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Abstract
This work explores the role of landslide sampling strategies in landslide susceptibility modelling (LSM) viz. (a) samples 
from the landslide scarp, (b) centroid of landslide body, and (c) samples from the debris accumulation zone, and discuss 
the mechanism and predictive capacity of each type in the LSM output. The evaluation took place near the surroundings 
of Koyna reservoir region, a highly vulnerable zone in Western Ghats, India, that had not undergone a comparable assess-
ment previously. For this, an inventory dataset, featuring over 3000 landslide polygons were mapped following the July 
2021 extreme rainfall event, including details on source-accumulation zone separation using high-resolution satellite data. 
Fourteen landslide conditioning factors (LCF) (topographic, hydrologic, and climate) are then identified as predictors and 
utilized to train and test with four widely-used machine learning (ML) models. Our findings reveal substantial differences 
in the areal percentage of landslides within identical classes of LCF when employing distinct sampling strategies, implying 
potential differences in predictive accuracies. Results show that LSM prepared from scarp zones demonstrated higher pre-
dictive power (AUC = 0.95), and random forest outperforms all other ML models. The outcomes of our study aid landslide 
investigators in evaluating the suitability of landslide data types and models, as they can significantly impact the accuracy 
of the resulting LSMs.
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Introduction

Landslides, one of the most significant natural geologic phe-
nomena in mountainous regions, often results in significant 
threats to human lives, infrastructure, and the environment 
(Mergili et al. 2014; Gariano and Guzzetti 2016). Landslides 
encompass a diverse array of occurrences such as rock falls, 
shallow debris flows, slides and avalanches. Though grav-
ity's influence on slopes is the fundamental catalyst, addi-
tional interplay of geological, climatic, and anthropogenic 
factors triggers the landslides (Chen and Li 2020; Yunus 
et al. 2021). Because of this complexity, accurate prediction 
of landslide hazards is extremely challenging.

Examining slopes for their susceptibility to future risks 
is of utmost importance, because landslides present a threat 
that is widespread across nearly every mountainous region 
of the world (van Westen et al. 2008; Petley 2012). As world 
populations expand into mountainous regions, it becomes 
important to discuss the inherent risks posed by landslide 
hazards in these settings (Zhou et al. 2021). Equally impor-
tant is comprehending how urban centers, settlements, and 
administrative regions can strategically address these risks 
through comprehensive land-use planning, engineering con-
siderations for new construction, and the development of 
robust infrastructure systems (Guzzetti et al. 2012). There-
fore, developing the landslide susceptibilities for the study 
of interest constitutes first stage in assessing landslide hazard 
and risk (van Westen et al. 2006; Dou et al. 2019).

Landslide susceptibility modelling (LSM), in this study, 
refers to modelling the probability of a landslide occurrence 
within the study of interest, determined by analyzing various 
conditioning factors (Brabb, 1984; Reichenbach et al. 2018). 
The LSM output serve as valuable resources, offering insights 
into the spatial probability of future landslide events (Lee and 
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Min 2001; Feizizadeh and Blaschke 2014; Peethambaran et al. 
2020). Precise delineation of landslide susceptibilities within 
a vulnerable region holds the potential to enhance disaster pre-
paredness and response. By identifying zones prone to suscep-
tibility, it facilitates proactive measures for land use manage-
ment, strategic infrastructure planning, and the enhancement 
of community resilience (Rahman et al. 2019, 2021).

A significant number of studies have recently addressed 
the concept that accurate susceptibility maps depend on a 
reliable landslide inventory (i.e., the quality of the landslide 
mapping method, positional accuracy, and the sampling 
strategy) (Petschko et al. 2014; Steger et al. 2016; Chang 
et al. 2019). Nevertheless, there is an urgent need for a com-
prehensive examination of how the quality of mapping, spe-
cifically the selection of landslide pixel/point samples, can 
influence the modelling of landslide susceptibility.

While previous studies have aimed to highlight the differ-
ences in the predictive capabilities of landslide susceptibility 
models (LSMs) generated using different sampling strategies 
(e.g., Nefeslioglu et al. 2008; Hussin et al. 2016; Dou et al. 
2020; Yu and Chen 2024), a comprehensive comparison of 
factor analysis and explanation of underlying mechanisms 
associated with each sampling scheme has been lacking. 
Therefore, this study explores into a critical evaluation of 
the variations in prediction accuracies of LSMs derived from 
distinct sampling strategies, including landslide centroid 
points, scarp points, and accumulation points.

We employed typical machine learning (ML) models 
such as random forest (RF), artificial neural network (ANN), 
k-nearest neighbors (KNN), and logistic regression (LR) to 
assess the predictive performance of LSMs and validate our 
assumptions. Consequently, this study sheds light on the 
conceptual disparities of LSMs produced using the afore-
mentioned sampling strategies.

Geographic settings

Because of the complex mountain settings, India ranks 
among the top countries worldwide with a high susceptibil-
ity to landslides, experiencing at least one fatality per 100 
square kilometers annually in hilly terrains as a result of 
landslide occurrences. Exposure of the huge population to 
landslides in areas spanning steep hillslopes of Himalayas 
to the ecologically sensitive Western Ghats, this region is 
very critical in disaster viewpoint (Gupta et al. 2018; Sankar 
2018; Ramasamy et al. 2019; Saha et al. 2021). With its 
fragile geological structure, tectonics and intense monsoon 
rains, landslide hazards are very typical in Himalayas during 
heavy rainy spells (Dubey et al. 2005; Kanungo and Sharma 
2014; Dikshit and Satyam 2018; Dikshit et al. 2020). This 
has been aggravated in recent period due to warming cli-
mate and skewed monsoon patterns. The infamous 2013 

Uttarakhand disaster, triggered by heavy rainfall, exempli-
fied the catastrophic impact of landslides in the country. In 
addition, the road construction, widening of existing roads, 
dam construction and urbanization that been increased in 
recent periods resulted in increased number of landslide 
hazards (Yunus et al. 2021).

