IKZF1	7p12.2	rs2366293	Disease [19]
IRF5	7q32	rs729302 rs10954213	Disease, skin lesions [4, 7, 27]
		rs2070197	
BLK	8p23-p22	rs13277113 rs2736340	Disease, nephritis [5, 7, 28]
LYN	8q13	rs2667978	Disease [4]
XKR6	8p23.1	rs4240671	Disease, nephritis [4, 28]
TRAF1-C5	9q33-q34	rs10818488	Disease [29]
TYRP1	9p23	rs1408806	Immunologic disorders [22]
PHRF1	11p15.5	rs4963128	Disease [4]
TRAF6	11p12	rs540386	Disease [30]
DLEU2	13q14.3	rs9568401	Immunologic disorders [22]
IRF8	16q24.1	rs450443	Disease [8]
	I	rs4843869 rs8046526	
ITGAM	16p11.2	rs1143679	Disease, nephritis, skin lesions [4, 20]
ZPBP2	17q12	rs1453560	Disease [8]
ICAM1-ICAM4- ICAM5	19p13.3-	rs3093030	Disease [3]
	p13.2	ra5754017	Disease [4, 7]
UBE2L3	22q11.21	rs5754217	Disease [4, 7]
MECP2	Xq28	rs17435	Disease, age onset < 30 [28, 32, 33]
TMEM187	Xq28	rs13397	Disease [33]

The gene or nearest gene from the analyzed SNPs is indicated

BLK, *IRF8*, or *ITGAM*, along with some less studied or controversial ones (e.g., *IL10*, *LY9*, *IL21*, *LYN*, *TRAF6*, *ICAM* region).

DNA from the buffy coat of all collected samples was purified by NucleoSpin 96 Blood Core Kit Macherey-Nagel). DNA quantity (ng/ul) and quality (260/280 and 260/ 230 absorbances) were checked with Qubit fluorometer and NanoDrop 8000 Spectrophotometer, respectively, before the genotyping process. Genotyping of selected SNP was performed by BioMark[™] HD System (Fluidigm), based on the 5' exonuclease activity of the polymerase. For each array, 2 negative controls and 46 unknown samples were included. Fluidigm SNP Genotyping Analysis Software v.3 was used for allele assignation.

Before statistical analyses, three quality criteria were checked with *PLINK v.2.050* software [34]: SNP call rate (min. 95 %), sample call rate (min. 95 %), and conformity of genotype proportions to Hardy-Weinberg equilibrium (HWE) in the overall population.

Statistical analyses

Regression analyses were performed with the abovementioned software with the aim of detecting SLE susceptibility loci (case-control analysis) or specific polymorphisms for any of the measured subphenotypes (case-case analyses). All analyses were carried out under additive, dominant, and recessive genetic models. As differences in age and gender distribution between analyzed populations could limit the results of the study, both factors were included as covariates in all regression analyses. In the same manner, the origin of individuals was also considered as covariate in order to control the possible effect of genetic ancestry in the study. Finally, the results from the case-case analyses for renal, central nervous system (CNS), and skin involvement and presence of arthritis or secondary APS were also adjusted for the age of patients at the onset of the disease. The genetic model with the best P value has been chosen in each case. Corrections for multiple testing implemented in *PLINK* v.2.050 software have been performed and significant associations were considered when adjusted P values < 0.05.

Results

After the genotyping process, SNPs rs396991 (*FCGR3A*), rs231775 (*CTLA4*), rs11568821 (*PDCD1*), rs6568431 (*PRMD1/ATG5*), and rs4963128 (*PHRF1*) were removed for subsequent statistical analyses due to their low call rate (<95 %). The same threshold was applied to remove 9 individuals (5 cases and 4 controls). In addition, SNP rs2187668 (*HLA-DQA1*) did not fit HWE in the overall population (*P* value < 0.001). Thus, a total of 42 SNPs and 351 individuals (203 cases and 148 controls) were included in the final case-control and case-case analyses.

Results from the regression analysis focused on the identification of SLE susceptibility loci (case-control analysis) are shown in Table 3. Two SNPs located in the *HLA* region (rs3131379 and rs1270942) appear significantly associated with the disease (adjusted *P* value < 0.05). Five additional SNPs in *IRF5* (rs729302 and rs2070197), *BLK* (rs2736340), *IRF8* (rs4843869), and *ITGAM* (rs1143679) loci show also a trend to be related with SLE susceptibility (nominal *P* value < 0.05).

