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Abstract
The production of fines and chips during rock cutting plays an essential role in the efficiency of rock cutting, which 
in turn impacts productivity and performance of mechanical excavators. In this study, small scale linear rock cutting 
experiments were conducted using a conical tool on thirteen sedimentary and metamorphic rock samples to evaluate 
the transition between ductile to brittle cutting mode by examining the volume of fines versus chips produced in the 
process of cutting. Cuts with depths of 0.5, 0.8, 1, 2, 3, 4, 5, and 6 mm were made to investigate the production of 
fines and chips in unrelieved cutting mode. The forces acting on the conical tool, cutting rate, and volume of fines 
were measured. Initially, the critical cutting depth was determined by analyzing the cutting force signals, aiming to 
identify both ductile and brittle cutting failure zones. Subsequently, the percentage of fines were classified into three 
classes using the hierarchical clustering algorithm. Finally, the support vector machine algorithm was employed to 
create a two-dimensional space utilizing cutting parameters, enabling the identification of the fines to chip transition 
zone. The effective cutting depth was determined based on specific energy variations, and subsequently, the effec-
tive limit was determined in the fines transition zone. The results showed that cutting depths lower than the critical 
value lead to the production of high fines under ductile failure mode. Also, the results obtained from assessing the 
performance of the two-dimensional fines space, predicated on cutting parameters, demonstrated that the developed 
model effectively evaluates the fines transition zone with a high level of accuracy. The results of this study can help 
in managing the fines production.

Keywords Linear rock cutting · Mechanical excavation · Fines volume · Chip formation · Cutting rate · Support vector 
machine

Abbreviations
FM  Fine material
CH  Chip
UCS  Uniaxial compressive strength
BTS  Brazilian tensile strength
D  Density
P  Porosity

FTmax  Maximum resultant force
FTavg  Average resultant force
d  Cutting depth
∆F  Cutting force difference
∆T  Cutting time difference
Ra  Ratio of cutting force difference to cutting time 

difference
SLR  Slope of the linear fit
HC  Hierarchical clustering
CR  Cutting rate
SVM  Support vector machine
SVC  Support vector classification
OAO  One-against-one algorithm
OAA  One-against-all algorithm
SE  Sensitivity
AC  Accuracy
SP  Specificity
MCC  Matthew’s correlation coefficient
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TP  True positive
FP  False positive
TN  True negative
FN  False negative
dMin  Minimum effective cutting depth

Introduction

In mechanical rock excavation, evaluation of fine material 
(FM) and chip (CH) production is an important aspect of 
the cutting process that affects the efficiency of operations. 
Generally, the rock failure mechanism depends on the cut-
ting depth and the type of rock being cut, involving two 
modes: brittle and ductile. At smaller cutting depths (mainly 
when the cutting depth is less than 1 mm), the rock failure 
mechanism is ductile, but as the cutting depth increases, it 
shifts to the brittle mode (Rostamsowlat et al. 2022). Con-
sequently, this change in the rock failure mechanism results 
in an increased ratio of CH production to FM production.

The cutting depth is often a limiting factor, due to the 
need for sufficient cutting forces, that in turn is limited by 
the cutter load capacity. Therefore, it is crucial to deter-
mine maximum cutting depth to ensure efficient excavation 
operations without compromising the overall performance 
and integrity of the cutting tools. Pick cutters (conical 
tools) are widely used for excavating rocks with weak to 
medium strength and in nonabrasive soft grounds such as 
salt, potash, and coal (Martin and Fowell 1997; Hood and 

Alehossein 2000; Bilgin et al. 2014). Due to the type of 
rock to be excavated and the machines that utilize this tool 
(roadheaders, shearer loaders, and continuous miners), the 
boundary between FM and CH production becomes more 
critical.

Figure 1 shows schematic of FM and CH during rock 
cutting with conical cutting tool. According to this figure, 
when the cutting tool hits the rock, FM is generated through 
the crushed zone and scratching on the rock at the micro 
scale, while CH is formed through the development of ten-
sile cracks that extend to the surface of the rock.