On the other hand, the monsoon season which brings heavy 
rainfall between June and September, is a significant contribu-
tor to landslides in Western Ghats region of India. The intense 
rains during monsoon months saturate the soil, destabiliz-
ing slopes and triggering landslides. In 2018 and 2019, the 
Indian state of Kerala witnessed several catastrophic events 
with at least 100 people died and several thousands of prop-
erties damaged. Research conducted by Yunus et al. (2021) 
underscores the correlation between the human-induced fac-
tors, such as deforestation and road cutting, which amplify the 
landslide risks in the region. Their study also highlights the 
intense rainfall patterns and heightened landslide occurrences 
in this region. Furthermore, Ajin et al. (2022) shed light on 
the geological and geomorphological factors that contribute 
to landslide susceptibility, accentuating the complex nature 
of the terrain. As these authors collectively demonstrate, the 
multifaceted interplay of natural and anthropogenic factors 
calls for a comprehensive approach to mitigate landslide risks 
in the Western Ghats, especially in the less explored northern 
Ghats regions.

In the past few years, numerous landslide activity happened 
within the northern Western Ghats, especially in the areas sur-
rounding Mahabaleshwar, Satara, Raigad and Koyna region, 
which have experienced heavy to very extreme precipitations. 
The present study analyses the landslide vulnerability of areas 
surrounding the Koyna Reservoir. Located in the western state 
of Maharashtra, India, the Koyna Reservoir region is situated 
at the northern Western Ghats Mountain range (Fig. 1). Here, 
we aim at providing an accurate landslide susceptibility map 
to mitigate future risks in this region by providing vulnerable 
zones. For this, we mapped the landslides that happened dur-
ing 2021 by using high resolution satellite images. The 2021 
monsoon rainfall event was unusual, triggering hundreds of 
landslides in different part of the Satara district, Maharashtra 
(Fig. 1). According to IMD observational data, Satara expe-
rienced its wettest day ever on 23rd July, 2021 with a record 
rainfall of 594 mm in 24 h. Mahabaleshwar station, north of 
Koyna reservoir, received about 943 mm of rainfall in 48 h 
during 21st to 22nd, July 2023 (IMD 2021).

The Koyna reservoir is the result of the Koyna Dam, a major 
hydroelectric project constructed on the Krishna River. The 
elevation of the region ranges from sea-level to about 1500 m, 
with a mean of 500 m, and variations across the diverse terrain. 
Surrounded by dense forests, the region is rich in ecological 
diversity, including various flora and fauna species endemic 
to the Western Ghats. These encompass evergreen forests, 
deciduous woodlands, and grasslands that contribute to the 
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region's unique ecological profile. The climate of the study 
region can be classified as tropical monsoon, characterized by 
extreme precipitation in monsoon (exceed 2000 mm annually). 
The geology of the region is predominantly homogenous, cov-
ered mainly by Deccan basalts (~ 95%), and partly with iron 
and aluminum rich laterite deposits. The regions geological 
history is intertwined with seismic activity, reportedly in the 
Koyna-Warna earthquake zone. Significant earthquakes have 
been reported in the past; notable one is the Koynanagar earth-
quake that occurred on 11 December, 1967 with a magnitude 

of 7.5 recorded in Ritcher scale (Narain and Gupta 1968). The 
epicenter lies about 5 km of the Koyna reservoir.

Data and methods

Landslide inventory mapping

The first stage in the precise prediction of landslide-prone 
areas is the preparation of an accurate landslide inventory 

Fig. 1   (a) Location of the Koyna reservoir, Western Ghats, India, and 
the  mapped landslide  polygons  for the region. Three different sam-
pling strategies are adopted for landslide susceptibility modelling 
(LSM), namely (b) sampling from landslide scarp, (c) sampling from 

landslide centroid and (d) sampling from landslide deposits/accumu-
lation zone. Filled triangles in (a) represent the locations of the field 
photographs depicted in Fig. 2, corresponding to Taliye, Posare, Shi-
ral, and Dhokawale, respectively, from north to south
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map (Guzzetti et al. 2012). In this study, a comprehen-
sive landslide inventory maps were carefully prepared 
through manual interpretation of post-July 2021 rainfall 
event imagery from Planet (3 m), Sentinel-2 (10 m), and 
Landsat 8 OLI (30 m) scenes. Landslide boundaries were 
digitized as polygons from cloud-free images acquired 
after July 2021 in a GIS environment. We preferred man-
ual digitization instead of automated extraction techniques 
as automated methods may lead to upward biases in the 
land use change classes. To ensure the accuracy of identi-
fied landslides stemming from the intense rainfall episodes 
of July 2021, we cross-referenced pre-event satellite data 
from Planet and Sentinel-2. Additionally, to enhance the 
reliability of our mapping endeavours, we cross-checked 
the mapped landslide boundaries using high-resolution 
Google Earth© archives from 2020 and 2021, thereby 
enhancing the overall robustness of the inventory. Fur-
thermore, the locations of accessible large landslides were 

verified in the field as part of our study. Some representa-
tive examples of the field surveyed landslide locations are 
shown in Fig. 2.

