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Abstract
Understanding rock deformation is crucial for various engineering and geological applications, including mining, tunneling, 
and earthquake prediction. In this study, we propose a novel approach to estimate rock deformation under uniaxial compres-
sion using extreme gradient boosting (XGB), Extra trees regression (ETR), and K-Nearest Neighbours (KNN) algorithms. 
The proposed methodology involves three main steps. First, a comprehensive dataset of rock samples is collected, including 
various positions of the strain gauge, stress, and corresponding deformation measurements under uniaxial compression. 
These properties serve as input and output features for the machine learning models. Second, the XGB, ETR, and KNN 
algorithms are trained and tested using the collected dataset. These algorithms are known for their ability to handle com-
plex relationships and nonlinearities, making them suitable for modeling the intricate behavior of rock deformation under 
compression. To ensure accurate predictions, a cross-validation technique is employed to optimize the hyperparameters of 
each algorithm. The trained models are then evaluated using various performance evaluations like performance parameters, 
Actual and predicted curves, Rank analysis, Sensitivity Analysis, Error matrix, and OBJ criteria. All models perform better 
(i.e., coefficient of determination greater than 0.9), however, XGB is a more robust model when compared to other models. 
Overall, this study presents a novel and promising approach to estimating rock deformation under uniaxial compression, 
offering a valuable tool for engineers and geologists working in the field of rock mechanics.

Keywords  Rock strain · Strain gauge · Extreme gradient boosting · Extra trees regressor · K-Nearest neighbors

Introduction

Rocks, being solid materials, have the ability to undergo 
deformation when subjected to stress. Stress can be caused 
by various factors such as tectonic forces, gravitational 
forces, temperature changes, and human activities like min-
ing and excavation. When stress is applied to a rock mass, 

it results in rock strain, which is the measurable change in 
the shape or size of the rock. Measuring and analyzing rock 
strain is essential for understanding rock behavior and sta-
bility. Various techniques are used to quantify and monitor 
strain in rocks, including strain gauges, extensometers, and 
geological surveys(Petr et al. 2016; Xu et al. 2020). These 
measurements provide valuable data for assessing the 
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mechanical properties of rocks, predicting rock failure, and 
designing safe structures. Numerous studies on the identifi-
cation of strain have been undertaken thus far as a result of 
the requirement for strain identification (Gundewar 2014; 
Laghaei et al. 2018; Isah et al. 2020; Li et al. 2020). In the 
study of rock, strain tensors for two main reasons. One is 
the assessment of intricate stress fields and the second is 
an estimation of complex strain fields through loading tests 
(Kikumoto and Togashi 2022). Monitoring of strain or dis-
placement is frequently used to study the origin, develop-
ment, and destruction of rock fractures. Rock failure could 
be forecast using the variation coefficient, according to a 
relation between the variation coefficient of rock surface 
displacement and the peak stress (Kong et al. 2023).

Rock strain prediction plays a crucial role in various 
fields such as geotechnical engineering, mining, and nat-
ural hazard assessment (Liu et al. 2013). Understanding 
the deformation behavior of rocks under different loading 
conditions is essential for ensuring the safety and stability 
of underground structures, optimizing mining operations, 
and assessing the potential risks associated with geological 
activities. Traditionally, rock strain prediction has relied on 
empirical and analytical models that require extensive data 
collection and manual analysis (Vergara et al. 2020). Con-
ducting experiments in a lab can be expensive, requiring 
resources such as equipment, materials, and personnel. In 
some scientific experiments, obtaining representative sam-
ples or cores can be challenging, especially when dealing 
with large or inaccessible areas. Certain experiments may 
require long observation periods or involve time-sensitive 
processes. Analyzing large volumes of data generated in the 
lab can be a laborious and time-consuming task. However, 
advancements in machine learning techniques have opened 
up new possibilities for more accurate and efficient predic-
tion models (Liu et al. 2017). Numerous academic institu-
tions, research organizations, and industry companies have 
ongoing research projects and publications on this topic (Liu 
et al. 2017; Cioffi et al. 2020). Many researchers in the fields 
of geology, geotechnical engineering, and computational sci-
ence are exploring the use of machine learning for predict-
ing for different purposes as well as rock strain (Tariq et al. 
2017; Cui et al. 2019; Kumar and Samui 2019; Sun et al. 
2020; Asteris et al. 2021; Jahed Armaghani et al. 2021; Yu 
et al. 2021; Koopialipoor et al. 2022; Kumar et al. 2022c; 
Abdi et al. 2023a).

