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Abstract
Rock abrasiveness is a vital parameter affecting cutter wear, tunneling efficiency, and cost budgeting during mechanical 
excavation. The Cerchar abrasivity index (CAI), a suggested standard parameter to characterize the rock abrasiveness, can be 
obtained through the laboratory test. Understanding the correlations between the CAI and physical, mechanical, and mineral-
ogical properties helps to precisely evaluate the cutter wear and improve the excavation efficiency. In this paper, correlations 
between CAI and 17 commonly used rock parameters were established for 27 groups of rock samples collected from China 
using simple and multiple regression methods. Based on the Pearson correlation coefficient (PCC) results, the possibility of 
linear relationships between CAI and physical, mechanical, and mineralogical parameters of rock samples was analyzed for 
determining the appropriate model. Subsequently, simple linear regression and Boltzmann models were developed based 
on physical and mechanical parameters. The model based on porosity showed excellent forecasting performance over other 
models. Through the analysis on the coefficient of determination (R2) value, a better multiregression model (R2 = 0.92) based 
on the mechanical parameters was obtained. However, a more feasible model (R2 = 0.91) based on the thermal conductivity, 
diffusion coefficient, elastic modulus, and Rock Abrasivity Index (RAI) was also suggested, considering the simplicity and 
period of parameter measurement. After the classification of rock types, the linear correlations strengthened significantly, 
especially for the mineralogical properties. The CAI showed a linear correlation with equivalent quartz content (EQC) and 
RAI for the granite and sandstone, while the quartz content (Q) still showed no relation with CAI. The results can provide a 
reference for evaluating the abrasive properties of rock during the mechanical excavation process.

Keywords Cerchar abrasivity index(CAI) · Mineralogical properties · Physical and mechanical properties · Prediction 
model

Introduction

 Mechanical excavation has become the mainstream tech-
nology for underground construction, and has been widely 
applied to river crossings, road tunnels, metro tunnels, 

mining projects and so on (Deng et al. 2022a, b, c). The 
cutter is a crucial component of the excavating machinery 
and contacts the rocks directly. As a result of the thrust and 
torque, the cutter contacts, penetrates, squeezes, and abrades 
the rocks, and eventually the cutter wears out until failed 
(Sun et al. 2023). Notably, wear is the progressive loss of 
material from the cutting tools. Four wear mechanisms com-
prising adhesive wear, abrasion, surface fatigue, and tribo-
chemical reaction are proposed, moreover, the adhesive wear 
is highlighted as the most important wear mechanism caused 
by the relative sliding motion at the cutter-rock interface 
(Majeed and Abu Bakar 2016). Hence, rock abrasivity is a 
necessary parameter to precisely evaluate the lifetime of the 
cutters and accurately calculate the construction costs in the 
mining and tunnelling industries.

Cutter wear is one of the remarkable results of rock-
machine interaction, which is related to the rock mass, 
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tunnelling rig, and working process (Thuro and Plinninger 
2003). Objective factors including the tunnelling rig and 
working process can be controlled and optimized ahead of 
the construction period. Rock mass state, an unexpected 
factor, is hard to be changed along the tunnel. Rocks with 
high abrasivity encountered during tunnelling increase the 
degree of cutter wear and the frequency of replacement, 
consequently decreasing tunnelling efficiency and increas-
ing construction cost. Typically, the time and economic costs 
caused by cutter replacement account for about 1/3 of the 
overall construction costs in the shield tunnelling (Wang 
et al. 2017; Yu et al. 2021). Cutter life is overwhelmingly 
determined by the rock abrasivity. Thus, understanding the 
rock abrasivity is extremely difficult since it is related to 
a variety of complex factors such as physics, mechanics, 
and mineralogy (Er and Tuğrul et al. 2016). Some profound 
insights, such as the prediction of rock abrasivity based on 
multi-source parameters, are still worth investigating.

Many test methods have been proposed and developed to 
identify the rock abrasivity, each measurement method has 
its deficiencies and application limitations (Rostami et al. 
2014). Cerchar abrasiveness test suggested by the Inter-
national Society of Rock Mechanics (ISRM) is one of the 
most widely used rock abrasion tests (Alber et al. 2014). 
The effects of various factors on Cerchar abrasivity index 
(CAI) have been investigated in relevant literature (Ozdogan 
et al. 2018; Capik and Yilmaz 2017; Majeed and Abu Bakar 
2016; He et al. 2016; Moradizadeh et al. 2016; Deliormanli 
2012; Zhang et al. 2021; Ko et al. 2016; Zhang et al. 2020). 
Specifically, mineral composition, grain shape and size, and 
the physical and mechanical properties of rocks have a sig-
nificant effect on the rock abrasiveness. However, it is not 
clear which parameter controls the rock abrasion. The rela-
tionship between the rock abrasivity and its factors is more 
controversial, both linear as well as non-linear relationships 
have been reported (Rostami et al. 2014; Torrijo et al. 2018; 
Moradizadeh et al. 2013). Moreover, Quartz content (Q), 
equivalent quartz content (EQC), Rock Abrasivity Index 
(RAI), uniaxial compressive strength (UCS), longitudinal 
wave velocity, grain size, density, elastic modulus (E), and 
Poisson’s ratio, etc., have historically been determined to 
evaluate and predict the CAI. Notably, previous studies have 
assessed rock abrasivity from limited aspects of physical, 
mechanical, and mineralogical properties. Therefore, pre-
diction of rock abrasivity based on multi-source physical, 
mechanical, and mineralogical properties is meaningful to 
evaluate the cutter life and understand the relevance between 
rock abrasivity and factors.

In this paper, the JHC01 rock abrasion servo system was 
used for an abrasion test on different rock samples. At the 
same time, a series of physico-mechanical and microscopic 
tests were carried out. The relationship between the rock 
abrasivity and physical, mechanical, and mineralogical 

properties were investigated. In addition, rock abrasivity 
prediction model was established based on the relationships 
between these properties and CAI using simple regression 
and multi regression.

Experimental scheme

Sample preparation

To obtain accurate results, sedimentary, magmatic, and met-
amorphic rocks were considered for inclusion in the rock 
samples. 27 rocks from Yunnan, Sichuan, Shandong, and 
Gansu provinces were selected based on accessibility and 
commonness to study the correlation between rock abrasiv-
ity and influencing factors. As shown in Table 1, eight gran-
ites, seven sandstones, five limestones, two shales, basalt, 
volcanic rock, marble, carbonaceous slate, and yellow mud-
stone were included in the rock samples. Only two metamor-
phic rocks were collected as they were more difficult to be 
acquired. All rocks were processed into samples of specific 
accuracy and size for laboratory tests (Fig. 1).