Landslides can be mapped at various spatial discretization 
levels, for example, as landslide initiation points (Gorum 
et al. 2011), centroid points (Wartman et al. 2013), or land-
slide polygons (Tanyaş et al. 2022). But, in the context of 
LSM, the selection of sampling methods is also a critical 
consideration (Guzzetti et al. 2012). Some researchers opted 
for point data to express the landslides as a means of sim-
plification or due to constraints, such as limited access to 
high-resolution imagery (Tien Bui et al. 2019; Pham et al. 
2020). In contrast, other researchers choose to employ poly-
gon data, encompassing the various components of land-
slides, including the scarp, crown, and deposition areas (Dou 
et al. 2019; Chang et al. 2019). In the present study, we 
have chosen to map the landslides as polygons, mainly to 
assess the total affected areas. Highest and lowest elevation 

Fig. 2   Slope failures photographed in (a) Taliye (18°06′40.5"N 73°35′00.9"E), (b) Posare (17°37′26.4"N 73°38′04.9"E), (c) Shiral 
(17°22′17.6"N 73°50′21.9"E) and (d) Dhokawale (17°19′21.9"N 73°44′55.7"E)
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in the polygon is further identified as source and deposition 
zones respectively, and buffered to ~ 10% of the size of the 
landslide polygon, and their centroid points are selected for 
LSM analysis. Accordingly, different sampling criteria were 
chosen as the input data for the susceptibility models: they 
are, (a) centroid point of entire landslide body, (b) centroid 
point representing landslide scarp polygon, and (c) centroid 
point representing the landslide accumulation polygon. All 
the processing steps were carried in a GIS environment 
(ArcGIS v10.8).

Factor analysis

Fourteen landslide conditioning factors (LCF) typically 
used in LSM studies were selected in this study. Table 1 
summarizes the source data and their description in detail, 
and Fig. 3 shows the factor maps.. Given the predominantly 
homogeneous terrain characterized by a single outcrop 
lithology (Deccan Basalt), covering over 90% of the study 
area, we have excluded it as a contributing factor to landslide 
conditioning within the study area.

Subsequently, we performed a collinearity analysis to 
test the inter-associations among the independent variables. 
Multicollinearity occurs when a variable is highly corre-
lated with one or more other variables (Allen 1997), and 
the variance inflation factor (VIF) and tolerance (TOL, i.e., 
1/VIF) are two common tests for collinearity. According to 
previous studies, VIF>10 or TOL<0.1 indicate significant 
multicollinearity (Dormann et al. 2013). Table 2 summa-
rizes the VIF values for the conditioning factors and the 

results shows that the factors doesn’t exhibit any significant 
multicollinearity. The information gain function (IG) was 
then used to calculate the factor importance of independent 
variables. In feature selection and for locating root nodes in 
tree-based models, IG is one of the quickest and simplest 
attribute ranking techniques (Alhaj et al. 2016). Figure 4 
shows the significance and ranking of the LCFs using the 
respective training dataset.

Landslide susceptibility modelling

While traditional regression analysis is effective for land-
slide modelling (Reichenbach et al. 2018), comparative 
evaluation often pinpoints the advantageous of machine 
learning models in capture the complex, non-linear interac-
tions present in different variables and landslide initiation 
(Huang et al. 2020; Goetz et al. 2015). Machine learning 
methods, on the other hand, have the flexibility to model 
intricate relationships between multiple predictor variables 
and the target variable, allowing for more accurate predic-
tions (Merghadi et al. 2020). By leveraging algorithms such 
as Random Forest, logistic regression, K-nearest neighbours, 
or neural networks, ML can efficiently process and extract 
meaningful patterns from various landslide conditioning 
factors, thereby enhancing the predictive power of the LSM 
models. For this research, we thoroughly examined and com-
pared widely employed four machine learning models. After 
comparison of all four models and their predictive capacity, 
we then chose the best fit model to determine the final land-
slide susceptibility assessment near Koyna reservoir region.

Table 1   Landslide conditioning factors selected in this study for the preparation of landslide susceptibility modelling

S No Factors Description, Data Source and Resolution

1 Elevation (ELE) 30 m gridded elevation data taken from ALOS AW3D
2 Slope (SLO) Rate of change of elevation for the 30 m grid (in degrees)
3 Aspect (ASP) The slope’s orientation defined as 0° for north and 360°, and 180° for south
4 Curvature (CUR) The second derivative of the elevation surface, indicating the slope's shape, aiding in the 

understanding erosion and runoff mechanisms
5 LS-Factor (LSF) Calculation of slope length (LS) is based on slope and specific catchment area. And it 

describes the effect of topography on erosion
6 Stream Power Index (SPI) Calculation based on slope and specific catchment area (SCA). SPI = SCA * tan(Slope). This 

describe potential flow erosion in the watershed
7 Distance to Channels (DTC) Distance from the channel network extracted using 0.5 km2 as threshold contributing area
8 Topographic Position Index (TPI) Index of grid cell position relative to ridges and valleys. Positive TPI represents cell is closer 

to ridges
9 Topographic Wetness Index (TWI) This quantifies the impact of terrain on hydrological phenomena within a watershed
10 Valley Depth (VDF) Vertical distance to a channel network base level
11 Positive Openness (POS) A factor that expresses surface concavity and convexity (Yokoyama et al., 2002)
12 Normalized Difference Vegetation Index

(NDVI)
A proxy of vegetation dynamics, obrtained from Sentinel-2

13 Distance to Lineament (DTL) Distance from the faults and lineaments, obtained from Bhukosh Portal (1:250000)
14 Rainfall (RAIN) CHIRPS rainfall data, resampled to 30 m
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Fig. 3   Various landslide con-
ditioning factors (LCF) used in 
the landslide susceptibility mod-
elling: (a) aspect, (b) curvature, 
(c) elevation, (d) topographic 
position index (landforms), (e) 
distance to lineaments, (f) LS 
factor, (g) normalized difference 
vegetation index, (h) positive 
openness, (i) stream power 
index, (j) slope, (k) rainfall, 
(l) distance to channels, (m) 
topographic wetness index, and 
(n) valley depth
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Based on our defined criteria, we created landslide sus-
ceptibility maps by utilizing landslide points obtained from 
three different sources: the landslide centroid, the scarp, 
and the accumulation region. To model the data effectively, 
we compiled a dataset consisting of 3066 landslide points 
and an equal number of randomly selected non-landslide 
points within the study area. To generate the random points, 
we applied a 500 m buffer around the mapped landslide 
polygons and excluded this area from the study zone. This 
ensured that no landslide areas were inadvertently included 
in the selection of non-landslide points. This comprehensive 
landslide and non-landslide dataset were then subsequently 
divided into two parts: 70% for training and 30% for valida-
tion purposes.