It's important to note that while machine learning can 
be a powerful tool, it is not a one-size-fits-all solution. 
The successful application of machine learning in the lab 
requires careful consideration of the specific problem, avail-
ability and quality of data, appropriate algorithm selection, 
and continuous validation and refinement of models to 
ensure accurate and reliable results (Indraratna et al. 2023; 
Medawela et  al. 2023). Several researchers utilized the 

machine learning algorithm to solve complex and non-linear 
problems in different fields, especially in engineering and 
science (Al-Jeznawi et al. 2023; Tran et al. 2024; Jitchai-
jaroen et al. 2024). The estimation of soil resilient modulus 
using several machine learning algorithms was proposed by 
various researchers in recent few years (Sadik 2023; Sadik 
et al. 2024). The single models require more computational 
resources, can be more complex to implement, and may 
have higher training times. Additionally, the effectiveness 
of ensemble methods depends on the diversity and quality 
of the individual models. Nevertheless, when appropriately 
applied, ensemble learning algorithms have demonstrated 
significant advantages in various domains and have become 
a valuable tool in machine learning (Dietterich 2000; Sagi 
and Rokach 2018; Kunapuli 2023). (Momeni et al. 2015)
predict the uniaxial compressive strength of rock samples 
using hybrid artificial neural networks augmented by particle 
swarm optimization techniques. (Mohamad et al. 2015) pre-
dict the the unconfined compressive strength (UCS) of soft 
rocks based on ANN hybrid swarm based optimization algo-
rithm. (Mohamad et al. 2018) proposed the back-propagation 
(BP) artificial neural network (ANN) to estimate the uniaxial 
compressive strength (UCS) of rocks with a quite accurately 
having the R values equal to 0.988 for training phase and 
0.999 for testing phase. (Nazir et al. 2013a) proposed the a 
new, reliable correlation between UCS and brazilian tensile 
strengthBTS for limestone, achieving a strong 0.9 determi-
nation coefficient. Several machine learning technique have 
been utilized to predict the UCS of rock and prediction of 
elastic modulus of weak rock mass sample (Nazir et al. 
2013b; Momeni et al. 2015; Armaghani et al. 2020; Abdi 
et al. 2023b; Dowlatshahi et al. 2023).

In this study, ensemble learning algorithms are used 
to predict rock strain. "XGB: A Scalable Tree Boosting 
System" by (Chen and Guestrin 2016), is the original 
paper introducing XGB, and provides an overview of the 
algorithm, as well as its advantages over other gradient 
boosting implementations. Its speed and scalability, as it 
can effectively handle large datasets with a high number 
of features. XGB is highly robust to noise and outliers in 
the data, which makes it suitable for real-world applica-
tions where data quality may be suboptimal. It provides 
a feature importance metric that allows users to identify 
the most important features in their dataset. Overall, XGB 
is a powerful machine-learning library that offers signifi-
cant advantages over traditional single-model approaches, 
including improved accuracy, speed, scalability, and inter-
pretability (Chen and Guestrin 2016; Ma et al. 2022; Su 
et al. 2022). Extra Trees Regression (ETR) is a powerful 
ensemble learning method that can be used to improve 
the accuracy of regression tasks. The algorithm is based 
on decision trees and uses multiple random subsets of the 
data and features to construct the trees. There have been 
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many research papers on Extra Trees Regression, and the 
results have shown that the algorithm can achieve high 
accuracy while requiring less training time than other 
methods(Geurts et al. 2006; Ahmad et al. 2018; Kumar 
et  al. 2023c). KNN is a widely used and well-studied 
machine learning algorithm that has been applied to vari-
ous domains. The literature on KNN includes both theo-
retical and practical aspects, and there have been many 
developments and improvements to the algorithm over the 
years. ((Bhatia and Vandana 2010; Stevens et al. 2011). 
The limitations, Extra Trees can suffer from high variance, 
especially when the number of trees in the forest is large. 
This might lead to overfitting, especially on smaller data-
sets. While decision trees are generally interpretable, the 
ensemble nature of Extra Trees makes it harder to interpret 
the model's decision-making process compared to a single 
decision tree. tuning of hyperparameters like the number 
of trees, maximum depth, and minimum samples per leaf, 
which can be time-consuming and computationally expen-
sive. XGBoost has several hyperparameters that need to 
be tuned, such as the learning rate, maximum depth, mini-
mum child weight, etc. The performance of XGBoost can 
be sensitive to these parameters, and finding the optimal 
set of parameters might require extensive computational 
resources. Similar to other gradient-boosting algorithms, 
XGBoost can be prone to overfitting, especially when 
the dataset is noisy or when the number of trees (itera-
tions) is too large. Prediction with KNN involves calcu-
lating distances between the query instance and all train-
ing instances, which can be computationally expensive, 
especially with large datasets or high-dimensional data. 
KNN typically requires storing the entire training dataset 
in memory, which can be memory-intensive for large data-
sets, limiting its scalability.

Predicting rock strain using machine learning is a prom-
ising area of research that has the potential to improve our 
understanding of rock deformation behavior and aid in 
the exploration and exploitation of geological resources. 
In this study, ensemble models are applied to estimate 
the strain in the rock sample by data collected from the 
laboratory experiment. The data consists of pairs of input 
and output data, where the input data is used to make a 
prediction and the output data represents the correct or 
desired output for that input. The input features are the 
Height of the strain gauge, the Angle of strain gauge, and 
Stress. There will be development, training, and testing 
of the model. Overall, model result analysis is a crucial 
step in the machine learning process, as it helps to evalu-
ate the performance of a model. The results of all models 
must be compared in order to select the most robust model 
using the performance parameter, Actual and predicted 
curve, Rank analysis, Sensitivity Analysis, Error matrix, 
and OBJ criteria.