Two significant subphenotype-specific associations (adjusted *P* value < 0.05) have been found between SNP rs5754217 (*UBE2L3*) and skin involvement, and SNP rs3093030 (*ICAM1-ICAM4-ICAM5*) and hematological manifestations (Table 4). Other 32 suggestive associations have also been observed among all the analyzed clinical features (nominal *P* value < 0.05).

 Table 3
 Results from regression analyses on the overall SLE case-control population

	-	-		-	-			
SNP ID	Locus	Minor allele (tested allele)	MAF Cases	MAF Controls	Genetic model	OR (95 % CI)	P value	Adjusted P value
rs3131379	HLA (MSH5)	A	0.165	0.064	DOM	2.99 (1.514–5.904)	0.0016	0.0345
rs1270942	HLA (CFB)	G	0.168	0.064	DOM	3.01 (1.526-5.947)	0.0015	0.0345
rs729302	IRF5	С	0.248	0.331	REC	0.24 (0.084–0.672)	0.0068	0.1728
rs2070197	IRF5	С	0.176	0.095	ADD	1.80 (1.053-3.073)	0.0316	0.2545
rs2736340	BLK	Т	0.281	0.203	ADD	1.55 (1.019–2.349)	0.0405	0.2545
rs4843869	IRF8	А	0.148	0.160	DOM	0.53 (0.298-0.932)	0.0276	0.2743
rs1143679	ITGAM	А	0.212	0.160	ADD	2.01 (1.239–3.243)	0.0046	0.0660

P values have been adjusted for age, gender, and origin of individuals. Only those SNPs with a nominal *P* value <0.05 are shown *MAF* minor allele frequency, *ADD* additive, *DOM* dominant, *REC* recessive