Random forest

Random Forest (RF) is an ensemble ML technique that pro-
duces numerous decision trees, which are then weighted 
to calculate a classification scheme (Breiman et al. 1984; 
Merghadi et al. 2020). Due to their demonstrated superior 
performance in multiple cases of LSM analysis, and because 
of less hyper parameters to deal with, RF is favored over 
other conventional statistical approaches logistic regression 
(LR), frequency ratio (FR), and ML models such as support 
vector machines (SVM), and decision trees (DT) (Merghadi 
et al. 2020; Fan et al. 2021). RF’s accuracy rates in past stud-
ies found to be higher in most cases (90% and over) and they 
can be achieved, even with limited data points (Catani et al. 

Table 2   Collinearity tests 
conducted for different landslide 
conditioning factors using value 
inflation factors (VIF). Note that 
the VIF values for all factors are 
lower than 10

S.NO Factors VIF

Landslide Centroid 
Point

Landslide Scarp 
Point

Landslide 
Accumulation 
Point

1 Aspect 1.062471 1.06455 1.045008
2 Curvature 2.309684 2.310935 2.304828
3 Elevation 1.839838 1.837239 1.993673
4 Topographic Position Index 2.441853 3.096077 3.222096
5 Distance to lineament 1.212563 1.212698 1.263302
6 Slope-Length Factor 3.669345 3.645254 4.09973
7 Normalized Difference Vegetation 

Index
1.450028 1.443078 1.348359

8 Positive openness 7.692315 8.468967 8.062394
9 Stream power index 1.461115 1.460415 2.10403
10 Slope 8.137399 8.538963 7.738636
11 Rainfall 1.374312 1.37452 1.376358
12 Distance to channel 1.391222 1.404562 1.031126
13 Topographic Wetness Index 2.64571 2.615224 2.576437
14 Valley depth 2.657066 2.864752 2.833219

Fig. 4   Rank importance of 
LCFs using the IG attribute 
evaluation. a) Landslide cen-
troid points, b) scarp points, c) 
accumulation points
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2013; Dou et al. 2019). We used the “randomForest” pack-
age in R 4.3.0 software to model the landslide susceptibility.

Logistic regression

Logistic Regression (LR), one another prominent ML 
algorithm, was initially adopted from statistical techniques 
(Budimir et al. 2015). LR uses the logit function (sigmoid 
function) in the modelling approach. It stands as an explicit 
instance within the broader scope of generalized linear mod-
els, designed to yield binary outcomes. LR's distinctive capa-
bility to determine the optimal fitting function for represent-
ing the intricate association among the presence/absence of 
landslides and a combination of landslide conditioning factors 
(LCF) is coupled with the advantage of requiring minimal 
adjustment of 'hyper-parameters’ (Chen et al. 2015).

Fundamentally, LR establishes a connection between the 
probability of a landslide incidence and a link function pre-
sumed to provide the conditioning factors that potentially 
influence landslide presence. This is formalized through the 
Equation:

Here P signifies the probability of occurrence of land-
slides, confined to 0 and 1, delineated by a sigmoid curve. 
The term z represents a linear fitting equation incorporating 
the provided ensemble of variables associated with land-
slides, structured as described in Equation:

K‑Nearest neighbors

K-nearest neighbors (KNN) is a fitting straightforward ML 
algorithm, where the input entails the k-nearest training 
instances within the feature space. The resulting output com-
prises probabilities of class membership. In classification 
scenarios, these probabilities signify the degree of ambigu-
ity surrounding the assignment of an individual item to a 
specific class. The categorization of an item is established 
by means of a consensus among its neighbouring items. 
Subsequently, the item is allocated to the class that prevails 
among its k nearest neighbors, with k often denoting a small 
positive integer. When k is set to 1, the item is straightfor-
wardly categorized according to the class of its sole nearest 
neighbors (Merghadi et al. 2020).

KNN though recognized as a 'lazy' supervised model, 
but it highlights that the algorithm's calculations and are 
not contingent on the data's distribution; rather, the model 
naturally adapts to the data (Merghadi et al. 2020). This 

P̂ =
1

1 + e−z
=

ez

1 + ez

Z = b0 + b1X1 + b2X2 +⋯ + bnXn

adaptability is particularly advantageous in cases such as 
landslide susceptibility modelling, where the distribution of 
landslides might not conform to standard patterns. On the 
contrary, the algorithm approximates the function locally 
and postpones all computations until the classification stage. 
Consequently, KNN doesn't create a discerning function 
from the training data; instead, it essentially stores the train-
ing dataset in memory.

Artificial neural network

Also known as a multilayer perceptron (MLP), the Artifi-
cial Neural Network (ANN) consists of input neurons (input 
layer), one or more fully connected hidden layers, and an 
output layer (in the case of binary classification). The per-
formance of an ANN model is sensitive to the number of 
hidden layers, the type of activation function and the way in 
which the weights are updated. The purpose of an ANN is to 
construct a model of the data-generating process, enabling 
the network to generalize and predict outputs from inputs 
it hasn't previously encountered. The network operates in 
two modes: learning and recall. During the learning phase, 
facilitated by the back-propagation learning algorithm, the 
network adjusts its initially random connection weights 
based on a set of stimulus pairs called learning examples. 
This phase includes input data and corresponding expected 
outputs. In the recall phase, the synthesized knowledge from 
the learning phase is applied. This allows the network to 
provide coherent responses to inputs not present during the 
training phase, demonstrating its ability to generalize and 
make predictions beyond its training data.