Research significance

Many regions are prone to natural hazards such as earth-
quakes, landslides, and rock falls. Climate change is caus-
ing significant shifts in environmental conditions, which 
can impact rock behavior and stability. By studying rock 
strain, researchers can gain insights into the behavior of 
rocks under high-stress conditions, which contributes to 
the understanding and prediction of earthquakes, land-
slides, and other geological hazards. Also affects the 
stability and performance of civil infrastructure, such as 
dams, bridges, and underground structures. This knowl-
edge is crucial for developing strategies to mitigate the 
risks associated with such events. Predicting rock strain 
using ensemble models can aid in assessing the poten-
tial for these hazards and developing effective mitigation 
strategies. This research can contribute to enhancing the 
resilience of communities globally, minimizing the loss of 
lives and infrastructure, and improving disaster prepared-
ness and response.

Details of data

In this study, the cylindrical granite rock sample having 
fixed diameter and height of 40 mm and 108 mm respec-
tively was subjected to uniaxial compression loading to 
measure the load and deformation. Data from the lab was 
acquired during experimental testing to predict strain 
in a granite rock material. Measurements of the load 
and deformation on the longitudinal axis of the circum-
ference of the rock sample were made using a uniaxial 
compression load cell and several strain gauge transduc-
ers. Figure 1 depicts the specifics of the strain gauge's 
setup. The outer perimeter was equipped with a total of 
48 electronic strain gauges in both lateral direction and 
longitudinal directions. The readings of these loads and 
deformation were gathered in a data-gathering system. The 
collected dataset from the experiments was utilized to cal-
culate stress and strain based on the rock's dimensions. 
The average Poisson ratio of this granite rock is 0.27. To 
develop the machine learning models total of 3000 data-
sets of granite rock samples were acquired which include 
the variables namely, height of rock samples, angles, stress 
of the strain gauge, and strain in lateral and longitudinal 
directions. Measuring strain at different heights within the 
rock mass offers insights into stress distribution vertically 
and identifies potential zones of weakness or concentra-
tion. Rocks often exhibit anisotropic behavior, signifying 
variation in mechanical properties with direction. Orient-
ing strain gauges at specific angles aids in understanding 
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stress distribution along different axes, characterizing rock 
behavior under varying loading conditions. Therefore, to 
train and test the machine learning models the height, 
angle, and stress of the strain gauge are considered input 
variables. Whereas, the lateral and longitudinal strains are 
considered as the output variable. Soft computing tech-
niques were used to predict the strain in a rock sample 
using these input and output data. The sample datasets are 
shown in Table 1.

After the input and output selection, the whole dataset 
is normalized in the range between [0,1] to standardize the 
formatting of the dataset. The main aim of normalization is 
to reduce the dimensional effect of different variables on the 
output. The following mathematical Eq. 1 has been utilized 
to normalize the input and output variables (Singh and Singh 
2020). Out of the 3000 datasets, 2100 datasets were utilized 
for model training (TR) (about 70% of the total), while 900 
datasets were used for model testing (TS) (30%). To ensure 

Fig. 1   Illustration of loading 
and strain gauges under uniaxial 
load

Table 1   Sample dataset Height (mm) Angle ɸ (degrees) Stress σ (MPa) εx (*10^-3) εy (*10^-3)

0 1 -0.90778 -0.68685 0.907419
1 -1 -0.87465 -0.68685 0.875976
0 -0.1428 -0.86087 -0.58059 0.875976
-1 -1 -0.81509 -0.58059 0.844533
0 0.7142 -0.79744 -0.68685 0.844533
0 -1 -0.73326 -0.58059 0.781648
0 -1 -0.69919 -0.58059 0.750205
0 -1 -0.67778 -0.58059 0.68732
0 -1 -0.66547 -0.58059 0.68732
0 -1 -0.60549 -0.58059 0.655877
0 -1 -0.57974 -0.58059 0.655877
0 -1 -0.5529 -0.58059 0.592992
0 -1 -0.48033 -0.58059 0.561549
0 -1 -0.45013 -0.58059 0.498663
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the proper learning and validation of the models, the authors 
have selected the widely popular and successful criteria from 
the literature review.

where N is the Normalized value, Na is actual value, Nmin is 
Minimum value and Nmax is Maximum value.

Statistical description of the dataset

Statistical analysis is a method of analyzing numerical data 
using statistical techniques to draw conclusions from the 
data Compared to many previous research types, a more 
comprehensive range of the database has been considered in 
this study. Table 2 summarizes a dataset of 3000 data points 
with five variables. The provided statistics offer insights 
into the central tendency (mean, median), spread (standard 
deviation), and distribution (quartiles) of the data for each 
variable.

Performance indices

Several performance indices along with the coefficient of 
determination ( R2 ), variance account factor (VAF), perfor-
mance index (PI), Mean absolute error (MAE) (Chai and 
Draxler 2014), and Root mean square error (RMSE) were 
evaluated to check the performance of proposed models 
(Kumar et al. 2022a, 2023a, b). The mathematical expres-
sion of these performance indices along with their ideal val-
ues are presented in Table 3.