			(tested allele)	Cases	Controls		(1) % (2) VO	1 value	onin i miculari
Age onset (<30)	rs10911363	NCF2	T	0.395	0.389	REC	0.84 (0.378–1.857)	0.0373	
)	rs4894215	NFE2L2	Ū	0.500	0.454	DOM	3.31 (1.213–9.050)	0.0195	0.4829
	rs1143679	ITGAM	A	0.142	0.273	DOM	0.34(0.133 - 0.858)	0.0225	0.4829
Nephritis	rs3131379	HLA (MSH5)	Т	0.175	0.157	DOM	2.13 (1.055-4.298)	0.0349	0.5327
	rs1270942	HLA (CFB)	C	0.175	0.162	DOM	2.07 (1.022-4.168)	0.0433	0.5327
	rs2366293	IKZFI	Ū	0.130	0.221	DOM	0.40(0.120 - 0.800)	0.0096	0.4108
	rs729302	IRF5	C	0.297	0.201	ADD	1.84(1.050 - 3.225)	0.0331	0.7131
CNS involvement	rs1050501	FCGR2B	C	0.167	0.081	ADD	2.25 (1.167-4.348)	0.0155	0.3334
	rs3024505	IL-I0	Т	0.172	0.161	ADD	1.99(1.175 - 3.383)	0.0105	0.3334
	rs6445975	PXK	Ū	0.340	0.225	DOM	2.08(1.141 - 3.788)	0.0168	0.2265
	rs17266594	BANKI	С	0.191	0.259	DOM	0.52(0.280 - 0.977)	0.0421	0.2265
	rs10516487	BANKI	Т	0.191	0.259	DOM	0.52(0.280 - 0.977)	0.0421	0.2265
	rs907715	IL21	А	0.241	0.326	ADD	0.58(0.351 - 0.950)	0.0307	0.3591
	rs729302	IRF5	С	0.200	0.284	DOM	0.45(0.245-0.841)	0.0120	0.2265
	rs4240671	XKR6	Ū	0.456	0.441	DOM	2.71 (1.290-5.710)	0.0085	0.2265
Skin involvement	rs509749	LY9	Ũ	0.402	0.464	REC	0.45(0.206 - 0.990)	0.0470	0.6955
	rs907715	11.21	А	0.273	0.319	REC	$0.26\ (0.081 - 0.817)$	0.0213	0.6955
	rs729302	IRF5	С	0.217	0.312	ADD	0.53(0.308 - 0.902)	0.0195	0.4133
	rs2070197	IRF5	C	0.209	0.123	ADD	1.96 (1.072–3.568)	0.0288	0.4133
	rs5754217	UBE2L3	Т	0.301	0.130	ADD	2.91 (1.607–5.254)	0.0004	0.0177
Hematological disorder	rs4894215	NFE2L2	G	0.482	0.377	ADD	1.78(1.127 - 2.806)	0.0133	0.1671
	rs907715	11.21	А	0.340	0.197	DOM	2.58 (1.376-4.828)	0.0031	0.1333
	rs6889239	TNIPI	С	0.326	0.443	ADD	0.63(0.407 - 0.965)	0.0339	0.2914
	rs6922466	PERP	G	0.216	0.325	ADD	0.54(0.332 - 0.890)	0.0156	0.1671
	rs8046526	IRF8	Т	0.132	0.075	DOM	2.64 (1.070–6.516)	0.0351	0.3441
	rs4843869	IRF8	А	0.163	0.115	DOM	2.21 (1.019-4.799)	0.0446	0.3441
	rs450443	IRF8	G	0.261	0.312	REC	0.23(0.059 - 0.878)	0.0317	0.4539
	rs3093030	ICAMI-ICAM4-ICAM5	С	0.461	0.361	ADD	2.22 (1.379–3.572)	0.0010	0.0442
Arthritis	rs10911363	NCF2	Т	0.407	0.356	DOM	1.95 (1.080–3.527)	0.0270	0.4321
	rs6889239	TNIPI	C	0.326	0.406	DOM	0.53(0.286 - 0.967)	0.0385	0.4321
	rs1270942	HLA (CFB)	С	0.195	0.131	DOM	1.98 (1.006–3.912)	0.0480	0.4321
	rs4240671	XKR6	G	0.431	0.444	DOM	0.39(0.190 - 0.802)	0.0104	0.4321
APS	rs10911363	NCF2	Т	0.431	0.367	DOM	2.04(1.095 - 3.814)	0.0247	0.6789
	rs1408806	TYRPI	G	0.257	0.177	ADD	1.77 (1.055–2.968)	0.0307	0.8547

Discussion

SLE is an autoimmune disease affecting predominantly women characterized by a loss of tolerance to self-antigens, inflammation, and dysregulated immune responses leading to multiorgan damage [35]. Epidemiological studies suggest a strong contribution of genetic factors in the pathogenesis of the disease; many SLE risk loci have been identified in several genome-wide association studies (GWASs) and other association studies in the last decades [36]. In the present study, the strongest association has been detected for HLA region, concordantly with previous GWASs [4, 9]. Encoding more than 200 genes and subdivided into class I, II, and III regions, HLA complex was the first SLE susceptibility locus identified [37]. The two SNPs significantly associated with SLE in this study, rs3131379 and rs1270942, are located in MSH5 and CFB immune genes, respectively, in the class III HLA region. The first one, previously reported as an SLE-associated gene in UK families and also in a study on SLE patients with African American background [38, 39], has recently also been related with cutaneous SLE in European populations [40].

The results found for IRF5, BLK, IRF8, and ITGAM could be also highlighted. Although the association level between these loci and SLE susceptibility does not reach the statistical significance in the present study, probably due to a limited sample size, all of them are well-known SLE susceptibility genes. The three SNPs from IRF5 analyzed here (rs729302, rs2070197, and rs10954213) represent three haplotype blocks with an already described independent effect on SLE risk [41]. Regarding the related IRF8, Cunninghame Graham et al. [19] identified for the first time this gene associated with the disease in a European population, which was later robustly established with the independent effect of the three SNPs analyzed in the present study [8]. There are several studies reporting also the implication of BLK locus in SLE susceptibility, which encodes a tyrosine protein kinase involved in the proliferation, differentiation, and tolerance of B cells. The T allele from SNP rs2736340 has been associated with a major risk of the disease, as detected in the present study [42, 43]. Finally, the non-synonymous variant from ITGAM associated in the present study (rs1143679, R77H) has been proposed as one of the causal variants in this locus affecting the numerous ligand binding activities of ITGAM in monocytes, neutrophils, and dendritic cells and impairing C3-mediated phagocytosis [44, 45].