If the cutting conditions required for the propagation of 
tensile fractures are not achieved, either due to the neces-
sity for increased cutting depth or the machine's limited 
power, grinding will occur within the crushed zone. Grind-
ing produces only fines instead of chips, resulting in a sig-
nificantly reduced penetration rate. Chipping, on the other 
hand, represents a more efficient excavation process because 
the generation of chips through tensile fracturing is much 
more efficient than the formation of fines within the crushed 
zone (Snowdon et al. 1982; Gertsch et al. 2007). During 
the mechanized excavation operation, as other aspects of 
the operation such as cutting tool wear affect the efficiency 
of the operation (Wei et al. 2018, 2019, 2021, 2023; Elbaz 
et al. 2021), the greater the amount of FM, the lower the 
efficiency of cutting and the productivity of the excavation 
unit can be expected. Evaluation of FM and CH produc-
tion affects the amount of production dust, ventilation costs, 
personnel health, tool wear, and cutting forces as mentioned 

Fig. 1  Schematic of FM and CH during rock cutting with conical cutting tool
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by Roxborough et al. (1981), Mohammadi et al. (2020), and 
Bejari and Hamidi (2023). Additionally, breaking a volume 
of rock into chips requires less energy than breaking it into 
fines (Vogt 2016).

In the field of mechanized excavation, extensive studies 
have been conducted on the production of FM and CH from 
rock cutting, as well as their characteristics and their impact 
on excavation performance (e.g. Barker 1964; Roxborough 
1973; Roxborough et  al. 1981; Ip 1986; Bruland 2000; 
Gertsch et al. 2000; Rostami et al. 2002, 2020; Altindag 
2003, 2004; Gong et al. 2007; Tuncdemir et al. 2008; Balci 
2009; Abu Bakar and Gertsch 2011; Yin et al. 2014; Abu 
Bakar et al. 2014; Rispoli et al. 2017; Jeong and Jeon 2018; 
Pan et al. 2018; Heydari et al. 2019; Mohammadi et al. 2020; 
Pourhashemi et al. 2021; Hou et al. 2021; Huang et al. 2022; 
Bejari and Hamidi 2023). The past studies on this topic have 
provided valuable insights into how the composition and 
quantity of FM and CH generated during the cutting pro-
cess can influence the overall efficiency and effectiveness of 
excavation operations. The results of the past studies shows 
that, in general, the higher the amount of CH production, the 
better the excavation performance. In addition, according to 
Rostamsowlat et al. (2022), increase in cutting depth results 
in an increased ratio of CH to FM ratio due to entering the 
brittle cutting mode.

A quick review of the literature indicates that extensive 
studies have been conducted on the effect of CH and FM 
production, as well as the dimensions of the fragments 
resulting from cutting, on the cutting performance. How-
ever, a comprehensive investigation has not been presented 
to determine the limit of FM production and establish effec-
tive rock cutting conditions, mainly due to the limited size 
of data sets that researchers can access for such analysis. 
In this study, the boundary of FM production during rock 
cutting using the conical tool has been investigated. For this 
purpose, cutting with a conical tool at various depths was 

performed on thirteen weak to medium strength (based on 
Bieniawski (1989) classification) laboratory-scale rock sam-
ples. The cutting tests were followed by sieve analysis of 
the fragments collected from sample surface. The threshold 
penetration for transition from FM production to efficient 
chipping was investigated using the support vector machine 
algorithm.

Laboratory testing

In this study, thirteen rock samples, comprising gypsum, 
salt, kaolin, travertine, and marble, were gathered from dif-
ferent locations in Iran with different geological settings. It 
includes sedimentary and metamorphic samples were col-
lected from quarry/mine sites. Then the samples were pre-
pared for rock mechanics tests and cutting operations. Rock 
mechanics tests, including uniaxial compressive strength 
(UCS), Brazilian tensile strength (BTS), density (D), and 
porosity (P), were conducted on each sample following the 
standards set by ASTM and ISRM (ASTM D2938-95 1995; 
ASTM D3967-95 1995; ASTM D4543-08 2008). Table 1 
shows the physical and mechanical properties of rock sam-
ples. According to the table, the studied samples cover a 
wide range of rock types that can be cut with a conical tool, 
ranging from weak to medium, as per Bieniawski (1989) 
classification.