(1)N =
Na − Nmin

Nmax − Nmin

Where P indicates the predicted value of the target vari-
able A indicates the experimental value of the target vari-
able and n indicates the total number of datasets used in 
this study.

Machine learning algorithms

Extreme gradient boosting (XGB)

Extreme Gradient Boosting (XG-Boost) is a powerful and 
widely used machine learning algorithm for supervised 
learning problems, particularly in the fields of predictive 
modeling and data analysis. XG-Boost is based on the con-
cept of boosting, where weak learners are combined to cre-
ate a stronger, more accurate model. XG-Boost is an exten-
sion of the gradient boosting method, which iteratively adds 
decision trees to a model to improve its performance (Chen 

Table 2   Statistical view of the 
dataset

Variable H ɸ σ εX εY

Type Input Input Input Output Output
Units mm degree MPa *10^-3 mm *10^-3 mm
Number of data 3000 3000 3000 3000 3000
Percent 100 100 100 100 100
Mean 54 157.43 7.98 0.02 -0.09
Standard Deviation 22.05 103.07 4.54 0.01 0.06
Variance 486.23 10,624.54 20.65 0 0
Sum 162,000 472,500 523,717.7 1880.8 -6843.87
Maximum 81 315 16 0.06 0.01
Minimum 27 0 0 -0.01 -0.23
Q1 27 78.75 4.16 0 -0.13
Median 54 157.5 8 0.02 -0.08
Q3 81 225 11.74 0.03 -0.03
Mode 54 0 2.34 0 -2.14805
Skewness 0 0 -0.02 0.45 -0.31
Kurtosis 1.5 1.76 1.82 2.39 2.04

Table 3   Performance evaluation parameter with the ideal value

Parameters Mathematical Expression Ideal Value

R2
R2 =

∑n

i=1 (Ai−Aavg)
2
−
∑n

i=1 (Ai−Pi)
2

∑n

i=1 (Ai−Aavg)
2

1

RMSE
RMSE =

�
1

n

n∑

i=1

�
A
i
− P

i

�2 0

VAF
VAF =

(
1 −

var(Ai−Pi)
var(Adi)

)
× 100

100

PI PI = adj.R2 + (0.01 × VAF) − RMSE 2
MAE

MAE =
1

n

n∑

i=1

�
�(Pi

− A
i
)��

0
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and Guestrin 2016; Bentéjac et al. 2021). The complexity of 
the trees is regulated by a variation of the loss function, as 
shown by Eq. (2), where T represents the number of leaves 
in the tree and w represents the output scores of the leaves. 
XG-Boost improves upon traditional gradient boosting by 
incorporating regularization to prevent overfitting, and by 
optimizing the objective function using second-order gradi-
ents, which leads to faster convergence and better accuracy.

The split criterion of decision trees in XG-Boost can 
incorporate a user-defined loss function, which allows the 
algorithm to optimize for a specific metric that is relevant 
to the problem at hand. This can be used as a pre-pruning 
strategy by setting a threshold on the gain in the loss func-
tion that must be achieved by a potential split for it to be 
considered. If the gain is below the threshold, the split is not 
made, and the tree is pruned.

The loss function used in XG-Boost is typically a sum 
of two terms: a term that measures the goodness of fit of 
the model to the training data, and a regularization term 
that penalizes complex models to prevent overfitting. The 
regularization term includes a parameter γ, which controls 
the complexity of the tree. Trees with higher values of γ are 
simpler, as they are penalized more heavily for having many 
splits or a large number of leaf nodes.

In XG-Boost, the optimal value of γ can be selected using 
cross-validation or other methods, and this can help prevent 
overfitting and improve the generalization performance of 
the model. By combining regularization with the use of a 
pre-pruning strategy based on a loss function, XG-Boost can 
produce accurate and interpretable models that are robust to 
noise and outliers in the data (Kumar et al. 2022b).

Extra Tree Regressor (ETR)

The Extra Trees Regression (ETR) technique is a tree-based 
ensemble machine learning approach designed to mitigate 
the overfitting issue inherent in the original random forest 
algorithm (Geurts et al. 2006). The mathematical formula-
tion used in this approach is the same as that of the deci-
sion tree regression (DTR) algorithm proposed by (Ahmad 
et al. 2018). Instead of utilizing the bagging approach to 
build the training subset for each tree, all datasets are used 
in this strategy to train all trees in an ensemble. By merging 
a certain number of estimators, ensemble algorithms aim 
to lower the model's variance relative to the variance of a 
single tree. The result is a model with greater stability and 

(2)Lxgb =

N∑

i=1

L
(
yi,F

(
xi
))

+
∑M

m=1
Ω
(
hm

)

(3)Ω(h) = �T +
1

2
�‖w‖2

generalization potential for the geotechnical practitioner. 
Such models predict a final output that is simply the mean 
of all individual trees' outputs that are causally in the same 
family. This algorithm's model includes a measure of unpre-
dictability, which is one of its distinguishing features. The 
process of randomness is incorporated in two ways: (i) either 
a random subset of features is selected from the whole col-
lection of features to be used in producing a split, (ii) or the 
thresholds of the selected features are chosen at random. On 
the basis of above stated two arbitrary choices are used in 
the following formula to get the optimal split. One benefit 
of utilizing such ensembled models is that, in most cases, 
no considerable hyperparameter adjustment is required to 
create a good-quality model, despite the fact that such mod-
els cannot be regarded as DTR models. However, the most 
crucial factor that should not be overlooked while creating 
ETR models is the selection of the number of estimators to 
be utilized.