The analysis of SLE subphenotypes performed in the present study reveals two major findings. The association between *UBE2L3* gene and skin involvement is the strongest one. *UBE2L3*, encoding a ubiquitin conjugating enzyme, was suggested to be a SLE susceptibility locus for European populations by Harley et al. [4] and later confirmed in a large-scale replication study [7]. Both studies showed positive results for the intronic SNP rs5754217 which has been included in a SLE risk haplotype leading to a higher UBE2L3 mRNA expression [46]. Furthermore, T allele of rs5754217 has been associated with the presence of several autoantibodies in African-American and European SLE patients [47, 48], but this is the first study reporting its implication in organ involvement during the disease; this T allele appears to be associated with a higher risk of skin manifestations. The second novel association in the present study is that reported between *ICAM1-ICAM4-ICAM5* and hematological disorders. The ICAM locus, encoding intercellular adhesion molecule proteins that are expressed in vascular endothelium, macrophages, lymphocytes, red blood cells, and brain, confers susceptibility to SLE in multiple ancestry populations [31], but no association with disease subphenotypes has been so far reported.

Other several suggestive associations have been observed in this study near to the statistical significance. XKR6 gene, encoding a transmembrane protein of the Kell blood group of antigens and related only to SLE nephritis up to now [28], appears to be linked with CNS involvement. On the contrary, the implication of IL21 with hematological disorders has already been described in Europeans [20]. Other subphenotypespecific tendencies observed here match also previously reported results. Furthermore, the present paper is the first one suggesting some of these associations in European SLE patients, such as the relation between IKZF1 and IRF5 loci and lupus nephritis, IRF8 and hematological disorders, or NCF2 locus and arthritis, all of them already described in Chinese populations [49-52]. However, these new suggestive subphenotype-specific associations with moderate significance values should be taken with caution and replicated in independent populations.

Overall, and despite the possibility of some study design limitations, results from the present study are consistent with previously established associations for the SLE susceptibility loci *HLA*, *IRF5*, *BLK*, *ITGAM*, and *IRF8*. The analysis of disease subphenotypes shows new specific associations such as those between *UBE2L3* and skin involvement, and *ICAM1-ICAM4-ICAM5* and hematological manifestations, in addition to other several suggestive associations which need to be replicated in an independent and larger populations.

Acknowledgments The authors thank for the technical and human support provided by Sequencing and Genotyping Facilities from SGIker of UPV/EHU. This work was supported by the European Union Seventh Framework Programme FP7/2007-2013 (grant agreement n° 314971).

Compliance with ethical standards

Ethic statement This study was approved by the Ethics Committee of the University Hospital of Pisa (reference number: 45066/2012) and the Hungarian Scientific and Research Ethics Board (reference number: 24973-1/2012 EKU). The procedures followed were in accordance with the Helsinki Declaration of 1975. All the patients gave written informed consent.

Disclosures None.