Cutting tests were carried out on each rock sample at 
various cutting depths of 0.5, 0.8, 1, 2, 3, 4, 5, and 6 mm 
using the small-scale linear cutting machine (SSLCM) at 
the Mechanized Excavation Laboratory of Tarbiat Modares 
University (MEL-TMU) as shown in Fig. 2. This machine 
has a power of 5.9 kW and a maximum cutting stroke of 
90 cm. The position of the cutting stroke in the test rig can 
be modified based on the length of the rock sample in the 
cutting direction. In this study, a constant cutting speed of 

Table 1  Physico-mechanical 
properties of the studied rocks

Rock Sample Commercial name Sample code UCS (MPa) BTS (MPa) D (g/cm3) P (%)

Sandstone Ghermez-Qom S1 59.19 ± 4.2 4.65 ± 0.27 2.23 6.64
Kaoline Zanjan S2 15.53 ± 0.9 1.32 ± 0.10 2.13 19.01
Salt rock Semnan S3 18.21 ± 0.9 1.8 ± 0.17 2.10 31.36
Gypsum Ardestan S4 11.08 ± 0.5 1.33 ± 0.09 2.25 16.39
Travertine Targh S5 65.89 ± 2.6 3.74 ± 0.21 2.34 5.91
Travertine Dare-Bokhari S6 66.40 ± 4.5 3.98 ± 0.33 2.48 7.36
Travertine Asali S7 56.49 ± 4.2 4.58 ± 0.22 2.47 7.8
Travertine Limoei S8 54.40 ± 3.7 3.21 ± 0.21 2.36 5.66
Travertine Bookan S9 44.86 ± 2.1 2.97 ± 0.39 1.97 14.86
Travertine Abbas-Abad S10 49.54 ± 3.2 5.00 ± 0.24 2.48 5.96
Travertine Chocolate S11 51.76 ± 2.3 5.41 ± 0.39 2.46 8.32
Travertine Ghermez-Azarshahr S12 53.71 ± 2.9 4.65 ± 0.27 2.25 6.94
Marble Marvdasht S13 92.36 ± 5.7 6.38 ± 0.17 2.56 3.96
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25 cm/s is considered for all tests. In addition, the conical 
cutting tool connected to the machine is designed based on 
the attack angle of 50 degrees and the clearance angle of 5 
degrees. For each sample in unrelieved mode, the force act-
ing on the conical tool (including cutting, normal, and side 
forces) were measured using a 3D load cell with a sampling 
frequency of 500 Hz. In a linear cutting operation, since the 
tool does not move sideways, forces only act on the conical 
tool in two directions: along the cutting direction and per-
pendicular to it. Therefore, the force acting on the cutting 
tool is equivalent to the combination of two forces: the cut-
ting force and the normal force.

Figure 3 shows the resultant force signal of sample S1. 
After determining the resultant forces for rock cutting, the 
maximum resultant force  (FTmax) and average resultant 
force  (FTavg) are employed for analysis. It is important to 
note that  FTmax is calculated as the average of the three peak 
values, while  FTavg is the average of the resultant force for 
a given cutting test (sum of average of individual lines). 
Figure 4 shows the relationship between  FTmax,  FTavg, and 
cutting depth (d). According to the figure, there is a direct 
relationship between cutting depth,  FTmax, and  FTavg. The 
results of this study align with available literature (Evans 
and Pomeroy 1966; Nishimatsu 1972; Bilgin 1977; Bilgin 
et al. 2014; Morshedlou et al. 2023).

Additionally, the fragments collected from the cutting 
were carefully collected and subjected to sieve analysis. 
Based on Wentworth (1922) classification, the fragments 
were then classified into three categories: fine (particle 

diameter less than 1.2 mm), medium (particle diameter 
between 1.2 to 4.75 mm), and chip (particle diameter larger 
than 4.75 mm). Figure 5 shows the classification of frag-
ments obtained from cutting the S9 rock sample. As seen, 
as the cutting depth increases, the amount of fines compared 
to the volume of fragments decreases, while the amount of 
chips increases. The findings of this study are consistent 
with those of previous research (Copur et al. 2003; Tunc-
demir et al. 2008; Jeong and Jeon 2018; Dai et al. 2021; 
Wang et al. 2022).