Physical and mechanical tests

Mechanical properties were evaluated through tests includ-
ing uniaxial compression strength (UCS), Brazilian ten-
sile strength (BTS), and shear strength. UCS tests were 
performed on the prepared core samples with a length to 
diameter ratio of 2:1. The loading rate was about 0.5 mm/
min and three samples from each rock were subjected to 
uniaxial compression tests. The tests were carried out using 
an electronic-hydraulic servo-controlled stiff press testing 
machine (Fig. 2) according to the method suggested by 

Table 1  Basic information of studied rock samples

No. Rock name No. Rock name

A1 Sichuan grey granite A15 Yunnan beige sandstone
A2 Rust yellow granite A16 Yunnan limestone
A3 Wulian red granite A17 Coralreef limestone
A4 Maple leaf red granite A18 Cyan limestone
A5 Beige granite A19 Shandong limestone
A6 Sesame white granite A20 Limestone
A7 Yunnan grey granite A21 Argillaceous shale
A8 Beishan granite A22 Gas shale
A9 Purple sandstone A23 Basalt
A10 Yunnan cyan sandstone A24 Volcanic rock
A11 Shandong white sandstone A25 Marble
A12 Sichuan grey sandstone A26 Carbonaceous slate
A13 Sichuan red sandstone A27 Yellow mudstone
A14 Yunnan red sandstone
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ISRM (1979) and ASTM (2010). Brazilian splitting tests 
were conducted on a disk sample with a length to diameter 
ratio of 1:2 using an electronic-hydraulic servo-controlled 
stiff press testing machine. The tests were completed until 
failure occurs across the diameter axis. A loading rate of 0.1 
mm/min was applied. Three samples from each rock type 
were used for testing and the results were averaged. The tests 
were also carried out according to the method suggested by 
Ulusay (2015) and ASTM (2010). Shear strength tests were 
carried out with a variable angle plate to acquire the internal 
friction angle and cohesion. Three prepared samples from 
each rock type were processed into the cubic rock with a 

length of 50 mm. Shear strength tests at three angles (50 °, 
60 ° and 70 °) were performed using an electronic-hydraulic 
servo-controlled stiff press testing machine (Fig. 2). Three 
samples from each rock type were used for each angle and 
the results were averaged, indicating that nine samples were 
used for each rock type. A loading rate of 0.3 mm/min was 
applied. The results of rock mechanical tests were repre-
sented in Table 2.

Brittleness is one of the most important mechanical prop-
erties of rock. Accurate evaluation of the rock brittleness 
plays an important role in the underground engineering and 
slope stability of water conservancy and hydropower, trans-
port, energy exploration and development, as well as the 
analysis of rock drillability and cutability (Li et al. 2022). 
All existing brittleness indexes, which can be classified into 
four types, i.e., methods based on mineral content, elastic 
deformation, energy, stress–strain (Liu et al. 2023). In this 
paper, brittleness index was evaluate according to the UCS 
and BTS (Eq. 1) (Hucka and Das 1974).

where B is the brittleness value; UCS is the uniaxial com-
pressive strength, MPa; BTS is the Brazilian tensile strength, 
MPa;

Physical properties include density, leeb hardness, longi-
tudinal wave velocity, transverse wave velocity, thermal con-
ductivity, diffusion coefficient, and porosity. Longitudinal 
wave velocity and transverse wave velocity were measured 

(1)B =
UCS

BTS

Fig. 1  Processed different rock samples

Fig. 2  Rock mechanics test 
equipment
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by an acoustic detector (RSM-SY5) (Fig. 3a). Thermal con-
ductivity and diffusion coefficient were measured by a hot 
disk thermal-constants analyzer based on TPS (Fig. 3b). A 
leeb hardness tester was used for measuring the hardness 
(Fig. 3c). Five smooth and flat positions on the rock surface 
are selected as the testing area, then the results are averaged. 
The density of rocks was measured by the electronic bal-
ance (Fig. 3d) and Vernier calipers (Fig. 3e). Porosity was 
tested by nuclear magnetic resonance (PQ-001 Mini NMR) 
(Fig. 3f). All rock physical tests were measured at least three 
times, and the average values were used for analysis. The 
results of physical tests were represented in Table 3.

Mineral composition and microstructure

Understanding the mineral composition and microstructure 
helps to uncover the intrinsic reason of rock abrasivity. The 
mineral composition of rock samples was measured by a 
Rigaku Dmax Rapid II X-ray diffractometer, with a scanning 
speed of 3°/min and sampling interval of 0.02°. The sample 
used for X-ray diffraction (XRD) test is dry powder with 

particle size less than 200 mesh. The mineral composition of 
rocks can be determined by comparing the measured XRD 
patterns with the standard cards in the database. Quartz con-
tributes the most to the rock abrasivity and high quartz con-
tent leads to high rock abrasivity (Capik and Yilmaz, 2017). 
The quartz content can be acquired through XRD analysis. 
Moreover, EQC was also calculated as proposed by Thuro 
and Plinninger (2003) (Eq. 2):

where EQC is equivalent quartz content (%), A is mineral 
content (%), R is Rosiwal abrasiveness (%), and n is number 
of minerals.

RAI value can be acquired based on the results of mineral 
composition tests. RAI value is calculated using the follow-
ing formula (Eq. 3) (Zhang et al. 2021). The results of rock 
mineralogical properties can be seen in Table 4.

(2)EQC =
∑n

i=1
Ai × Ri

(3)RAI =
EQC × UCS

100

Table 2  Mechanical test results 
and brittleness values of rock 
samples

Rock BTS (MPa) UCS (MPa) φ (°) C (kPa) E (GPa) ν B

A1 5.6 156.9 47.8 27.2 54.1 0.25 28.1
A2 5.3 132.7 48.2 22.0 44.2 0.25 24.8
A3 5.0 97.5 45.7 15.0 41.0 0.23 19.6
A4 5.4 100.1 45.0 23.4 45.1 0.24 18.4
A5 5.4 140.7 46.9 22.9 43.3 0.25 26.2
A6 5.1 101.5 44.7 11.8 36.2 0.23 20.0
A7 5.6 146.3 51.2 26.1 53.3 0.26 26.1
A8 5.7 155.9 48.9 28.5 54.3 0.24 27.4
A9 5.7 121.1 37.7 13.1 25.2 0.23 21.2
A10 4.6 88.0 42.6 8.4 18.1 0.18 19.1
A11 4.9 99.4 38.3 12.4 21.6 0.19 20.4
A12 3.2 59.6 36.6 7.2 13.0 0.21 18.5
A13 3.1 60.9 37.5 7.9 13.2 0.19 19.7
A14 3.9 73.3 35.5 10.7 16.3 0.17 18.9
A15 5.3 116.9 45.4 17.0 27.1 0.29 22.3
A16 5.8 88.9 37.4 15.4 30.9 0.20 15.4
A17 1.5 7.6 26.7 6.2 9.8 0.11 5.1
A18 5.1 104.9 42.8 16.6 32.6 0.18 20.7
A19 5.3 96.8 44.1 15.2 30.7 0.19 18.3
A20 5.7 116.8 39.2 14.2 30.0 0.20 20.3
A21 3.2 38.7 35.4 8.1 3.9 0.17 12.0
A22 6.2 117.0 36.9 16.2 30.9 0.22 18.9
A23 6.2 128.8 45.7 23.0 31.8 0.29 20.6
A24 5.1 147.7 50.4 28.2 46.5 0.26 28.9
A25 5.4 53.9 38.0 5.6 35.3 0.20 10.0
A26 6.5 87.7 37.1 15.3 24.9 0.20 13.5
A27 2.0 23.2 29.9 4.2 2.9 0.20 11.3
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Fig. 3  Rock physical test equip-
ment