Model performance evaluation

The predictive accuracy of developed LSM should be 
checked for its validity (Tien Bui et al. 2019; Pham et al. 
2020). To evaluate the model performance, we employed 
accuracy (classification rate), kappa statistics, and area 
underneath the receiver operating characteristic (ROC) 
curve (AUC) metrics. Kappa index demonstrates the reli-
ability of the landslide models (Bennett et al. 2013). If the 
kappa value is close to zero, the model is unreliable, but for 
values closer to one, the model is reliable. According to Lan-
dis and Koch (1977), a kappa index near zero indicates poor 
agreement between the model's estimations and observed 
reality, while values falling within the ranges of 0.4–0.6, 
0.6–0.8, and 0.8–1 signify moderate, substantial, and almost 
conditions of agreement, respectively.

The accuracy is calculated using the possibility indices 
true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN). The TP and FP represent the number 
of pixels correctly identified as landslide and non-landslide 
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pixels. However, TN and FN are some landslide pixels that 
were misclassified as landslide and non-landslide pixels 
(Dou et al. 2019; Pham et al. 2020).

Results

Landslide distributions and controlling factor 
analysis

A total of 3066 landslide polygons were delineated from 
the study area after 2021 using post-event satellite images, 
covering a total area of approximately 9.58 km2 and large 
accessible areas were field verified (Figs. 1 and Fig. 2). In 
Fig. 5, we present the analysis of first five most important 
landslide conditioning factors identified using IG ranks from 
the best fit model found from this study. The figure is divided 
into three parts: (left panel—representing factor analysis of 
centroid areas; middle panel—representing scarp areas; and 
right panel—representing accumulation areas. The lower-
case letters (a-e) correspond to the important landslide con-
ditioning factors. This organization allows for a comprehen-
sive examination of the conditioning factors.

Results shows that the majority of landslides are con-
centrated on slopes steeper than 20 degrees, encompassing 
over 56–84% of the total landslide area (Fig. 5a). However, 
a detailed visualization of slope classes with landslide area 
(LA) and landslide aerial density (LAD) in different scheme 
of landslide sampling reveals significant trend differences. 
For instance, the peak LA and LAD for slope classes derived 
from centroid schema lies in 20˚– 25˚ and 25˚- 30˚respec-
tively. This trend is partly consistent in the accumulation 
region, where the peak aerial density (LAD) approaches 1.6. 
However, the examination of the scarp region reveals a peak 
LAD of approximately 3 in the 30°–37° slope classes. These 
findings generally support conventional assumptions, sug-
gesting that scarp samples exhibit greater predictive power 
than other sampling schemes when comparing different 
slope classes.

We observed significant variations in the LS factor 
and landslide occurrence across three different sampling 
schemes (Fig. 5b). While the majority of landslides occur 
in areas with slope lengths ranging from 8 to 59, their 
associated LAD values vary considerably. Specifically, 
landslide accumulation samples exhibit a peak LAD of 
6.7 in regions characterized by high slope lengths ranging 
from 177 to 626. In contrast, scarp samples show zero 
LAD for LS factor within these classes, while centroid 
samples display LAD values of less than 2, with both 

Accuracy =
TP + TN

(TP + TN + FP + FN)

schemes peaking at the 25–60 LSF class. In previous stud-
ies, it has been revealed that slope gradient decreases with 
increasing slope length, and this correlation substantiate 
the potential positive relationship between better predic-
tive powers in scarp and centroid samples over the accu-
mulation zone (Qiu et al. 2018).

Positive openness (POS) expresses the degree of domi-
nance or openness of the landscape to the sky for a pixel of 
the terrain model (Yunus et al. 2021). A low value of POS 
highlights the topographic concavities. Our results indicate 
that, in all three sampling scenarios, the majority of land-
slide-prone areas (>50%) fall in the medium positive open-
ness class ranges (1.29 to 1.38) indicating both concave and 
convex hillslope terrains exhibit the evidence of landslides 
(Fig. 5c).

Analysis of the stream power index (SPI), a metric indi-
cating the erosive potential of flowing water (Wilson and 
Gallant 2000; Deng et  al. 2007), reveals distinct trends 
across the three landslide sampling schemes. However, 
results consistently demonstrate that over 77% of landslides 
are concentrated in areas characterized by high SPI values, 
which correspond to regions of high aerial density (LAD). 
The spatial distribution of the highest landslide occurrences 
generally aligns with areas of maximum unit stream power. 
Nonetheless, the LAD trend for scarp samples peaks within 
the 2.6–4.2 class, contrasting with the other two schemes 
where SPI peaks occur in the 6 to 16 classes. This discrep-
ancy between scarp and other samples may be attributed to 
the fact that in headwater channels, high LAD values in scarp 
regions are sufficient to induce significant landslide erosion.

The NDVI value, a proxy for vegetation dominance or 
not, indicates the presence and intensity of vegetation in the 
study area. The relationship between landslide distribution 
and NDVI values in the study region suggests that land-
slides are more common in densely vegetated areas, with 
more than 75% of the total landslide area is in NDVI value 
greater than 0.5 (Fig. 5e). In all the instances, there is a 
progressive increase in landslide area and LAD from a low 
NDVI value to a high NDVI value. Conventionally, it's often 
assumed that landslides are more prevalent in areas with 
sparse vegetation due to factors such as reduced root cohe-
sion and increased water infiltration leading to soil insta-
bility. However, the study's observation that landslides are 
more common in densely vegetated areas, particularly those 
with NDVI values greater than 0.5, suggests a more complex 
interplay of factors.