Results and discussion

Critical cutting depth

As mentioned, when the depth of cut in the rock increases, 
the cutting mode tends to become more brittle, conse-
quently leading to an increase in the CH to FM ratio. On 
the other hand, the cutting force is directly related to the 
interaction between the rock and the cutting tool. When the 
cutting tool starts its penetration into the rock, the cutting 

Fig. 2  View of the small-scale linear cutting machine (SSLCM) at the 
Mechanized Excavation Laboratory of Tarbiat Modares University 
(MEL-TMU)
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force increases, until the strength of the rock is exceeded. 
If the induced stresses by the tool exceeds the strength of 
the rock, it will result in extension of cracks, and suddenly 
the accumulated energy will be released. This release can 
be observed as a drop in the cutting force signal in the time 
domain. It is obvious that the larger the drop in forces, 
the larger the piece of rock created. Several scholars have 
deduced that these values can be connected with the failure 
modes of rocks (Che et al. 2014; Dai et al. 2021). There-
fore, based on the cutting force at different cutting depths, 
the critical cutting depth (the depth beyond which the chip 
becomes visible) can be determined.

Dai et al. (2021) stated that through analysis of the 
∆F- ∆F/∆T (∆F-Ra) plot, it is possible to identify three 

regions: brittle, transition, and ductile, in rock cutting 
behaviour. Rock failure behavior, as determined by this 
plot, is characterized by the slope of the linear fit (SLR). 
In the ductile region, the SLR exhibits a smaller value 
close to zero, which then increases proportionally with 
brittle fracture, transitioning into the “transition” region. 
Eventually, the effect of ductile failure diminishes, and 
enters the brittle region. Figure 6 shows the ∆F-Ra plot 
of the cutting process, alongside the linear fit for sam-
ple S4 at a cutting depth of 2 mm. As can be seen, the 
region with a constant slope indicates that the cutting 
force increase with time remained steady. Due to the 
relatively stable process of rock cutting in this region, it 
indicates a ductile failure in the process. Figure 7 shows 

Fig. 4  The relationship between 
the cutting depth and force fea-
tures: a)  FTmax-d and b)  FTavg-d
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the variations in SLR as a function of the depth of cut in 
sample S4. According to this figure, for cutting depths of 
0.5 mm and 0.8 mm, the slope changes were constant and 
lower compared to other depths. Consequently, sample 
S4 exhibited a ductile mode in these two cutting depths. 
As the cutting depth increased to 2 mm, the SLR also 
increased, and its value remained constant from a cut-
ting depth of 2 mm onwards. Hence, the critical cutting 
depth for sample S4 is 2 mm. In other words, chips were 
observed at a cutting depth of > 2 mm for this sample, and 
the ratio of CH to FM increased as the depth increased 

beyond 2 mm. Table 2 shows the critical cutting depth 
for rock samples.

FM classification

In this section, the Hierarchical Clustering (HC) algorithm is 
used for FM classification relative to cutting geometry. This 
method is an unsupervised learning approach that groups 
data into a hierarchy or tree of clusters. This grouping is 
created based on the similarity or dissimilarity between the 
data in such a way that each cluster contains the most similar 
data and the least similarity exists between different clus-
ters. In the hierarchical clustering method, a distance crite-
rion (such as the Euclidean distance, Manhattan distance, 
Minkowski distance, and Chebyshev distance) is employed 
to measure the degree of similarity between the data points 
(Zhao and Karypis 2005). The distances can be expressed as 
a unified Minkowski distance according to Eq. 1 when track-
ing the variability of a parameter in 2D but in this study, a 
one dimensional measurement will suffice. The Minkowski 
distance is typically utilized with p-values of 1 or 2, corre-
sponding to the Manhattan distance and the Euclidean dis-
tance, respectively. The Chebyshev distance, on the other 
hand, employs a value of p equal to infinity (Ketchen and 
Shook 1996).