Table 3  Physical test results of 
rock samples

Rock ρ (g/cm3) H Vs (m/s) VP (m/s) λ (W/(m·K) D  (m2/s) P (%)

A1 2.60 824 1396 4901 4.84 2.11 1.18
A2 2.59 815 1383 4958 5.01 2.33 1.14
A3 2.59 842 1306 4757 5.16 1.61 1.64
A4 2.56 848 1389 4871 4.98 2.03 1.12
A5 2.64 792 1448 4917 4.14 2.56 1.15
A6 2.57 833 1302 4669 5.23 1.93 1.69
A7 2.68 782 1433 5282 4.03 2.99 0.87
A8 2.69 780 1453 5071 4.21 2.25 0.69
A9 2.47 638 1510 3806 4.98 1.56 8.38
A10 2.38 602 1491 3722 5.10 1.61 11.63
A11 2.46 660 1503 3765 5.96 2.04 7.86
A12 2.28 491 1494 3860 5.60 1.55 12.52
A13 2.32 516 1485 3583 6.26 1.22 13.38
A14 2.31 483 1482 3634 6.77 1.50 13.52
A15 2.45 679 1527 4438 4.82 2.36 8.13
A16 2.70 669 1673 4079 6.69 1.65 0.22
A17 1.05 12 2649 2956 8.02 0.92 56.44
A18 2.72 644 1700 4532 6.26 1.45 0.26
A19 2.74 699 1664 4670 6.52 1.79 1.24
A20 2.72 680 2016 4691 6.04 1.37 0.26
A21 2.14 411 1852 2972 7.17 1.07 12.11
A22 2.53 689 1513 4804 7.68 2.00 1.48
A23 2.53 792 1234 4910 2.51 2.79 4.72
A24 2.20 799 1362 5228 1.89 2.74 14.19
A25 2.75 566 1644 4352 6.14 1.43 0.30
A26 2.63 650 1501 3291 7.80 1.36 0.34
A27 1.98 308 2356 4173 6.61 1.16 18.08
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where RAI is the rock abrasion index; EQC is the equiva-
lent quartz content; and UCS is the uniaxial compressive 
strength.

XRD pattern of rock samples was illustrated in Fig. 4. 
The main peak shape of the same rock type was basically 
similar, and individually there may be other stray peaks. In 
other words, the main mineral composition was similar for 
the same rock type, but there was still a slight difference. 
However, the peak shape and intensity of XRD pattern dif-
fered significantly for different rock types. The specific min-
eral contents of rock samples were represented in Table 5.

The petrological-mineralogical properties of rock sam-
ples were investigated by using a Nikon CI-POL orthogonal 
polarizing microscope, as illustrated in Fig. 5. Obviously, 
the compact granite is characterized by its medium-grained 
structure. Three typical minerals can be identified in the 
thin-section: blue feldspar, mica, and the crystal clear 
and colorless quartz which can be commonly seen in the 
rock. Sandstone is formed by weathering, stripping, and 

transporting rocks from the source area to accumulate in 
the basin. Sandstone is fine- to medium-grained, mainly con-
sists of both clastic and filler material. The grain rounding 
varies from sub- to well-rounded and the grain sorting is 
between well- and moderately-sorted. The quartz is mainly 
distributed in the porous sandstone. In addition, we can also 
see that granite has a larger grain size than sandstone. The 
limestone is fine-grained and well-sorted, and composed 
mainly of calcite or aragonite. Shale is a sedimentary rock 
with thin sheets or lamellae of joints, mainly formed by clay 
deposits through pressure and temperature, and mixed with 
quartz, mica, calcite and other minerals. The basalt matrix 
is intergranular-interstitial cryptic, and the main miner-
als are feldspar, which are haphazard and interwind. The 
marble is medium- to coarse-grained, mainly includes the 
calcite. Slate is a fine-grained foliated metamorphic rock 
with a plate-like structure and essentially no recrystallisa-
tion. Mudstone is fine-grained sedimentary rock composed 
of mud and clay consolidated to a similar composition and 
structure as shale.

Cerchar Abrasivity Index

CAI tests were performed according to the method suggested 
by ISRM (Alber et al. 2014). Specifically, the specimen is 
fixed in the holder during the Cerchar test and the needle is 
placed on the specimen. The needle is an alloy steel with a 
tensile strength of 2 GPa, Rockwell hardness of 54–56, and 
a taper angle of 90°. Moreover, a weight of 7 kg is loaded 
on the needle moved on the specimen by the stepper motor 
within one minute, then the wear of needles is measured 
through the microscopy. Typically, 3–5 tests for the same 
rock are performed, and the results are averaged, then the 
CAI value is 10 times the average wear diameter of the steel 
needle. On the basis of the principle of CAI tests, a novel 
CAI testing equipment including rock abrasion test system, 
intelligent measurement system, and computer was proposed 
(Fig. 6a). The wear state of three typical rocks including 
marble, Yunnan red sandstone, and the maple leaf red gran-
ite can be seen in Fig. 6b. It can be clearly seen that the wear 
depth under the same load is different, indicating that there 
is little difference on the rock abravisity.

The CAI results were shown in Table 6. It can be seen that 
the CAI value of igneous rock is higher than that of sedi-
mentary rock and metamorphic rock. The igneous rock has 
the maximum CAI value of 4.86, indicating very high abra-
siveness according to the CAI classification suggested by 
ISRM (Alber et al. 2014). In contrast, the argillaceous shale 
has the minimum CAI value of 0.28, indicating extremely 
low abrasiveness. Moreover, the CAI of coralreef limestone 
is 0.3, which also has extremely low abrasiveness. It was 
generally accepted that the coralreef limestone was loose 

Table 4  Results of equivalent quartz content and rock abrasivity 
index

No. EQC (%) Q (%) RAI

A1 51.99 31.30 44.08
A2 39.68 5.70 32.93
A3 35.97 0.00 19.14
A4 36.26 0.00 18.41
A5 41.55 16.00 36.92
A6 24.66 29.20 20.29
A7 56.89 0.00 38.22
A8 45.09 17.30 42.67
A9 65.77 29.80 79.67
A10 61.68 23.30 54.27
A11 93.38 92.30 92.81
A12 68.58 66.00 40.86
A13 46.39 14.90 28.23
A14 100.00 100.00 73.35
A15 100.00 100.00 116.90
A16 1.00 0.00 0.89
A17 1.00 0.00 0.08
A18 1.00 0.00 1.05
A19 1.00 0.00 0.97
A20 1.00 0.00 1.17
A21 15.62 13.90 6.04
A22 43.47 63.10 50.85
A23 37.00 0.00 47.65
A24 46.10 0.00 68.09
A25 1.00 0.00 0.54
A26 1.00 0.00 0.88
A27 20.82 19.20 4.82
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and porous with good pore connectivity, and the main min-
eral composition was aragonite, which belonged to biogenic 
sedimentary rock. The real scratch length between the steel 
needle and coralreef limestone was less than 10 mm due to 
the high porosity, consequently the value of CAI was small. 
In summary, the magmatic rock has high abrasiveness, con-
sequently the disc cutter wears seriously when excavating 
in these stratums.