One possible explanation for this discrepancy is that 
while dense vegetation can indeed stabilize slopes through 
root reinforcement, it can also increase the weight and water-
holding capacity of the soil, potentially leading to increased 
pore water pressure and, consequently, higher landslide sus-
ceptibility, especially when study area like Western Ghats, 
where the intense rainfall and steep terrain coincides.
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Fig. 5   Plot showing landslide aerial density (LAD) and landslide density (LA) sampled for centroid (left panel), landslide scarp (middle panel) 
and landslide accumulation (right panel) zones for (a) Rainfall (b) slope, (c) LS factor, (d) positive openness, and (e) stream power index



Bulletin of Engineering Geology and the Environment (2024) 83:357	 Page 11 of 19  357

Model comparison and validation

We explored the predictive performance power of different 
machine learning models in LSM such as RF, ANN, KNN, 
LR models for training and validation. Accuracy (ACC) 
of different models were then performed with the help of 
confusion matrix, and the receiver operating characteristic 
(ROC) curve.

The performance results for training (Table 3) and test-
ing (Table 4) show that all the models produced good 
results (AUC>0.790, ACC>0.718 and kappa>0.436). 
Furthermore, the comparative analysis of these mod-
els clearly demonstrated that the Random Forest (RF) 
model outperformed the others by a significant margin 
on both training and testing datasets (Fig. 6). We found 
that the prediction rates are inconsequential with the RF 
model irrespective of the sampling technique (AUC: 
0.902 – 0.952). Whereas, testing with ANN (AUC: 0.866 
– 0.913), KNN (AUC: 0.816 – 0.868) and LR (AUC: 

0.817 – 0.874) shows significant variations in the accu-
racies between the three datasets.

When employing all the machine learning models, it is 
evident that landslide scarp points achieved much better 
results than landslide centroid points and accumulation 
points. Models using landslide scarp points consistently 
achieved superior performance with a minimum accu-
racy value of 79% and AUC values greater than 85%. RF 
model demonstrated excellent performance in all three 
scenarios using validation datasets, specifically when 
using landslide scarp points, achieving an impressive 
95.2% AUC and an 88.8% accuracy rate. When applied 
to datasets with landslide centroid points, it showed 
slightly lower performance, with a 90.2% AUC and 82.3% 
accuracy. For landslide accumulation points, the model 
maintained an accuracy of 86.7% and had an AUC of 
about 93.5%. Also, the RF model consistently achieved a 
kappa statistics value above 0.644, demonstrating strong 
agreement between model estimations and observed data. 

Table 3   Performance results of 
the implemented models using 
training datasets

Metrics
Dataset Model AUC​ ACC​ Kappa TP TN FP FN TP Rate FP Rate

Landslide centroid point RF 0.89 0.80 0.61 1866 1591 273 541 0.80 0.19
ANN 0.85 0.78 0.57 1812 1551 327 581 0.78 0.21
KNN 0.79 0.71 0.43 1728 1339 411 793 0.71 0.28
LR 0.81 0.76 0.52 1740 1518 399 614 0.76 0.23

Scarp point RF 0.93 0.86 0.72 1749 1948 377 221 0.86 0.14
ANN 0.89 0.81 0.63 1729 1784 397 385 0.81 0.18
KNN 0.82 0.76 0.51 1377 1886 749 283 0.76 0.24
LR 0.86 0.80 0.19 1619 1832 507 337 0.80 0.19

Accumulation point RF 0.91 0.83 0.66 1910 1684 290 434 0.83 0.16
ANN 0.85 0.80 0.60 1838 1626 362 492 0.80 0.19
KNN 0.81 0.74 0.49 1821 1406 379 712 0.74 0.25
LR 0.82 0.76 0.53 1735 1583 465 535 0.76 0.23

Table 4   Performance results of 
the implemented models using 
validation datasets

Metrics
Dataset Model AUC​ ACC​ Kappa TP TN FP FN TP Rate FP Rate

Landslide centroid point RF 0.90 0.82 0.64 818 688 107 218 0.82 0.17
ANN 0.86 0.77 0.55 809 614 116 292 0.77 0.22
KNN 0.80 0.73 0.47 774 574 151 332 0.73 0.26
LR 0.81 0.75 0.50 731 650 194 256 0.75 0.24

Scarp point RF 0.95 0.88 0.77 878 756 68 139 0.88 0.11
ANN 0.91 0.85 0.70 851 719 95 176 0.85 0.15
KNN 0.85 0.79 0.58 845 618 101 277 0.79 0.21
LR 0.87 0.80 0.61 806 682 140 213 0.80 0.19

Accumulation point RF 0.93 0.86 0.73 852 753 93 153 0.86 0.13
ANN 0.88 0.82 0.65 803 727 142 179 0.82 0.17
KNN 0.83 0.77 0.54 806 626 139 280 0.77 0.23
LR 0.83 0.78 0.55 772 672 173 234 0.78 0.22
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Specifically, the model applied to landslide scarp points 
demonstrated a strong kappa value of 0.774, while the 
accumulation dataset yielded a respectable 0.734, and the 
centroid point model achieved a satisfactory kappa value 
of 0.644. Moreover, these models demonstrated a lower 
false positive rate, highlighting the effectiveness of the 
landslide scarp point approach in comparison to the other 
methods.

In this study, the ranking of model accuracy follows 
the order: RF>ANN>LR>KNN. However, when consider-
ing the model accuracy in relation to specific scenarios, it 
can be observed that the model developed using landslide 
scarp points exhibited a higher accuracy than those devel-
oped using landslide accumulation and landslide centroid 
points. Hence, in terms of LSM performance, the predic-
tive power is ranked in the following order: landslide scarp 
point>landslide accumulation point>landslide centroid 
point.

Estimation of landslide distribution

Following a comparison of different machine learning 
models, we chose the Random Forest (RF) model for land-
slide susceptibility modelling due to its superior accuracy. 