References

- Deapen D, Escalante A, Weinrib L, Horwitz D, Bachman B, Roy-Burman P, Walker A, Mack TM (1992) A revised estimate of twin concordance in SLE. Arthritis Rheum 35:311–8
- Alarcón-Segovia D, Alarcón-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR, Pons-Estel BA, Grupo Latinoamericano de Estudio del Lupus Eritematoso (GLADEL) (2005) Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum 52:1138–47
- Graham RR, Cotsapas C, Davies L et al (2008) Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus (SLE). Nat Genet 40:1059–61
- Harley JB, Alarcón-Riquelme ME, Criswell LA et al (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40:204–10
- Hom G, Graham RR, Modrek B et al (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–9
- Kozyrev SV, Abelson AK, Wojcik J et al (2008) Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 40:211–6
- Gateva V, Sandling JK, Hom G et al (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: 1228–33
- Lessard CJ, Adrianto I, Ice JA et al (2012) Identification of IRF8, TMEM39A, and IKZF3-ZPBP2 as susceptibility loci for systemic lupus erythematosus in a large-scale multiracial replication study. Am J Hum Genet 90:648–60
- Armstrong DL, Zidovetzki R, Alarcón-Riquelme ME et al (2014) GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region. Genes Immun 15:347–54
- Sestak AL, Fürnrohr BG, Harley JB, Merrill JT, Namjou B (2011) The genetics of systemic lupus erythematosus and implications for targeted therapy. Ann Rheum Dis 70(Suppl 1):i37–43
- 11. Deng Y, Tsao BP (2010) Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 6:683–92
- Karassa FB, Trikalinos TA, Ioannidis JP, FcgammaRIIa-SLE Meta-Analysis Investigators (2002) Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum 46:1563–71
- Karassa FB, Trikalinos TA, Ioannidis JP, FcgammaRIIa-SLE Meta-Analysis Investigators (2003) The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int 63:1475–82
- Ramos PS, Brown EE, Kimberly RP, Langefeld CD (2010) Genetic factors predisposing to systemic lupus erythematosus and lupus nephritis. Semin Nephrol 30:164–76
- Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ, Rothfield NF, Schaller JG, Talal N, Winchester RJ (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25:1271–7
- Willcocks LC, Carr EJ, Niederer HA et al (2010) A defunctioning polymorphism in FCGR2B is associated with protection against malaria but susceptibility to systemic lupus erythematosus. Proc Natl Acad Sci U S A 107:7881–5
- Jönsen A, Gunnarsson I, Gullstrand B, Svenungsson E, Bengtsson AA, Nived O, Lundberg IE, Truedsson L, Sturfelt G (2007) Association between SLE nephritis and polymorphic variants of the CRP and FcgammaRIIIa genes. Rheumatology (Oxford) 46: 1417–21

- Cunninghame-Graham DS, Vyse TJ, Fortin PR et al (2008) Association of LY9 in UK and Canadian SLE families. Genes Immun 9:93–102
- Cunninghame Graham DS, Morris DL, Bhangale TR, Criswell LA, Syvänen AC, Rönnblom L, Behrens TW, Graham RR, Vyse TJ (2011) Association of NCF2, IKZF1, IRF8, IFIH1, and TYK2 with systemic lupus erythematosus. PLoS Genet 7, e1002341
- Sanchez E, Nadig A, Richardson BC et al (2011) Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus. Ann Rheum Dis 70:1752–7
- Ulker M, Yazisiz V, Sallakci N, Avci AB, Sanlioglu S, Yegin O, Terzioglu E (2009) CTLA-4 gene polymorphism of exon 1(+49 A/ G) in Turkish systemic lupus erythematosus patients. Int J Immunogenet 36:245–50
- 22. Koldobskaya Y, Ko K, Kumar AA et al (2012) Gene-expressionguided selection of candidate loci and molecular phenotype analyses enhance genetic discovery in systemic lupus erythematosus. Clin Dev Immunol 2012:682018
- Prokunina L, Castillejo-López C, Oberg F et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–9
- 24. Taylor KE, Remmers EF, Lee AT et al (2008) Specificity of the STAT4 genetic association for severe disease manifestations of systemic lupus erythematosus. PLoS Genet 4, e1000084
- Sawalha AH, Webb R, Han S et al (2008) Common variants within MECP2 confer risk of systemic lupus erythematosus. PLoS ONE 3, e1727
- Musone SL, Taylor KE, Lu TT et al (2008) Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 40(9):1062–4
- Järvinen TM, Hellquist A, Koskenmies S et al (2010) Tyrosine kinase 2 and interferon regulatory factor 5 polymorphisms are associated with discoid and subacute cutaneous lupus erythematosus. Exp Dermatol 19:123–31
- Alonso-Perez E, Suarez-Gestal M, Calaza M et al (2012) Further evidence of subphenotype association with systemic lupus erythematosus susceptibility loci: a European cases only study. PLoS ONE 7, e45356
- Xu K, Peng H, Zhou M, Wang W, Li R, Zhu KK, Zhang M, Wen PF, Pan HF, Ye DQ (2013) Association study of TRAF1/C5 polymorphism (rs10818488) with susceptibility to rheumatoid arthritis and systemic lupus erythematosus: a meta-analysis. Gene 517:46–54
- Sandling JK, Garnier S, Sigurdsson S et al (2011) A candidate gene study of the type I interferon pathway implicates IKBKE and IL8 as risk loci for SLE. Eur J Hum Genet 19(4):479–84
- Kim K, Brown EE, Choi CB et al (2012) Variation in the ICAM1-ICAM4-ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries. Ann Rheum Dis 71: 1809–14
- Sawalha AH, Kaufinan KM, Kelly JA et al (2008) Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 67:458–61
- Kaufman KM, Zhao J, Kelly JA et al (2013) Fine mapping of Xq28: both MECP2 and IRAK1 contribute to risk for systemic lupus erythematosus in multiple ancestral groups. Ann Rheum Dis 72:437– 44
- Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575
- Chung SA, Taylor KE, Graham RR et al (2011) Differential genetic associations for systemic lupus erythematosus based on antidsDNA autoantibody production. PLoS Genet 7, e1001323
- Rullo OJ, Tsao BP (2013) Recent insights into the genetic basis of systemic lupus erythematosus. Ann Rheum Dis 72(Suppl 2):56–61