Statistical analysis models for predicting CAI

Linear analysis

Pearson correlation coefficient (PCC) is advantageous for 
determining the positive and negative linear correlations 
between two characteristic variables (Tian and Su 2023), 
as shown in (Eq. 4). PCC ranges between − 1 and 1, where 
− 1 indicates a completely inverse correlation, 1 indicates 
a completely positive relationship, and 0 indicates no 

linear relationship between the two variables. PCC has 
a more comprehensive ability to determine the data cor-
relation than other linear correlation coefficients such as 
the Euclidean distance and Jaccard distance. However, 
PCC does not behave significantly for the non-linear rela-
tionship, even if there is some correspondence between 
the two variables, which is a drawback that PCC cannot 
overcome.

where r is PCC, xi is the influential variable, yi is the target 
value, and p is the total number of samples.

Three types of data including physical, mechanical, 
and mineralogical aspects were input parameters for the 
PCC. Specifically, as shown in Table 7, seven physical 
parameters (density, leeb hardness, longitudinal wave 
velocity, transverse wave velocity, thermal conductivity, 
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Fig. 5  The petrographic observation of rock samples
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diffusion coefficient, and porosity), seven mechanical 
parameters (uniaxial compressive strength, Brazilian 
tensile strength, elastic modulus, Poisson’s ratio, inter-
nal friction angle, cohesion, and brittleness), and three 
mineralogical parameters (rock abrasion index, equivalent 
quartz content, and quartz content) were used to predict 
the CAI value. The PCC values for 17 input parameters 
are shown in Fig.7. There are strong positive linear cor-
relations between CAI and longitudinal wave velocity, 
diffusion coefficient, UCS, internal friction angle, cohe-
sion, elastic modulus, Poisson’s ratio, and brittleness, 
with a PCC value greater than 0.8. The negative correla-
tions between the CAI and transverse wave velocity and 
thermal conductivity are high. Notably, there are minimal 
linear relationships between the CAI and density, poros-
ity, BTS, EQC, Q, and RAI. It is evidently accepted that 
there is maximum linear relationship between CAI and 
internal friction angle and diffusion coefficient.

Fig. 6  CAI measurement equip-
ment and the wear state. a CAI 
measurement equipment; b 
Typical samples after measure-
ment

Table 6  Results of cerchar abrasiveness index (CAI)

No. CAI Standard 
deviations

No. CAI Standard 
deviations

A1 4.17 0.29 A15 3.17 0.18
A2 4.11 1.04 A16 1.18 0.09
A3 3.40 0.31 A17 0.30 0.17
A4 3.78 0.42 A18 1.26 0.15
A5 4.09 0.39 A19 1.30 0.09
A6 3.41 0.61 A20 1.17 0.27
A7 4.73 0.39 A21 0.28 0.03
A8 4.39 0.45 A22 1.89 0.24
A9 2.06 0.36 A23 3.58 0.27
A10 1.92 0.43 A24 4.86 0.43
A11 2.23 0.44 A25 1.58 0.48
A12 1.33 0.19 A26 0.77 0.07
A13 1.27 0.34 A27 0.63 0.19
A14 0.97 0.21
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Simple regression

Simple regression was used to evaluate the relationship 
between CAI and other parameters. Three types of corre-
lations including positive, negative linear, and nonlinear 
correlations were obtained based on PCC results. CAI was 

negatively correlated with the transverse wave velocity 
(Fig. 8c) and thermal conductivity (Fig. 8e) for the physical 
properties. CAI was positively correlated with leeb hard-
ness (Fig. 8b), longitudinal wave velocity (Fig. 8d), and dif-
fusion coefficient (Fig. 8f) for the physical properties. The 
coefficient of determination (R2) between CAI and diffusion 

Table 7  Feature sets of physico-
mechanical and CAI parameters

Variable types Variables Feature set

Physical parameters Density (g/cm3) X1
Leeb hardness X2
Transverse wave velocity (m/s) X3
Longitudinal wave velocity (m/s) X4
Thermal conductivity (W/m·K) X5
Diffusion coefficient  (m2/s) X6
Porosity (%) X7

Mechanical parameters Brazilian tensile strength (MPa) X8
Uniaxial compressive strength (MPa) X9
Internal friction angle (°) X10
Cohesion (kPa) X11
Elastic modulus (GPa) X12
Poisson’s ratio X13
Brittleness X14

Mineralogical parameters Equivalent quartz content (%) X15
Quartz content (%) X16
Rock abrasion index X17