Figure 7 and 8 shows the landslide susceptibility maps 
derived from 14 LCFs and the landslide inventory from the 
study area, modelled using the different ML methods. The 
susceptibility maps are categorized into five levels based on 
2.5%, 25%, 50% 75% and 95% of the total pixels following 
Merghadi et al. (2020). They are corresponding to very low, 
low, medium, high, and very high landslide classes. Table 5 
illustrates the distribution of area covered by each suscep-
tibility class in the study region utilizing different machine 
learning models.

The quantitative evaluation of landslide distribution 
reveals distinct trends when employing various machine 
learning models (Table 6). Quantitative assessment of most 
accurate RF model using landslide centroid points pre-
dicted that around 90.45% of the landslide area fell within 
the medium to very high susceptibility classes (Fig. 8 and 
Table 5). Conversely, the model employing landslide scarp 
points showed that approximately 90.69% of the landslide 
area is categorized in the very high to medium probabil-
ity classes, while the model using landslide accumulation 
points yielded similar results with around 96% of the land-
slide area assigned to the medium to very high classes. The 
KNN model indicates that approximately 80% of the land-
slide area falls within the medium to very high probability 

Fig. 6   Receiver operating characteristic (ROC) curve and AUC values for the four different machine learning models with samples from land-
slide centroid, scarp, and accumulation using training (a-c), and testing (a'-c') datasets respectively
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Fig. 7   Landslide susceptibility maps generated using (a) LR model (b) ANN and (c) KNN (left panel: landslide centroid points; middle pane: 
scarp points; and right panel: accumulation points)
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classes, with approximately 71% of this area located within 
the very high susceptibility region. In contrast, the utiliza-
tion of landslide scarp points indicates that approximately 
76% of the area is classified within the medium to very high 
probability class, with 68% falling specifically within the 
very high probability region.

However, it's important to note that the model using 
landslide centroid points and landslide accumulation 

points exhibited a higher false positive rate in compari-
son to the model utilizing landslide scarp points (Table 4). 
Specifically, the RF model with landslide scarp points 
demonstrated a lower false positive rate at 0.115, while the 
models using landslide centroid and accumulation points 
had false positive rates of 0.179 and 0.133, respectively. 
This consistent pattern was evident in the outcomes of all 
assessed models.

Fig. 8   Landslide susceptibility maps generated using RF models (left panel: landslide centroid points; middle panel: scarp points; and right 
panel: accumulation points)

Table 5   Total area extent 
covered by each susceptibility 
class

Dataset Model Extent of Area (%)

V.High High Moderate Low V.Low

Landslide centroid Point RF 9.46 19.21 18.99 31.02 21.30
ANN 16.77 9.95 10.30 30.46 32.50
KNN 30.74 3.60 4.87 8.06 52.71
LR 10.01 18.59 23.72 39.76 7.91

Scarp point RF 13.40 16.76 21.10 30.54 18.17
ANN 21.21 4.94 7.05 16.80 49.98
KNN 33.51 3.25 4.37 6.77 52.07
LR 14.34 17.76 18.21 34.48 14.18

Accumulation point RF 11.73 19.58 22.09 33.95 12.62
ANN 23.73 6.54 16.84 18.07 34.80
KNN 33.74 3.52 4.80 7.53 50.39
LR 12.36 18.24 24.91 36.94 7.53
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Discussion

Estimation of landslide distribution using RF model

The choice of landslide sampling criteria has garnered sig-
nificant attention in landslide susceptibility studies, as dis-
cussed in earlier literature (Hussin et al. 2016; Dou et al. 
2020). The assessment of the ranking of LCF in relation 
to three different sampling strategies using Information 
Gain Ratio (IGR) is presented in Fig. 3. It is noteworthy 
that the ranking in IGR changes with three different sam-
pling approaches, indicating there is obvious variance in 
the results as well. Despite the variances, it can be noted 
that the top four position in the best two LSM-AUC output 
scheme (scarp method and centroid method) remains the 
same except in their order of ranking given to slope, LS 
factor, positive openness and SPI. Indeed, the ranking of 
positive openness and stream power index remains same at 
3rd and 4th position in both methods, but slope has gained 
maximum significance in the scarp method compared to the 
latter. Interestingly, one can be noted that the importance of 
slope decreased considerably when we use the samples from 
deposit/accumulation zones. This is anticipated because, at 
the accumulation zones the control of slope on landslide ini-
tiation is very small, and therefore it has got the least AUC 
values in LSM output. This result highlights the importance 
and robustness of the IGR in LSM modelling. Another note-
worthy change while employing the scarp sampling strategy 
in the ranking is the increased significance of NDVI and 
decreased significance of landforms.

Robust results with scarp samples and random 
forest models

Among the major controlling factors identified for the 
landslides, slope, SPI and LS factors are typical of all 

rainfall-induced landslides in Western Ghats in addition to 
the anthropogenic drivers of landslides (Yunus et al. 2021). 
With respect to the accuracy of LSM, our empirical observa-
tions suggest that sampling scarp areas tends to yield a more 
effective model compared to other methods. This finding is 
consistent with prior research results (Simon et al. 2013; 
Süzen and Doyuran 2004; Dou et al. 2020). Landslide cen-
troid point sampling method offers advantages in terms of 
time, simplicity, and automation. But it is important to note 
that it relies on the center of gravity of the landslide polygon, 
potentially resulting in reduced accuracy. Whereas, scarp 
areas are indicative of instability and undisturbed morpho-
logical conditions, making them a crucial element in sus-
ceptibility assessment. Therefore, choice of an appropriate 
landslide inventory map should be contingent on the specific 
research objectives. For the computation of landslide area, 
the utilization of landslide polygons is recommended as they 
depict the realistic representation of the landslide initiation 
condition. On the other hand, if the primary aim is to expedi-
ently determine the locations of landslides, point data pro-
vides a straightforward and efficient approach. Nevertheless, 
in scenarios where a comprehensive assessment of suscepti-
bility is required, particularly in regions prone to instability, 
focusing on the scarp areas is often the preferred approach.