K‑nearest neighbor

Fix and Hodges (Fix and Hodges Jr 1952) and Altman 
(Altman 1992) created the k-nearest Neighbors algorithm 
(k-NN) in 1951 as a non-parametric classification technique. 
It belongs to the family of instance-based learning meth-
ods, where the algorithm doesn't explicitly learn a model 
but instead uses the training instances themselves to make 
predictions on new instances. The object's property value is 
the outcome of the k-NN regression. As k-NN predictions 
are based on the intuitive premise that neighboring objects 
may be similar, it makes sense to discriminate between the K 
nearest neighbors when making predictions. Like lazy learn-
ing, neighbors-based regression just stores examples from 
the training data rather than attempting to build a generic 
internal model (Roh et al. 2020). The choice of k can have 
a significant impact on the performance of the k-NN algo-
rithm. A small value of k can lead to overfitting, where the 
algorithm captures the noise in the data and produces overly 
complex decision boundaries. On the other hand, a large 
value of k can lead to underfitting, where the algorithm fails 
to capture the local structure of the data and produces overly 
simplistic decision boundaries. One of the advantages of the 
k-NN algorithm is that it doesn't require a training phase to 
determine the model parameters, unlike many other machine 
learning models. Instead, the training dataset serves as a ref-
erence dataset to determine the number of nearest neighbors 
(k) to consider when making predictions. Calculating the 
average of the output strain in the lateral and longitudinal 
direction of the K nearest neighbors forms the foundation 
of the straightforward mathematical application of KNN 
regression. Generally, a straightforward KNN regression 
algorithm used at least three different distance functions. 
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(1) Euclidean distance function ( Ed ), (2) Manhattan distance 
function ( Md ), and (3) Minkowski distance function ( Mid ), 
mathematical expression presented in Eq. (4), (5) and (6) 
respectively.

Result and discussion

Modeling parameters of proposed models

In this study, three advanced machine learning models i.e., 
ETR, XGB, and KNN were proposed to predict the strain 
of lateral and longitudinal direction. It is important to note 
the optimum models were developed by following a trial-
and-error approach used for selecting hyperparameters 
of proposed models in Python using the Scikit-optimizer 
package. In Table 4, the optimum hyperparameters of the 
XGBoost model, such as the number of estimators, number 
of iterations, learning rate, and number of boosting rounds, 
are listed along with their corresponding values.

(4)Ed =

√
∑K

i=1

(
xi − yi

)2

(5)Md =
∑K

i=1
|
|xi − yi

|
|

(6)Mid =
{∑K

i=1

(
|
|xi − yi

|
|
)q}1∕q

The same dataset used for the construction of the ERT 
and KNN model and optimum hyperparameters with their 
corresponding values for the ETR model are mentioned in 
Table 5. These parameters include the number of estimators, 
maximum depth, maximum number of features, minimum 
number of leaf nodes, minimum number of samples to split 
a node, and the number of jobs to run in parallel. In the 
application of the KNN model the neighbor value considered 
one (i.e., K = 1) in this study, and other hyperparameters 
are taken as the default in the original study of the KNN 
algorithm.

Performance evaluation

To evaluate and compare the performance of proposed 
models, ten performance indices namely, R-squared (R2), 
Adjusted R-squared (AdjR2), Weighted Mean Abso-
lute Percentage Error (WMAPE), Nash–Sutcliffe Effi-
ciency (NS), Root Mean Square Error (RMSE), Variance 
Accounted For (VAF), Prediction Interval (PI), RMSE-
observations Standard Deviation Ratio (RSR), Willmott’s 
Index of Agreement (WI), and Mean Absolute Error 
(MAE), were determined for both lateral and longitudi-
nal dimensions presented in Table 6 and 7 respectively. 
The results presented in Tables 5 and 6 provide the pro-
posed model's performance in quantitative manners for 
both lateral (x) and longitudinal (y) dimensions. For an 
ideal model performance indices value should be equal to 
their respective ideal value mentioned in Table 2. Gener-
ally, the models that achieved the higher accuracy param-
eters and lower error parameter values are considered the 

Table 4   Result of optimal 
hyperparameters value for XGB 
model

XGB hyperparameter Description Search Range Optimal value

n_estimators Number of estimators [50–500] 200
Learning rate Learning rate [0.001–0.1] 0.03
Max_depth Maximum depth [3–15] 10
Objective Type of objective [‘squared_

error’,’pseudo_
huber’]

squared_error

nround Total number of boosting rounds [5–20]] 12

Table 5   Result of optimal 
hyperparameters value for ETR 
model

ETR hyperparameters Description Search Range Optimal value

n_estimators Number of estimators [50–500] 100
max_depth Maximum depth [3–15] 12
Objective Type of objective [‘squared_

error’,’pseudo_
huber’]

squared_error

min_samples_leaf Minimum number of leaf node [0–5] 1
subsample Sample Split [0.7–1.0] 0.7
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best-performing models. The proposed XGB models attained 
the maximum coefficient of determination and RMSE value 
(R