Abrasivity parameters Cerchar abrasivity index X18

1.00

0.00

-1.00

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

X1 1.00 0.82 -0.68 0.57 -0.28 0.41 -0.98 0.82 0.64 0.61 0.43 0.59 0.51 0.52 0.00 -0.07 0.02 0.37

X2 0.82 1.00 -0.84 0.78 -0.62 0.72 -0.84 0.83 0.86 0.87 0.75 0.82 0.78 0.77 0.16 -0.11 0.23 0.77

X3 -0.68 -0.84 1.00 -0.48 0.58 -0.63 0.69 -0.66 -0.68 -0.73 -0.54 -0.57 -0.67 -0.69 -0.44 -0.15 -0.44 -0.65

X4 0.57 0.78 -0.48 1.00 -0.68 0.77 -0.58 0.58 0.78 0.81 0.76 0.85 0.77 0.71 0.03 -0.21 0.11 0.81

X5 -0.28 -0.62 0.58 -0.68 1.00 -0.80 0.28 -0.37 -0.69 -0.79 -0.68 -0.60 -0.78 -0.74 -0.34 0.13 -0.44 -0.84

X6 0.41 0.72 -0.63 0.77 -0.80 1.00 -0.41 0.58 0.82 0.83 0.83 0.73 0.85 0.77 0.39 0.04 0.49 0.89

X7 -0.98 -0.84 0.69 -0.58 0.28 -0.41 1.00 -0.80 -0.62 -0.61 -0.45 -0.57 -0.55 -0.51 0.01 0.07 -0.01 -0.39

X8 0.82 0.83 -0.66 0.58 -0.37 0.58 -0.80 1.00 0.79 0.63 0.64 0.71 0.60 0.52 -0.01 -0.12 0.17 0.50

X9 0.64 0.86 -0.68 0.78 -0.69 0.82 -0.62 0.79 1.00 0.86 0.89 0.85 0.78 0.91 0.28 -0.02 0.41 0.82

X10 0.61 0.87 -0.73 0.81 -0.79 0.83 -0.61 0.63 0.86 1.00 0.84 0.86 0.79 0.85 0.21 -0.18 0.27 0.89

X11 0.43 0.75 -0.54 0.76 -0.68 0.83 -0.45 0.64 0.89 0.84 1.00 0.87 0.73 0.80 0.14 -0.20 0.24 0.84

X12 0.59 0.82 -0.57 0.85 -0.60 0.73 -0.57 0.71 0.85 0.86 0.87 1.00 0.67 0.71 0.01 -0.29 0.08 0.85

X13 0.51 0.78 -0.67 0.77 -0.78 0.85 -0.55 0.60 0.78 0.79 0.73 0.67 1.00 0.73 0.37 0.05 0.47 0.84

X14 0.52 0.77 -0.69 0.71 -0.74 0.77 -0.51 0.52 0.91 0.85 0.80 0.71 0.73 1.00 0.47 0.12 0.52 0.81

X15 0.00 0.16 -0.44 0.03 -0.34 0.39 0.01 -0.01 0.28 0.21 0.14 0.01 0.37 0.47 1.00 0.80 0.92 0.34

X16 -0.07 -0.11 -0.15 -0.21 0.13 0.04 0.07 -0.12 -0.02 -0.18 -0.20 -0.29 0.05 0.12 0.80 1.00 0.75 -0.09

X17 0.02 0.23 -0.44 0.11 -0.44 0.49 -0.01 0.17 0.41 0.27 0.24 0.08 0.47 0.52 0.92 0.75 1.00 0.39

X18 0.37 0.77 -0.65 0.81 -0.84 0.89 -0.39 0.50 0.82 0.89 0.84 0.85 0.84 0.81 0.34 -0.09 0.39 1.00

Fig. 7  Pearson correlation coefficient diagram
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Fig. 8  The relationship between the CAI and rock properties. a Den-
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coefficient was 0.73, indicating significant linear relation-
ships. Although there were no linear relationships between 
CAI and density and porosity, the Boltzmann function was 
established to evaluate the nonlinear fitting degree. The coef-
ficient of determination (R2) between CAI and density is 
0.87, and the correlation is very significant. The density of 
rocks mainly ranges from 2.4 g/cm3 to 2.8 g/cm3 except for 
the coralreef limestone, which has a density of 1.05 g/cm3 
due to high porosity. Moreover, the coefficient of determi-
nation (R2) between CAI and porosity is 0.94, and the cor-
relation is significant. The porosity of coralreef limestone is 
56.44%, which reduces the fitting degree.

Two types of correlations including positive linear and 
nonlinear correlations were summarized between CAI and 
mechanical properties. Specifically, the Boltzmann model, 
a nonlinear relationship, was established between CAI and 
BTS, with a coefficient of determination (R2) of 0.64, indi-
cating that BTS explained 64% of the variation in CAI. 

Moreover, CAI was positively correlated with UCS, internal 
friction angle, cohesion, elastic modulus, Poisson’s ratio, 
and brittleness. In Fig. 8, the coefficient of determination 
(R2) between CAI and mechanical parameters was greater 
than 0.8 for the linear relationships. The excellent linear fit-
ting performance was observed between CAI and internal 
friction angle, while the weak linear fitting performance 
existed between CAI and brittleness.

There were no distinct correlations between CAI and 
mineralogical properties based on PCC and fitting results. 
It was clearly seen from Fig. 7 that there were no linear 
relationships between CAI and Q, EQC, and RAI. As shown 
in Fig. 8. EQC, RAI, and Q were dispersed, there was no 
appropriate model that could be used to predict the CAI. It 
should be noted that the linear or nonlinear models between 
CAI and Q, and EQC were suggested by Capik and Yilmaz 
(2017), Suana and Peters (1982), West (1989), and Yarali 
et al. (2008). They stated that Q and EQC are the important 
factors affecting CAI. However, Q and EQC showed a weak 
correlation with CAI due to varying CAI among rocks with 
the same mineral composition. In other words, CAI is related 
to not only mineral composition but also other parameters 
such as porosity, UCS. For all rocks, CAI is not significantly 
correlated with EQC and Q. However, for the same rock 
types, CAI is significantly correlated with EQC, because 
rocks of the same type are of the same genesis, with simi-
lar grain sizes and void properties, and the mineralogical 
compositions of the rocks have a more pronounced effect 
on CAI. Based on the relationships between the CAI and 
physio-mechanical parameters, the models were developed 
for the prediction of CAI using simple linear regression and 
the Boltzmann function (Table 8). The R2 values of these 
models range from 0.49 to 0.94, with the model based on 
porosity showing excellent forecasting performance over 
other models. Although there is some certain correla-
tion between CAI and physio-mechanical parameters, the 

Table 8  The equations between the CAI and other parameters using 
simple regression

Eq. Equations R2

5 CAI = 4.86–4.58/(1 + exp(11.78ρ-28.99)) 0.87
6 CAI=-2.92 + 0.01 H 0.66
7 CAI = 0.28 + 4.58/(1 + exp(0.01Vs-21.36)) 0.49
8 CAI=-5.14 + 0.002Vp 0.58
9 CAI = 7.43–0.91λ 0.64
10 CAI=-1.91 + 2.33D 0.73
11 CAI = 0.28 + 4.58/(1 + exp(35.71P-2.83)) 0.94
12 CAI = 4.86–4.58/(1 + exp(4BTS-20.02)) 0.64
13 CAI=-0.79 + 0.03UCS 0.61
14 CAI=-7.13 + 0.23φ 0.78
15 CAI=-0.27 + 0.17 C 0.70
16 CAI=-0.21 + 0.09E 0.72
17 CAI=-4.36 + 31.30ν 0.69
18 CAI=-1.74 + 0.21B 0.65

Table 9  The equations between 
the CAI and other parameters 
using multiregression

Eq. Equations R2 Std. error of 
the estimate

DW F

19 CAI = 2.883 + 0.007H + 0.001Vp-0.264λ-2.227ρ 0.878 0.514 1.56 47.74
20 CAI=-3.735-0.407BTS + 0.066φ + 0.023 C + 0.055E + 17.196ν 0.922 0.409 1.25 78.35
21 CAI = 1.627-0.039Q + 0.048RAI 0.443 1.097 0.69 11.34
22 CAI=-4.996 + 1.135D + 0.126φ + 0.002RAI 0.851 0.567 1.51 50.52
23 CAI=-4.928 + 1.228D + 0.122φ 0.856 0.558 1.56 78.24
24 CAI=-2.006 + 2.433D-0.002RAI 0.769 0.707 1.60 44.25
25 CAI=-6.248 + 0.202φ + 0.007RAI 0.811 0.640 1.27 56.69
26 CAI = 1.581 − 0.335λ + 0.533D + 0.050E + 0.005RAI 0.912 0.435 1.58 68.77
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accuracy of predicting CAI by relying on a single parameter 
is limited.

Multi‑regression

Most of the factors involving physical, mechanical, and min-
eralogical parameters have certain effects on CAI, which 
are impossible to isolate and study individually. Therefore, 
multiregression, a method to solve the multi-source data 
fusion, was calculated based on the Enter method using 

SPSS software. The data distribution was examined before 
multiregression, then the data with normal distribution 
was used for analysis. Notably, Durbin-Watson (DW) test 
is used for the purpose of testing whether the independent 
variables are known to be independent or not. Moreover, 
variance inflation factor (VIF) can characterize the covari-
ance degree between independent variables. Also, the level 
of significance (Sig) and Fisher index (F) are calculated for 
all models. Statistically speaking, a model can be considered 
a better fit when the F is higher, Sig < 0.05, DW is about 2, 

Table 10  Multivariate 
regression coefficients for the 
selected models

a Dependent variable: CAI

Coefficientsa

Models Unstandardized coefficients Standardized 
coefficients

t Sig. VIF

B Std. Error Beta

1 (Constant) 2.829 1.357 2.085 0.049
H 0.006 0.001 0.771 4.175 0.000 7.269
VP 0.001 0.000 0.288 2.425 0.024 2.994
λ -0.307 0.110 -0.307 -2.805 0.010 1.546
ρ -2.175 0.598 -0.508 -3.637 0.001 4.154