- Goldberg MA, Arnett FC, Bias WB, Shulman LE (1976) Histocompatibility antigens in systemic lupus erythematosus. Arthritis Rheum 19:129–132
- Fernando MM, Freudenberg J, Lee A et al (2012) Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G. Ann Rheum Dis 71:777–784
- Sanchez E, Comeau ME, Freedman BI et al (2011) Identification of novel genetic susceptibility loci in African American lupus patients in a candidate gene association study. Arthritis Rheum 63:3493– 3501
- Kunz M, König IR, Schillert A et al (2015) Genome-wide association study identifies new susceptibility loci for cutaneous lupus erythematosus. Exp Dermatol 24(7):510–5
- Graham RR, Kyogoku C, Sigurdsson S et al (2007) Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 104:6758–63
- 42. Järvinen TM, Hellquist A, Zucchelli M, Koskenmies S, Panelius J, Hasan T, Julkunen H, D'Amato M, Kere J (2012) Replication of GWAS-identified systemic lupus erythematosus susceptibility genes affirms B-cell receptor pathway signalling and strengthens the role of IRF5 in disease susceptibility in a Northern European population. Rheumatology (Oxford) 51:87–92
- 43. Delgado-Vega AM, Dozmorov MG, Quirós MB et al (2012) Fine mapping and conditional analysis identify a new mutation in the autoimmunity susceptibility gene BLK that leads to reduced halflife of the BLK protein. Ann Rheum Dis 71:1219–26
- Nath SK, Han S, Kim-Howard X et al (2008) A nonsynonymous functional variant in integrin-alpha(M) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet 40:152–4

- 45. Kim-Howard X, Maiti AK, Anaya JM et al (2010) ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann Rheum Dis 69:1329– 32
- Wang S, Adrianto I, Wiley GB et al (2012) A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun 13:380–7
- Taylor KE, Chung SA, Graham RR et al (2011) Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet 7, e1001311
- 48. Agik S, Franek BS, Kumar AA, Kumabe M, Utset TO, Mikolaitis RA, Jolly M, Niewold TB (2012) The autoimmune disease risk allele of UBE2L3 in African American patients with systemic lupus erythematosus: a recessive effect upon subphenotypes. J Rheumatol 39:73-8. J Am Soc Nephrol 25:2859-70.
- 49. He CF, Liu YS, Cheng YL et al (2010) TNIP1, SLC15A4, ETS1, RasGRP3 and IKZF1 are associated with clinical features of systemic lupus erythematosus in a Chinese Han population. Lupus 19: 1181–6
- Qin L, Lv J, Zhou X, Hou P, Yang H, Zhang H (2010) Association of IRF5 gene polymorphisms and lupus nephritis in a Chinese population. Nephrology (Carlton) 15:710–3
- Li SW, He Y, Zheng ZH, Liu DW, Liu ZS (2014) Single-nucleotide polymorphisms of IRF8 gene are associated with systemic lupus erythematosus in Chinese Han population. Int J Immunogenet 41: 112–8
- Yu B, Chen Y, Wu Q et al (2011) The association between singlenucleotide polymorphisms of NCF2 and systemic lupus erythematosus in Chinese mainland population. Clin Rheumatol 30:521–7