2

TR
= 0.991,RMSE

TR
= 0.042,R

2

TS
= 0.963,RMSE

TS
= 0.077) followed by 

KNN (R2

TR
= 0.974,RMSE

TR
= 0.065,R

2

TS
= 0.961,RMSE

TS
= 0.082) and 

ETR (R2

TR
= 0.888,RMSE

TR
= 0.142,R

2

TS
= 0.878,RMSE

TS
= 0.150) model 

during the both training and testing phases in the lateral 
(x) dimension. Similarly, the XGB model outperformed the 
KNN and ETR in the longitudinal (y) dimension. Finally, 
from the presented performance indices value for proposed 
machine learning models in both lateral (x) and longitudi-
nal (y) dimensions presented in Tables 1 and 2, it can be 
concluded that the XGB model outperformed the KNN and 
ETR models.

Actual and predicted curve

The "actual vs predicted curve" in regression analysis per-
tains to a visual depiction that contrasts the observed or fac-
tual values of the dependent variable against the predicted 
values produced by a regression model. Visual assessment 
is a technique utilized to evaluate the degree of alignment 
between the predictions of a model and the actual data 
points. The Actual vs Predicted Curve displays a comparison 
between the observed values of the dependent variable in 
both the training and testing sets and the corresponding pre-
dicted values generated by the regression model. Each data 
depicted on the graph corresponds to an individual instance 
of observation. The comparison between the actual and pre-
dicted curve holds significance in regression analysis owing 
to its ability to offer a graphical evaluation of the model's 
efficacy. This enables one to comprehend the degree of pre-
cision with which the model captures the fundamental asso-
ciation between the independent and dependent variables. 

Through a visual examination of the curve, it is possible 
to recognize discernible patterns, trends, or outliers, which 
may offer valuable insights into the efficacy and constraints 
of the regression model.

Moreover, the curve facilitates the assessment of the mod-
el's predictive precision. When the predicted values exhibit a 
high degree of similarity with the actual values, it suggests 
that the model is performing effectively. However, major 
outliers or patterns in the curve may point to places where 
the model should be strengthened or where more research 
is required. In general, the comparison between the actual 
and predicted curve is a valuable visual aid for evaluating a 
model, offering a rapid and intuitive means of gauging the 
efficacy and prognostic potential of a regression model.

In Fig. 2 and 3 (c and d), XGB model in both the cases and 
in both training and testing phases, the XGB model exhibits 
a curve that closely follows the diagonal line, indicating a 
strong agreement between the predicted and actual values. 
The performance of the KNN model in the Y-direction dataset 
is on par with the XGB, which is the best-performing model 
overall. The curve for the ETR model in the Y direction for 
both the training and testing phases exhibits deviations from 
the diagonal line and suggests discrepancies or errors in the 
model's predictions. In the X direction too, the ETR model’s 
scatter plot doesn’t indicate satisfactory performance. Thus, 
the performance of XGB and KNN is satisfactory in both 
cases, out of which XGB is the most robust model. The per-
formance of ETR is not satisfactory in both datasets.

Rank analysis

The evaluation of soft computing models' performance is 
facilitated by score analysis or rank analysis. Through the 

Table 6   performance indices in 
lateral (x) dimension

Models ETR XGB KNN

Parameters TR TS TR TS TR TS

R2 0.888 0.878 0.991 0.963 0.974 0.961
RMSE 0.142 0.150 0.042 0.077 0.065 0.082
VAF 87.62 86.47 99.04 96.32 97.36 96.04
PI 1.622 1.592 1.939 1.849 1.882 1.839
MAE 0.088 0.097 0.031 0.062 0.052 0.064

Table 7   Performance indices in 
longitudinal (y) dimension

Models ETR XGB KNN

Parameters TR TS TR TS TR TS

R2 0.900 0.905 0.999 0.997 0.998 0.996
RMSE 0.172 0.172 0.019 0.029 0.024 0.035
VAF 88.983 89.69 99.87 99.68 99.77 99.54
PI 1.617 1.629 1.979 1.965 1.972 1.956
MAE 0.102 0.104 0.012 0.023 0.019 0.027
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analysis of the scores produced by the model, it is possi-
ble to evaluate the model's capacity to effectively classify 
or forecast occurrences. Soft computing models have the 
potential to offer valuable insights into the level of con-
fidence or uncertainty associated with their predictions, 
as inferred from the generated scores. Higher scores are 
indicative of a more robust correlation or probability of 
inclusion within a specific category, while reduced scores 
may suggest equivocation or indeterminacy. The analysis 
of scores is a useful tool for comprehending the degree 
of assurance exhibited by a model. This information is 
pertinent in various contexts, such as decision-making, 
risk evaluation, and the detection of cases that necessitate 
additional examination. On an individual basis, the tech-
nique assigned the highest rank to the model with the best 
value for each index and the lowest rank to the model with 
the poorest value for each index, for both the training and 

testing results. The summation of the individual ranks was 
utilized to determine their ultimate score. Finally, the ulti-
mate score for each model is determined by the aggregate 
ranks obtained from both the training and testing phases 
(Fig. 4).