2 (Constant) -3.735 0.823 -4.537 0.000
BTS -0.407 0.094 -0.347 -4.336 0.000 2.147
φ 0.066 0.030 0.278 2.167 0.041 5.516
E 0.055 0.012 0.551 4.678 0.000 4.650
ν 17.196 3.411 0.462 5.042 0.000 2.811

3 (Constant) 1.627 0.314 5.178 0.000
Q -0.039 0.010 -0.866 -3.930 0.001 2.269
RAI 0.048 0.010 1.042 4.727 0.000 2.269

4 (Constant) -4.996 0.884 -5.651 0.000
D 1.135 0.415 0.425 2.738 0.012 4.206
φ 0.126 0.033 0.531 3.774 0.001 3.459
RAI 0.002 0.004 0.042 0.461 0.649 1.418

5 (Constant) -4.928 0.857 -5.749 0.000
D 1.228 0.356 0.460 3.452 0.002 3.203
φ 0.122 0.032 0.514 3.855 0.001 3.203

6 (Constant) -2.006 0.488 -4.108 0.000
D 2.433 0.289 0.911 8.428 0.000 1.314
RAI -0.002 0.005 -0.051 -0.471 0.642 1.314

7 (Constant) -6.248 0.853 -7.328 0.000
φ 0.202 0.021 0.851 9.594 0.000 1.080
RAI 0.007 0.004 0.162 1.827 0.080 1.080

8 (Constant) 1.581 0.972 1.627 0.118
λ -0.335 0.098 0.334 -3.408 0.003 2.858
D 0.533 0.346 0.200 1.542 0.137 4.984
E 0.050 0.010 0.497 5.147 0.000 2.772
RAI 0.005 0.003 0.110 1.449 0.161 1.698
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(a)

(b) 

(c) 

1.00

0.00

-1.00

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

X1 1.00 -0.95 0.78 0.82 -0.93 0.71 -0.76 0.66 0.77 0.83 0.65 0.69 0.53 0.74 0.70 -0.05 0.75 0.82

X2 -0.95 1.00 -0.80 -0.79 0.91 -0.81 0.74 -0.63 -0.80 -0.82 -0.59 -0.57 -0.59 -0.79 -0.61 -0.05 -0.78 -0.83

X3 0.78 -0.80 1.00 0.79 -0.89 0.76 -0.92 0.87 0.80 0.68 0.89 0.73 0.71 0.74 0.71 -0.05 0.77 0.87

X4 0.82 -0.79 0.79 1.00 -0.82 0.86 -0.86 0.78 0.70 0.94 0.77 0.79 0.81 0.64 0.85 -0.35 0.66 0.96

X5 -0.93 0.91 -0.89 -0.82 1.00 -0.83 0.78 -0.69 -0.72 -0.75 -0.69 -0.63 -0.64 -0.69 -0.70 0.09 -0.70 -0.83

X6 0.71 -0.81 0.76 0.86 -0.83 1.00 -0.69 0.63 0.65 0.80 0.59 0.51 0.84 0.63 0.68 -0.16 0.62 0.87

X7 -0.76 0.74 -0.92 -0.86 0.78 -0.69 1.00 -0.93 -0.75 -0.75 -0.92 -0.83 -0.65 -0.66 -0.72 0.17 -0.72 -0.90

X8 0.66 -0.63 0.87 0.78 -0.69 0.63 -0.93 1.00 0.82 0.70 0.96 0.91 0.64 0.72 0.77 0.09 0.79 0.88

X9 0.77 -0.80 0.80 0.70 -0.72 0.65 -0.75 0.82 1.00 0.79 0.83 0.82 0.70 0.99 0.80 0.32 1.00 0.86

X10 0.83 -0.82 0.68 0.94 -0.75 0.80 -0.75 0.70 0.79 1.00 0.70 0.78 0.80 0.77 0.87 -0.18 0.78 0.94

X11 0.65 -0.59 0.89 0.77 -0.69 0.59 -0.92 0.96 0.83 0.70 1.00 0.92 0.71 0.74 0.83 -0.03 0.80 0.86

X12 0.69 -0.57 0.73 0.79 -0.63 0.51 -0.83 0.91 0.82 0.78 0.92 1.00 0.64 0.74 0.90 0.02 0.81 0.85

X13 0.53 -0.59 0.71 0.81 -0.64 0.84 -0.65 0.64 0.70 0.80 0.71 0.64 1.00 0.69 0.85 -0.25 0.68 0.85

X14 0.74 -0.79 0.74 0.64 -0.69 0.63 -0.66 0.72 0.99 0.77 0.74 0.74 0.69 1.00 0.76 0.36 0.99 0.81

X15 0.70 -0.61 0.71 0.85 -0.70 0.68 -0.72 0.77 0.80 0.87 0.83 0.90 0.85 0.76 1.00 -0.12 0.79 0.88

X16 -0.05 -0.05 -0.05 -0.35 0.09 -0.16 0.17 0.09 0.32 -0.18 -0.03 0.02 -0.25 0.36 -0.12 1.00 0.35 -0.10

X17 0.75 -0.78 0.77 0.66 -0.70 0.62 -0.72 0.79 1.00 0.78 0.80 0.81 0.68 0.99 0.79 0.35 1.00 0.83

X18 0.82 -0.83 0.87 0.96 -0.83 0.87 -0.90 0.88 0.86 0.94 0.86 0.85 0.85 0.81 0.88 -0.10 0.83 1.00
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18