In terms of model performance, we noticed that RF algo-
rithms achieve excellent results compared to other machine 
learning algorithms, which are in good agreement with pre-
vious types of research (Dou et al. 2020; Merghadi et al. 
2020; Yunus et al. 2021). This observation underscores 
the robustness of the RF model. Even when the characteri-
zation of landslide scarp and body in an inventory is less 
accurate, RF modelling can significantly enhance predictive 
power, demonstrating its reliability. However, it's notewor-
thy that when using the RF model, significant variations in 
AUC values were observed based on the sampling methods 
employed. Hence, this study recommends utilizing samples 

Table 6   Extent of landslide area 
covered by each susceptibility 
model

Dataset Model Extent of Landslide Area (%)

V.High High Moderate Low V.Low

Landslide centroid Point RF 35.17 37.94 17.33 8.99 0.55
ANN 48.76 15.76 12.80 17.73 4.92
KNN 70.93 1.97 3.94 6.89 16.25
LR 17.24 35.96 33.00 13.30 0.49

Scarp point RF 41.27 27.18 22.23 8.97 0.32
ANN 53.69 7.38 7.38 17.73 13.79
KNN 68.96 2.46 4.92 6.89 16.74
LR 28.57 26.10 28.57 15.27 1.47

Accumulation point RF 47.32 34.65 14.13 3.74 0.14
ANN 61.57 10.34 13.30 10.34 4.43
KNN 71.92 5.91 2.46 7.88 11.82
LR 23.64 31.03 32.01 13.01 0.31
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within the landslide scarp area and employing the RF tech-
nique to enhance the predictive performance of landslide 
susceptibilities. This approach can maximize the accuracy 
and reliability of landslide susceptibility assessments.

Furthermore, we extended the validation of our study 
framework to an entirely different study site, the Chaliyar 
Basin in Kerala. This region encountered unprecedented 
rainfall and landslides during 2018–19 (Yunus et al. 2021). 
The Random Forest (RF) model, initially trained for the 
Koyna region, was applied to the region; remarkably, the 
resulting AUC value was found to be 0.83 (Fig. 9). This 
superior performance of the model framework without 
requiring fine-tuning or adjustments to the selected condi-
tioning factors, indicate the capability of model performance 
in other environmental settings.

Limitations

The LSM modelling ability from different sampling 
approaches presented in this study may be influenced by 
the manual mapping procedures used and the inherent limi-
tations in remote sensing technology, which are restricted 

by the sensor’s spatial resolution. Implementing machine 
learning models and semi-automated to automated map-
ping approaches using NDVI as a vegetation proxy for land-
slide mapping may ensure consistency (Deijns et al. 2020; 
Milledge et al. 2022). Additionally, using post-event high-
resolution DEMs helps in differentiating landslide partitions 
into scarp and accumulation zones (Dou et al. 2021). Differ-
ent landslide geometries and individual capacity in mapping 
them have varying adaptability, but there is not yet a fully 
successful automated approach in landslide mapping tech-
niques adapted for a wider region. Therefore, future studies 
should focus on developing a best-fit data sampling approach 
that minimizes the impacts of manual editing and area mis-
match, for example, by incorporating emerging automated 
AI-based models.

A key limitation of this study lies in the challenge of 
addressing non-landslide sampling in a random manner. For 
instance, it was difficult to accurately classify areas where 
landslides had not yet occurred and assign them similar char-
acteristics as scarp, centroid, or accumulation zones. This 
difficulty in effectively addressing non-landslide sampling 
introduces biases into the susceptibility modelling process. 

Fig. 9   Validation of the model 
framework to Chaliyar Basin, 
Kerala. Note the area under the 
ROC curve values is 0.83
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Further research can also be attempted to study extreme 
event characteristics, given that the landslide cases in this 
study are concentrated in a single event. Consequently, the 
results may be influenced by factors such as the concentrated 
nature of the rainfall.

Another significant concern is the reliance on a single-
event landslide case presented in this study. Additionally, 
the homogeneity of the lithology in the entire study area 
limits the model applicability due to training bias. Without 
comprehensive data on historical landslide occurrences and 
a wide set of training samples from different environmen-
tal conditions, the predictive accuracy of the susceptibility 
models for a wider region may be compromised, particu-
larly when coupled with selection issues in non-landslide 
zones. However, we assume that the non-landslide points 
encompass all types of conditioning zones. This assumption 
enhances the robustness of the findings and may therefore 
reflect the practical utility of the susceptibility maps gener-
ated by the study.

Conclusions

This research compiled a thorough inventory documenting 
over 3000 landslides triggered by an extreme rainfall event 
in July 2023 in the northern Western Ghats. By employing 
four machine learning models (LR, ANN, KNN, and RF) 
and three sampling schemes (landslide scarp samples, cen-
troids of landslide bodies, and samples from landslide accu-
mulation zones), we further assessed landslide susceptibility 
in the region. All the four ML models, and three sampling 
schemes displayed AUC values exceeding 0.80, indicating 
promising outcomes and showcasing the effectiveness of 
machine learning techniques in landslide studies.

Notably, the RF method exhibited the highest perfor-
mance with an AUC of 0.95, followed by ANN (AUC = 0.91) 
and LR (AUC = 0.87). Regarding performance of sampling 
schemes, landslide scarp samples proved to be more effec-
tive than accumulation zones and scarp centroids in sus-
ceptibility modelling. Analysis of the feature importance 
by means of IG ratio underscored the significant influence 
of steep slopes and slope lengths in the Western Ghats ter-
rain on triggering substantial landslides. The insights gained 
from this study aim to assist landslide investigators in select-
ing appropriate data types and models, as these choices can 
significantly impact the accuracy of the final susceptibility 
maps.
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