In this equation,  Xia and  Xja are the  ath evaluation index of 
the fine material i and the fine material j, respectively,  dij is 
the distance between the fine material i and the fine material 

(1)dij =

√

√

√

√

p
∑

a=1
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Fig. 5  The classification of fragments obtained from cutting the S9 
rock sample

Fig. 6  The ∆F- ∆F/∆T plot of the cutting process for sample S4 at a 
cutting depth of 2 mm

Fig. 7  The variations in SLR in relation to the depth of cut in sample 
S4
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j, and P is the number of evaluator indicators from each FM 
class. In this paper, the value of P is equal to 1. In other 
words, "distance" is the difference between two FM values.

Finally, the clusters created based on a criterion called 
the linking criterion are connected to each other. There are 
various linking criteria, including single link, complete 
link, and the Ward criterion for linking clusters, among 
which the Ward criterion is more widely used (Eq. 2) 
(Johnson 1967). The Ward criterion is a method for deter-
mining how to merge clusters at each stage of the hier-
archical clustering process. It is a cumulative approach, 
which means it begins with individual data points as 
separate clusters and then iteratively combines clusters 
that result in the smallest increase within-cluster sum of 
squares (Randriamihamison et al. 2021).

In this equation,  nt is the number of FM parameters 
in the  Gt or group set  (Gt is the set into which FMs are 
divided), X(t)  is the average value of the FM evalua-
tor index in the  Gt set, and S is the sum of the squared 

(2)S =

k
∑

t=1

nt
∑

i=1

(X
(t)

i
− X(t))�(X

(t)

i
− X(t))

deviations of the FM class. When S is minimized, it means 
that the set is chosen correctly.

The SPSS statistical software was utilized for FM classifi-
cation based on HC algorithm. After applying the HC algo-
rithm, new boundaries for the FM were determined as shown 
in Fig. 8. According to this figure, the FM class is divided into 
three categories: class 1 (FM percentage greater than 73.6%), 
class 2 (FM percentage between 73.6% and 40.6%), and class 3 
(FM percentage less than 40.6%). Table 3 shows the conditions 
of FM production after classification. Various researchers have 
examined the cutting process and the creation of fragments, 
with a focus on both the brittle and ductile behavior regions 
(Richard et al. 2012; Zhou and Lin 2013; Jaime et al. 2015; 
Liu et al. 2018; Liu and Zhu 2019; Dai et al. 2021; Rostam-
sowlat et al. 2022). In contrast, some studies have focused on 
the behavior of the forces acting on the cutting tool within the 
brittle and ductile regions. However, the changes in cutting 
behavior and the classification of fines production based on 
these areas have not been discussed.

With the classification and critical cutting depth deter-
mined, it is now possible to analyze the production of FM and 
CH. For instance, based on the FM classification and critical 
cutting depth, Fig. 5 can be modified as depicted in Fig. 9. 
According to the figure, the critical cutting depth of the S9 
sample is 0.8 mm. This depth signifies that if the cutting depth 
in this sample exceeds 0.8 mm, the failure mode is brittle, and 
the cutting operation is accompanied by chips. As shown in 
Fig. 9, after the depth of 0.8 mm, CH (rock pieces with dimen-
sions larger than 4.75 mm) are formed. Furthermore, based on 
the FM classification, cutting depths less than 0.8 mm result in 
high FM production (indicating the presence of ductile failure 
mode). From a cutting depth of 1 mm to 3 mm, the percent-
age of FM production is considered medium, and for cutting 
depths exceeding 3 mm, the percentage of FM production is 
low. Hence, it can be deduced that fines production in the duc-
tile failure mode is classified under class 1.

Transition zone

To establish a space that can determine the transition zone 
between the three FM regions based on the cutting operating 
conditions including  FTavg and cutting rate (CR), the support 

Table 2  The critical cutting 
depth of rock the samples

Sample S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

Critical cutting depth (mm) 0.8 1 1 2 0.5 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.5
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Fig. 8  FM classification after implementing HC algorithm