X1 1.00 0.97 0.77 0.46 -0.59 0.68 -0.95 0.93 0.94 0.52 0.79 0.92 0.54 0.84 0.31 0.12 0.77 0.83

X2 0.97 1.00 0.83 0.59 -0.69 0.77 -0.94 0.88 0.90 0.69 0.77 0.90 0.62 0.84 0.29 0.13 0.76 0.93

X3 0.77 0.83 1.00 0.89 -0.76 0.83 -0.87 0.74 0.83 0.67 0.85 0.88 0.94 0.90 0.39 0.31 0.79 0.93

X4 0.46 0.59 0.89 1.00 -0.66 0.84 -0.59 0.48 0.57 0.75 0.75 0.68 0.95 0.72 0.49 0.47 0.71 0.84

X5 -0.59 -0.69 -0.76 -0.66 1.00 -0.49 0.63 -0.65 -0.67 -0.73 -0.43 -0.65 -0.69 -0.58 0.10 0.21 -0.37 -0.76

X6 0.68 0.77 0.83 0.84 -0.49 1.00 -0.78 0.62 0.67 0.69 0.81 0.76 0.72 0.70 0.72 0.67 0.89 0.88

X7 -0.95 -0.94 -0.87 -0.59 0.63 -0.78 1.00 -0.87 -0.90 -0.48 -0.80 -0.90 -0.64 -0.83 -0.39 -0.27 -0.80 -0.86

X8 0.93 0.88 0.74 0.48 -0.65 0.62 -0.87 1.00 0.99 0.50 0.79 0.95 0.52 0.75 0.37 0.15 0.79 0.76

X9 0.94 0.90 0.83 0.57 -0.67 0.67 -0.90 0.99 1.00 0.55 0.86 0.99 0.64 0.85 0.38 0.17 0.83 0.82

X10 0.52 0.69 0.67 0.75 -0.73 0.69 -0.48 0.50 0.55 1.00 0.54 0.60 0.67 0.61 0.18 0.07 0.51 0.84

X11 0.79 0.77 0.85 0.75 -0.43 0.81 -0.80 0.79 0.86 0.54 1.00 0.93 0.78 0.91 0.67 0.54 0.95 0.82

X12 0.92 0.90 0.88 0.68 -0.65 0.76 -0.90 0.95 0.99 0.60 0.93 1.00 0.73 0.90 0.48 0.29 0.89 0.87

X13 0.54 0.62 0.94 0.95 -0.69 0.72 -0.64 0.52 0.64 0.67 0.78 0.73 1.00 0.85 0.31 0.29 0.65 0.83

X14 0.84 0.84 0.90 0.72 -0.58 0.70 -0.83 0.75 0.85 0.61 0.91 0.90 0.85 1.00 0.32 0.19 0.77 0.87

X15 0.31 0.29 0.39 0.49 0.10 0.72 -0.39 0.37 0.38 0.18 0.67 0.48 0.31 0.32 1.00 0.96 0.82 0.37

X16 0.12 0.13 0.31 0.47 0.21 0.67 -0.27 0.15 0.17 0.07 0.54 0.29 0.29 0.19 0.96 1.00 0.68 0.26

X17 0.77 0.76 0.79 0.71 -0.37 0.89 -0.80 0.79 0.83 0.51 0.95 0.89 0.65 0.77 0.82 0.68 1.00 0.79

X18 0.83 0.93 0.93 0.84 -0.76 0.88 -0.86 0.76 0.82 0.84 0.82 0.87 0.83 0.87 0.37 0.26 0.79 1.00
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-1.00

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X17 X18

X1 1.00 1.00 -0.94 0.95 -0.95 0.87 -1.00 0.98 0.97 0.93 0.98 0.99 0.98 0.95 0.97 0.99

X2 1.00 1.00 -0.93 0.95 -0.94 0.89 -1.00 0.99 0.97 0.92 0.97 0.99 0.98 0.94 0.97 0.99

X3 -0.94 -0.93 1.00 -0.83 0.80 -0.94 0.94 -0.90 -0.84 -0.91 -0.97 -0.95 -0.87 -0.83 -0.84 -0.96

X4 0.95 0.95 -0.83 1.00 -0.97 0.78 -0.94 0.91 0.97 0.95 0.90 0.93 0.92 0.98 0.97 0.95

X5 -0.95 -0.94 0.80 -0.97 1.00 -0.69 0.95 -0.93 -1.00 -0.89 -0.91 -0.94 -0.93 -0.99 -1.00 -0.93

X6 0.87 0.89 -0.94 0.78 -0.69 1.00 -0.86 0.85 0.75 0.86 0.86 0.86 0.84 0.71 0.75 0.90

X7 -1.00 -1.00 0.94 -0.94 0.95 -0.86 1.00 -0.99 -0.97 -0.92 -0.98 -1.00 -0.98 -0.95 -0.97 -0.99

X8 0.98 0.99 -0.90 0.91 -0.93 0.85 -0.99 1.00 0.96 0.85 0.94 0.97 1.00 0.90 0.96 0.96

X9 0.97 0.97 -0.84 0.97 -1.00 0.75 -0.97 0.96 1.00 0.90 0.93 0.96 0.96 0.99 1.00 0.96

X10 0.93 0.92 -0.91 0.95 -0.89 0.86 -0.92 0.85 0.90 1.00 0.93 0.93 0.85 0.93 0.90 0.96

X11 0.98 0.97 -0.97 0.90 -0.91 0.86 -0.98 0.94 0.93 0.93 1.00 0.99 0.92 0.93 0.93 0.98

X12 0.99 0.99 -0.95 0.93 -0.94 0.86 -1.00 0.97 0.96 0.93 0.99 1.00 0.95 0.95 0.96 0.99

X13 0.98 0.98 -0.87 0.92 -0.93 0.84 -0.98 1.00 0.96 0.85 0.92 0.95 1.00 0.90 0.96 0.95

X14 0.95 0.94 -0.83 0.98 -0.99 0.71 -0.95 0.90 0.99 0.93 0.93 0.95 0.90 1.00 0.99 0.95

X17 0.97 0.97 -0.84 0.97 -1.00 0.75 -0.97 0.96 1.00 0.90 0.93 0.96 0.96 0.99 1.00 0.96

X18 0.99 0.99 -0.96 0.95 -0.93 0.90 -0.99 0.96 0.96 0.96 0.98 0.99 0.95 0.95 0.96 1.00

Fig. 9  Pearson correlation coefficient diagram for different rocks. a Granite; b Sandstone; c Limestone
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and VIF < 10. A model is considered not to be statistically 
significant if Sig > 0.05.

Table 9 shows the eight models selected for determining 
CAI. Multiple regression analysis was carried out to specify 
whether CAI can be best estimated by one specific factor 
or by a combination of rock parameters. The relationships 
between CAI and rock physical, mechanical and mineralogi-
cal properties were established, respectively. Leeb hardness, 
longitudinal wave velocity, thermal conductivity, and den-
sity were perfectly determined to establish the relationship 
between CAI and physical parameters. An R2 value of 0.878 
and a DW of 1.56 were calculated, indicating that the model 
was better. The mechanical parameters including BTS, inter-
nal friction angle, cohesion, elastic modulus, and Poisson’s 
ratio were determined to forecast CAI. The R2 value of 0.922 
was maximum in the established eight models. Then Q and 
RAI were selected to predict the CAI from the mineralogi-
cal aspect. Mineral-based derived model has a smaller R2 
value than models based on rock physical and mechanical 
parameters. One parameter form each of the mineralogical, 
physical, and mechanical parameters was selected to predict 
the CAI. The best model developed by the diffusion coef-
ficient, internal friction angle, and RAI had the R2 value of 
0.851. Moreover, two aspects of rock parameters were used 
to predict CAI. Specifically, the diffusion coefficient (physi-
cal) and internal friction angle (mechanical) were used to 
estimate CAI, the diffusion coefficient (physical) and RAI 
(mineralogical) were used to estimate CAI, the internal fric-
tion angle (mechanical) and RAI (mineralogical) were used 

to estimate CAI. Notably, four parameters with the maxi-
mum PCC value were used to predict CAI, as a result, a high 
R2 value of 0.912 was calculated. Multivariate regression 
coefficients were shown in Table 10. It was suggested that 
these models were basically satisfactory based on the results 
of Sig and VIF values. Generally speaking, the best model 
developed for the prediction of CAI was derived based on 
the rock mechanical parameters.