The results of the rank analysis for the study are pre-
sented in Table 8 and Fig. 4 for the X-direction dataset, 
where TR stands for training and TS stands for testing. 
The XGB model is the top scorer in both the training 
phase (30) and the well-testing phase (30), followed by 
KNN (20 in both training and testing). In overall score 
as well, XGB scored highest (60), followed by KNN and 
ETR having scores of 40 and 20 respectively. Thus, this 
section concludes that XGB is the first-ranked model, 
KNN is second-ranked, and ETR is the lowest third-
ranked. The score analysis for the Y-direction dataset 

Fig. 2   Actual vs. predicted; 
Lateral dimension a ETR 
(Training) b ETR (Testing) c 
XGB (Training) d XGB (Test-
ing) e KNN (Training) f KNN 
(Testing)

a b

c d

e f



	 Bulletin of Engineering Geology and the Environment (2024) 83:278278  Page 10 of 14

is similar to that of the X-direction. Thus, this section 
concludes that XGB is the first-ranked model, KNN is 
second-ranked, and ETR is the lowest third-ranked. Over-
all, XGB is the best-performing model, followed by KNN 
and ETR respectively.

Sensitivity Analysis

Sensitivity analysis is a technique used to assess the impact 
of variations or changes in the input variables (i.e., Height, 
Angle, and stress) of a model on the output (i.e., lateral and 
longitudinal strain) of that model. It helps in understanding 

Fig. 3   Actual vs. predicted; 
longitudinal dimension a ETR 
(Training) b ETR (Testing) c 
XGB (Training) d XGB (Test-
ing) e KNN (Training) f KNN 
(Testing)

g h

i j

k l

Table 8   Result of score analysis 
for lateral (x) and longitudinal 
(Y) dimension

Models ETR XGB KNN

Parameters TR TS TR TS TR TS

R2 1 1 3 3 2 2
RMSE 1 1 3 3 2 2
VAF 1 1 3 3 2 2
PI 1 1 3 3 2 2
MAE 1 1 3 3 2 2
Sub Total 5 5 15 15 10 10
Total Score 10 30 20
Rank Third First Second
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how sensitive the model is to different factors and allows 
for the identification of critical variables that have the most 
influence on the results. The purpose of sensitivity analysis 
is to gain insights into the relationships between the inputs 
and outputs of a system, evaluate the robustness of a model, 
and assess the risks and uncertainties associated with deci-
sion-making. By systematically varying the input variables 
within a defined range and observing the corresponding 
changes in the output, sensitivity analysis provides a quan-
titative measure of the impact of each input variable. In this 
study to determine the strength between input variables and 
output variables cosine amplitude method (CAM) has been 
used. The following mathematical expression is presented 
to calculate the impact strength

where the strength of correlation between the input data pair 
xi and xj and impact strength is denoted by Rij . The value 
of Rij closer to 100 means more impact of the correspond-
ing input variable on the outstrain in both lateral (x) and 
longitudinal (y) direction. The impact of individual input 
parameters on output parameters for the actual dataset and 
all proposed models are presented in Figs. 5 and 6 for lateral 
and longitudinal direction respectively. From the presented 
result of sensitivity analysis, it can be concluded that the 
impact of stress in predicting the lateral and longitudinal 
strain is greater as compared to angle and height. In this 
study, stress has the highest influencing parameters in pre-
dicting the lateral and longitudinal strain followed by angle 
and height.

(7)Rij =

∑n

k=1
xikxjk

�∑n

k=1
x2
ik

∑n

k=1
x2
jk

× 100

Fig. 4   Rank analysis for lateral (x) and longitudinal (Y) dimensions 
in both training and testing

Fig. 5   Impact of input and output data with the predicted model (Lat-
eral)

Fig. 6   Impact of input and output data with the predicted model 
(Longitudinal)

ETR
(TR)

XGB
(TR)

KNN
(TR)

ETR
(TS)

XGB
(TS)

KNN
(TS)

R2 11% 1% 3% 12% 4% 4%
20%

RMSE 14% 4% 6% 15% 8% 8%

VAF 12% 1% 3% 14% 4% 4% 8%

PI 19% 3% 6% 20% 8% 8%

MAE 9% 3% 5% 10% 6% 6% 1%

Fig. 7   Error matrix of lateral dimension
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Error matrix

An error matrix is a table that summarizes the perfor-
mance of a classification model. It provides a more 
detailed breakdown of the model's predictions by showing 
the number of correct and incorrect predictions for each 
class. Error matrix provides a detailed and intuitive rep-
resentation of a regression model's performance, enabling 
deeper analysis, error identification, and informed deci-
sion-making. It is a valuable tool in evaluating, improving, 
and fine-tuning machine learning models.