Table 3  The conditions of FM 
production after classification

FM condition Class code Representative color FM percentage
High 1 >73.6%

Moderate 2 40.6-73.6 %
Low 3 <40.6%
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vector machine (SVM) algorithm is employed. SVM was ini-
tially developed to solve classification problems where the 
main goal is to find an optimal hyperplane that separates two 
classes. However, in reality, most problems involve multiple 
categories, which makes the traditional two-class support 
vector classification (SVC) unsuitable for multi-classification 
problems. To overcome this limitation, multi-class SVC con-
version to multiple two-class SVCs was utilized. This approach 
categorizes multi-class methods into two groups: one-against-
one (OAO) and one-against-all (OAA) algorithms (Ma and 
Guo 2014). The SVM algorithm transforms the initial training 
data into a higher dimension with the help of non-linear map-
ping. In this new dimension, it looks for an optimal hyperplane 
that linearly separates samples of one class from other classes. 
With a suitable non-linear mapping to a high enough dimen-
sion, the data of two classes can always be separated with the 
help of a hyperplane (Han et al. 2011). Indeed, the hyperplane 
serves as the boundary that separates two classes, transition-
ing into a line within two-dimensional space and into a plane 
within higher-dimensional spaces.

To develop SVM and determine the hyperplane (separat-
ing boundaries) for class separation and transition zone iden-
tification, coding in the MATLAB software environment has 
been used. The code begins by inputting the parameters  (FTavg 
and CR). Next, the SVM algorithm was implemented using 
a tenfold cross-validation and a polynomial kernel function. 
Figure 10 shows the FM transition zone model based on SVM 
classification along with the decision boundaries. According 
to the graph, the two-dimensional space is divided into three 

zones: high FM, moderate FM, and low FM, achieved through 
the use of two decision curves. Subsequently, based on the 
specified boundaries, the conditions of cutting depth during the 
excavation operation can be controlled in a manner that ensures 
it minimizes the excessive fines creation. It is important to 
mention that changes in the cutting depth directly impact two 
parameters:  FTavg and CR. An excessive increase in cutting 
depth increases the force acting on the conical tool, leading to 
heightened machine vibrations, conical tool failure, and exca-
vation machine damage. Therefore, cutting depth should also 
be regarded as a limiting factor to avoid excessive forces on 
the cutting tool or the machine.

Some of the previous studies have investigated the pro-
cess of fines and chips production, considering the signifi-
cance of the issue and its impact on cutting performance 
(Snowdon et al. 1982; Bruland 1998; Gertsch et al. 2007; 
Yin et al. 2014; Villeneuve 2017). Their findings align with 
those presented in this section. However, within this section, 
a framework has been developed to ascertain the fines zone 
using operational parameters. This framework enables the 
management of fines production to enhance productivity.

Performance of the transition zone

In order to assess the SVM model, four evaluation criteria 
including sensitivity (SE), accuracy (AC), specificity (SP), 
and Matthew’s correlation coefficient (MCC) have been used. 
These criteria are determined using Eqs. 3, 4, 5, 6 based on the 
confusion matrix of the FM transition zone model (Ghasemi 

Fig. 9  The S9 sample FM and 
CH production based on FM 
classification and critical cutting 
depth
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and Gholizadeh 2018; Kadkhodaei and Ghasemi 2022). Fig-
ure 11 shows the confusion matrix of SVM developed model.

(3)AC =
TP + TN

TP + TN + FP + FN

(4)SE =
TP

FN + TP where TP (true positive) is an outcome where the model 
correctly predicts the positive class, FP (false positive) is an 

(5)SP =
TN

TN + FP

(6)

MCC =
(TP × TN) − (FP × FN)

√

(TP + FN) × (FP + TP) × (FP + TN) × (TN + FN)

Fig. 10  The developed FM tran-
sition zone model along with 
the decision boundaries

Fig. 11  The confusion matrix of 
FM transition zone model
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outcome where the model incorrectly predicts the positive 
class, TN (true negative) is an outcome where the model 
correctly predicts the negative class and FN (false negative) 
is an outcome where the model incorrectly predicts the nega-
tive class.

AC, SE, and SP range from 0 to 1, with higher values 
indicating a more excellent model. On the other hand, 
MCC ranges between -1 and + 1, where + 1 represents 
a perfect prediction, 0 indicates no better than random 
prediction, and -1 signifies total disagreement between 
predicted and observed values (Kadkhodaei and Ghasemi 
2022). Table 4 shows the values of SE, AC, SP and MCC 
for FM transition zone model. Based on the obtained 
results, the developed model has demonstrated high per-
formance and can be effectively utilized to determine the 
transition zone of FM.