Discussion

 The relationships between CAI and 14 parameters includ-
ing physical and mechanical properties were primarily 
acquired using simple regression. Notably, the predictive 
performance of all simple models in terms of all rocks 
is not quite satisfactory. Moreover, it is hard to forecast 
CAI through mineralogical properties. More rock types 
increase the uncertainties of rock properties, so the cor-
relation between CAI and single parameter is not high. 
In order to reduce the uncertainty caused by rock type, 
simple regression for the same rock was carried out. 
Figure 9 represented the PCC results of different rocks 
including granite, sandstone, and limestone. Statistically 
speaking, the PCC value acquired from the same rock type 
increased slightly compared to the PCC results derived in 
Section 3.1. In other words, the significance of linear cor-
relations between CAI and other parameters increased for 
the same rock type. As an example, the PCC value between 
CAI and longitudinal wave velocity was 0.81, while it 
increased to 0.96 for granite, 0.84 for sandstone, and 0.95 
for limestone. Notably, some rock parameters showed a 
different linear relationship with the CAI compared with 
the PCC value in Section 3.1. To be specific, the transverse 
wave velocity showed a negative linear correlation with 
CAI based on all rocks, but a positive linear correlation 
with CAI for the granite and sandstone. Therefore, it is 
suggested that the correlation should be identified based 
on the classification of rocks.

Furthermore, the R2 values for the linear model between 
CAI and 17 rock parameters were calculated, as shown in 
Table 11. It was concluded that three correlations including 
nonlinear, linear, and no relation appeared for all rocks, nota-
bly, there was no relation between CAI and rock mineral-
ogical parameters. After the classification of rock types, the 
R2 value increased significantly or remained stable in terms 
of some rock physical and mechanical parameters. Moreo-
ver, the nonlinear correlation changed into significant linear 
correlation for density, transverse wave velocity, porosity, 
and BTS. An interesting phenomenon on the mineralogical 
parameters occurred. Concretely, after the classification of 
rock types, CAI showed a linear correlation with EQC and 
RAI for the granite and sandstone, Q still showed no relation 

Table 11  The coefficients of determination (R2) for the linear model*

*Nonlinear indicates that other models were used to predict; No rela-
tion indicates that there is no significant relationship between the CAI 
and other parameters; / indicates that it is unnecessary to establish the 
correlation; the number is the R2 for the linear model

Parameters All rocks Granite Sandstone Limestone

CAI and ρ Nonlinear 0.62 0.63 0.98
CAI and H 0.66 0.64 0.83 0.97
CAI and  VS Nonlinear 0.71 0.85 0.89
CAI and  VP 0.58 0.90 0.65 0.87
CAI and λ 0.64 0.65 0.50 0.82
CAI and D 0.73 0.72 0.73 0.74
CAI and P Nonlinear 0.77 0.70 0.97
CAI and BTS Nonlinear 0.73 0.50 0.89
CAI and UCS 0.61 0.70 0.62 0.89
CAI and φ 0.78 0.86 0.65 0.90
CAI and C 0.70 0.66 0.60 0.96
CAI and E 0.72 0.67 0.71 0.98
CAI and ν 0.69 0.68 0.64 0.87
CAI and B 0.65 0.59 0.72 0.86
CAI and EQC No relation 0.74 0.63 /
CAI and Q No relation No relation No relation /
CAI and RAI No relation 0.64 0.90 /
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with CAI. It means that EQC can excellently characterize 
CAI for the granite and sandstone, the other mineral com-
positions except for the quartz also have a significant effect 
on CAI. However, a special phenomenon between CAI 
and mineralogical parameters occurred for the limestone. 
Due to that the limestone merely included the calcite not 
quartz, Q and EQC were the same for five limestones. From 
my perspective, EQC is unfit to characterize CAI for the 

monomineralogic rock especially the limestone, which only 
includes the calcite or aragonite.

Some typical correlations, especially the transition from 
nonlinear to linear correlations, were selected for specific 
analysis. As shown in Fig. 10, the porosity and BTS showed 
a similar linear trend for the three rock types, while trans-
verse wave velocity was positively correlated for the granite 
and sandstone and negatively correlated for the limestone 
with CAI. Therefore, it is paradoxical to characterize CAI 
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Fig. 10  The relationships between the CAI and physical and mechan-
ical properties. a CAI and  VS for the granite; b CAI and  VS for the 
sandstone; c CAI and  VS for the limestone; d CAI and P for the gran-

ite; e CAI and P for the sandstone; f CAI and P for the limestone; g 
CAI and BTS for the granite; h CAI and BTS for the sandstone; i CAI 
and BTS for the limestone
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using transverse wave velocity for different rocks. Further-
more, the positive linear relationship between CAI and EQC 
for the granite and sandstone was represented in Fig. 11. 
Notably, EQC of Yunnan red sandstone deviated from the 
fitting line. However, Yunnan beige sandstone with the same 
mineral composition as Yunnan red sandstone has greater 
abrasiveness. Therefore, some obvious reasons for this phe-
nomenon are related to the fact that the grain size is small 
based on the petrographic observation in Fig. 5.

Based on the multiregression analysis, it was concluded 
that the model established by mechanical parameters had an 
excellent performance of predicting CAI. Moreover, the mul-
tiple regression models had a higher R2 value than the simple 
models, indicating that the predictive performance on CAI 
increased for the multiple regression models. However, rock 
mechanical tests are time-consuming, costly, and destructive 
to the rock, the acquisition of rock mechanical parameters is 
demanding. The rock physical tests are rapid, inexpensive, and 
non-destructive to the rock. Therefore, Eq. (26) seems more 
appropriate for predicting CAI after consideration of the sim-
plicity and period of testing methods.

Conclusions

Rock abrasiveness is an important factor affecting tool wear 
in rock excavation. Based on 27 groups of sedimentary, igne-
ous, and metamorphic rocks from China, single-factor and 
multiregression software were used to investigate the cor-
relations between CAI and physical, mechanical, and miner-
alogical properties in this paper. The following conclusions 
are obtained:

(1) Based on laboratory test methods, seven physical 
parameters, seven mechanical parameters, three min-
eralogical parameters, and CAI were measured and cal-
culated. The petrographic observation was performed 
to intensify the understanding of variation of CAI. The 
PCC value was acquired to primarily investigate the 
linear correlation and provide the reference for the sim-
ple regression and multiregression.

(2) Linear and Boltzmann models were acquired based 
on the simple regression. The results show that CAI 
increases with increasing density, leeb hardness, longi-
tudinal wave velocity, diffusion coefficient, BTS, UCS, 
internal friction angle, cohesion, E, Poisson’ ratio, and 
brittleness, while decreases with increasing transverse 
wave velocity, thermal conductivity, porosity. Moreo-
ver, there were no distinct relationships between CAI 
and mineralogical properties. The fitting coefficient of 
CAI and porosity was 0.94.

(3) Through the analysis of the R2 value, a better multi-
regression model (R2 = 0.92) based on the mechanical 
parameters was obtained. However, a more feasible 
model (R2 = 0.91) based on the thermal conductivity, 
diffusion coefficient, elastic modulus, and RAI was 
also suggested after consideration of the simplicity and 
period of parameter measurement.

(4) After the classification of rock types, the R2 value 
increased significantly or remained stable in terms of 
some rock physical and mechanical parameters, CAI 
showed a linear correlation with EQC and RAI for the 
granite and sandstone, Q still showed no relation with 
CAI. EQC is unfit to characterize CAI for the mono-
mineralogic rock.
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Fig. 11  The relationships between the CAI and mineralogical properties. a CAI and EQC for the granite; b CAI and EQC for the sandstone
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