The error matrix for both datasets is provided in 
Figs. 7 and 8. It can be observed that the XGB model 
in the training phase has an error of almost zero for 
the datasets of both, X and Y directions. In the testing 
phase as well, the errors exhibited by the XGB model 
are the lowest, compared to the other two models. Con-
versely, ETR exhibits errors as large as 10% and 10% 
for MAE criteria in training and testing, respectively. 
The errors for R2 and RMSE are 12% and 15% respec-
tively, for the testing phase. Thus, the matrix provides 
error regonization and comparison between the models, 
concluding the XGB and ETR as the best performing 
and the poorest model, respectively (Fig. 9).

OBJ criteria

To determine the degree to which the generated solution is 
the genuine optimal solution (Hossein et al. 2013) suggested 
a set of objective (OBJ) criteria. The values of the objective 
function are used as a yardstick to determine the solution's 
quality. The mathematical equation used to characterize the 
OBJ value is presented as follows:

where, NTR and NTS is the number of training data and testing 
data. R2

TR
= coeff icientofdeterminationforthetrainingphase 

and R2
TS

= coefficient of determination for training phase 
Similarly, MAETR = meanabsoluteerrorforthetrainingphase 
and MAETS=mean absolute error for the training phase. For 
the best model, the OBJ value should be near zero, while 
for the ideal model, it should be zero. From Fig. 8 it can be 
concluded that the XGB is the best performing model. The 
values in the Y direction dataset is particularly are more 
encouraging, which indicates that the performance of the 
models varies as per the datasets and it’s important to train 
and test the models before application to the field datasets. 
The performance of KNN is close to the XGB, however, that 
of ETR is not satisfactory.

Conclusion

In conclusion, this study successfully implemented three 
advanced machine learning models—Extra Trees Regressor 
(ETR), eXtreme Gradient Boosting (XGB), and K-Nearest 
Neighbors (KNN)—to predict the strain in lateral and lon-
gitudinal directions. The optimal models were developed 
using a trial and error approach to select hyperparameters 
via the Scikit-optimizer package in Python. The XGB 
model, in particular, demonstrated superior performance, 
with its optimal hyperparameters, such as the number of 
estimators and learning rate, carefully tuned to achieve the 
best results as listed. Similarly, the optimal parameters for 

(8)

OBJ =

(
NTR − NTS

NTotal

)

×

(
MAETR

R2
TR

)

+

(
2NTS

NTotal

)

×

(
MAETS

R2
TS

)

ETR
(TR)

XGB
(TR)

KNN
(TR)

ETR
(TS)

XGB
(TS)

KNN
(TS)

R2 10% 0% 0% 10% 0% 0%
19%

RMSE 17% 2% 2% 17% 3% 4%

VAF 11% 0% 0% 10% 0% 0% 6%

PI 19% 1% 1% 19% 2% 2%

MAE 10% 1% 2% 10% 2% 3% 0%

Fig. 8   Error matrix of longitudinal dimension

Fig. 9   Illustration of OBJ value 
for lateral (x) and longitudinal 
(y) dimension
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the ETR model are detailed in Table 4, and the KNN model 
was configured with the neighbor value set to one. The per-
formance of these models was evaluated using ten different 
indices, including R2, RMSE, and MAE, for both lateral (x) 
and longitudinal (y) dimensions. The percentages used for 
model training and testing were, respectively, 70% and 30% 
of the main dataset. The predicted results were examined 
using the performance evaluation, rank analysis, the actual 
vs. predicted curve, the Error matrix, and the OBJ values. 
According to the experimental data, for each analysis, the 
XGB (R2 = 0.991; 0.963 and 0.999; 0.997) was more accu-
rate than the ETR and KNN models in training and test-
ing of lateral and longitudinal dimensions. The "actual vs. 
predicted" curves further corroborated the superior perfor-
mance of the XGB model, showing a strong alignment with 
the diagonal line, indicating accurate predictions. In con-
trast, the ETR model exhibited significant deviations, sug-
gesting less accurate predictions. The rank analysis further 
confirmed the XGB model as the top performer, with the 
highest overall scores in both training and testing phases, 
followed by the KNN model, while the ETR model ranked 
lowest. Sensitivity analysis revealed that stress was the 
most influential parameter in predicting strain, followed by 
angle and height. Error matrix evaluations highlighted the 
XGB model's minimal errors compared to the other models, 
reinforcing its robustness and reliability. The OBJ criteria 
analysis also identified the XGB model as the closest to the 
ideal solution, particularly for the longitudinal (y) dimen-
sion dataset. Overall, the XGB model emerged as the most 
robust and reliable for predicting strain in both lateral and 
longitudinal directions, making it a valuable tool for prac-
tical applications in fields requiring precise strain predic-
tions. The study underscores the importance of hyperparam-
eter optimization and thorough model evaluation to achieve 
the best predictive performance. Further investigations are 
required to assess its performance under different loading 
conditions and with diverse rock types. The study's next 
directions might involve a full evaluation of the proposed 
ETR, XGB, and KNN models as well as hybrid models that 
combine deep learning, additional optimization methods, 
and neural networks.
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