Predicting the threshold cutting depth for efficient cutting

As mentioned, with the increase in cutting depth, the ratio 
of CH to FM also increases, and concurrently, it leads to an 
increase in  FTavg and CR. However, increasing the cutting 
depth is also a limiting factor and cannot be raised to very 
high values due to the physical limitation of the cutting tool 
and negative effects on excavation operations. Therefore, 

an effective limit should be determined based on the cutting 
depth in the FM transition zone. To determine the effective 
cutting depth, one can employ specific energy variations in 
relation to the cutting depth. Bilgin et al. (2006) noted that as 
the cutting depth increases (in unrelieved cutting mode), the 
specific energy decreases until the ratio of specific energy 
changes remains nearly constant when the cutting depth 
increases excessively (Fig. 12a). For this study, the effec-
tive cutting depth is determined by considering variations 
in specific energy of less than 10%. In other words, it is the 
depth at which the specific energy variations become less 
than 10%. Figure 12b shows the relationship between cut-
ting depth and specific energy in the S4 rock sample with 
a threshold of 10%. According to this figure, the effective 
cutting depth for the S4 rock sample is 3 mm, where the spe-
cific energy variations are less than 10%. Table 5 shows the 
effective cutting depth and the corresponding values of each 
parameter. The effective cutting depth in this context corre-
sponds to the minimum cutting depth where specific energy 
is minimized and its variations remain in specific energy 
nearly constant. This value is then utilized as minimum 
effective cutting depth  (dMin) in subsequent discussions.

To enhance comprehension of the effective conditions, 
Fig. 13 shows the relationship between  FTavg, UCS, and FM 
within these conditions. It is important to highlight that  FTavg 
values are normalized by using  dMin. As shown in the figure, 
there is a direct correlation between UCS and  FTavg/dMin; an 
increase in UCS leads to a rise in  FTavg/dMin. Furthermore, 
as  FTavg/dMin increases, there is a subsequent decrease in 
FM. This range delineates the conditions associated with 
the minimum cutting depth, while the range below it signi-
fies the effective conditions for the cutting operation. Within 
this range, both the specific energy and subsequently the FM 
reach their minimum levels.

Table 4  Values of performance evaluation criteria for FM transition 
zone model

FM transition zone model Class AC SE SP MCC
1 0.952 0.933 0.959 0.884
2 0.913 0.821 0.947 0.777
3 0.961 0.956 0.965 0.922
Overall 0.913 0.903 0.957 0.861

(a) (b)
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Fig. 12  The relationship between cutting depth and specific energy: a) Bilgin et al. (2006) and b) S4 rock sample with a threshold of 10%
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By incorporating the data points representing the mini-
mum effective cutting conditions into Fig. 10, along with 
additional data concerning cutting depths greater than 
 dMin, a new operational zoning can be developed as shown 
in Fig. 14. According to this figure, the transition zone 
model is divided into five distinct ranges, including the 
minimum effective cutting depth limit,  FTavg limit, CR 
limit, cutting tool geometry limit, and minimum allow-
able cutting depth limit. The minimum effective cutting 
depth limit indicates that when the cutting depth is chosen 
so that the values of  FTavg and CR fall within Region 1, the 
conditions are deemed ineffective, resulting in an increase 
in FM and specific energy. The minimum allowable cutting 
depth limit indicates that performing cutting operations is 
inefficient when placed in Region 2 due to its location in a 
high fines zone. Due to limitations in cutting force appli-
cable on the tool, there are other boundaries such as the 
 FTavg limit, CR limit, and cutting tool geometry limit. Con-
sequently, performing operations at high cutting depths 
(Region 3) is not feasible and it often leads to frequent tool 
failures. Based on these findings, by considering the two 
operating parameters  FTavg and CR during rock cutting, it 
is possible to control fines production. Thus, the cutting 
depth is adjusted during the cutting process based on the 
applied forces and cutting rate, ensuring that the results 
remain within acceptable boundaries and the effective 
operating conditions are achieved. It is important to note 
that these results are preliminary and only relevant to the 
specific pick geometry discussed earlier in the paper, and 
should not be extrapolated to other types of picks or pick 
tip configurations.

Future research directions

An overview of the literature reveals that there have been 
numerous comprehensive studies conducted on the impact 
of CH and FM production, as well as the dimensions of 
the fragments from cutting, on the performance of cutting. 
Nevertheless, a comprehensive investigation has yet to be 
conducted to ascertain the limit of FM production and 
develop effective rock cutting conditions. In this study, 
the SVM algorithm was utilized to investigate the bound-
ary of FM production during rock cutting with a coni-
cal tool. This study represents the first attempt to manage 
fines production during cutting with a conical tool, and 
consequently, it has limitations that could enhance the 
comprehensiveness of the results by examining them in 
future studies:

Table 5  The effective cutting depth and the corresponding values of 
each parameter

Sample Effective condition

dMin (mm) FTavg (N) CR  (cm3/s) FM (%)

S1 4.9 3074.29 6.45 17.12
S2 4.6 1267.60 7.78 59.34
S3 4.5 1321.37 8.98 45.37
S4 3.0 509.29 4.06 78.84
S5 5.2 3169.53 6.18 15.13
S6 4.8 3285.12 4.87 13.95
S7 4.5 2583.27 5.82 21.19
S8 4.6 2110.68 6.97 22.44
S9 4.3 1347.25 7.00 39.80
S10 4.8 1507.46 5.56 33.16
S11 4.5 1839.89 5.45 26.67
S12 4.8 1951.16 7.45 19.02
S13 5.7 3826.37 4.93 12.74

Fig. 13  The relationship between  FTavg, UCS, and FM at minimum 
effective cutting conditions
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1) It should be noted that the analyses were developed 
based on controlled laboratory conditions in an unre-
lieved cutting mode, and considering other operational 
conditions, specially cut spacing, bit tip geometry, and 
attack angle may lead to generalizations of the analyses 
and results.

2) Examining and analyzing the results of additional rock 
samples, as well as investigating under special condi-
tions such as the effect of water saturation and stress 
on the samples, can contribute to the usefulness of the 
study.

3) These results are preliminary and only relevant to the 
specific pick geometry discussed earlier in the paper, 
and should not be extrapolated to other types of picks 
or pick tip configurations. Furthermore, examining the 
relationship between the grooves in the relaxed cutting 
mode might aid in the completion of future investiga-
tions.

Summary and conclusions

In this study, the mechanism of fines and chip production 
was studied in rock cutting with a conical tool. Thirteen 
metamorphic and sedimentary rock samples with weak to 
medium strength values were carefully prepared and sub-
jected to testing at different cutting depths: specifically, 0.5, 
0.8, 1, 2, 3, 4, 5, and 6 mm. These measured forces allowed 
for analysis of cutting forces and specific energy while sam-
pling of the cuttings facilitated assessment of the fines pro-
duction. The threshold or critical cutting depth was deter-
mined by scrutinizing changes in the measured cutting forces 
with the goal of finding the transition zone between ductile 

and brittle failure. The percentage of the fines was classified 
into three distinct classes using the hierarchical clustering 
algorithm. The results indicated that cutting depths below 
the critical cutting depth result in the generation of a signifi-
cant amount of fines under the ductile failure mode.

Subsequently SVM algorithm was utilized to construct a 
two-dimensional space using cutting parameters  (FTavg, and 
CR), facilitating the identification of the fines transition 
zone. The results derived from evaluating the performance 
of the two-dimensional fines space (utilizing AC, SE, SP, 
and MCC criteria) based on  FTavg, and CR illustrated that 
the developed model proficiently assesses the fines transi-
tion zone with a high degree of effectiveness. The minimum 
effective cutting depth, at which the specific energy varia-
tions remained below 10%, was determined for each rock 
sample. Given that cutting performance parameters  (FTavg 
and CR, FM) are a function of the cutting depth and the 
rock properties, some models are proposed for estimation 
of minimum penetration or cutting depth to ensure that the 
operation remains within the effective zone, minimizing 
the generation of excessive fines, excessive specific energy 
consumption, excessive machine vibrations, and associated 
damage.
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