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Abstract
Landslides represent a prevalent geological hazard in reservoir areas, posing significant risks to the lives and properties of 
residents. It is widely acknowledged that rainfall and the fluctuation of reservoir water level are two primary factors trig-
gering reservoir landslides. However, there has been limited research on multi-sliding zone reservoir bank landslides, and 
existing studies fail to adequately characterize the evolutionary process of this type of landslide. In this paper, the Outang 
landslide located in Three Gorges Reservoir (TGR) was taken as a case study to evaluate its stability and failure probability. 
Sensitivity analyses were conducted on statistical mechanical parameters and autocorrelation functions initially, followed 
by a comparative analysis of annual stability and reliability. The results indicate that the stability of the Outang landslide is 
predominantly influenced by the water level fluctuation, and the lower sliding zone plays a pivotal role in affecting the overall 
stability compared with other regions in the landslide. Furthermore, variations in failure probability are notably influenced by 
the frictional angle and the vertical scale of fluctuation, with autocorrelation functions playing a more significant role when 
the coefficient of variation is small and the vertical scale of fluctuation is large. This study could provide valuable guidance 
for the prevention and mitigation of analogous multi-sliding zone reservoir bank landslides.
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Introduction

The Three Gorges Project is of immense scale and ranks 
among the world's largest hydraulic engineering projects. 
It plays a significant role in hydroelectric power genera-
tion and flood control (Sun et al. 2016; Wang et al. 2024). 
Nevertheless, the geological structure of the Three Gorges 
Reservoir (TGR) is highly intricate, with landslides being 
extensively distributed (Deng et  al. 2023; Huang et  al. 
2017; McKay et al. 1979). It has been reported that, since 

the impoundment of the TGR in 2003, over 140 sections of 
both unstable and stable reservoir banks have been identi-
fied, and more than 5,000 landslides of various sizes have 
been documented (Huang et al. 2020b; Wang 2021; Wu et al. 
2017). The instability of landslides poses catastrophic risks 
to the lives and properties of the local population. Therefore, 
comprehensively understanding the destabilization mecha-
nisms of landslides and accurately assessing their stability 
is a crucial step toward mitigating geological hazards in the 
reservoir area.

It has been widely accepted that reservoir water level fluc-
tuation and rainfall are the two main triggering factors of 
reservoir bank landslides (Chen et al. 2018; He et al. 2016; 
Zhang et al. 2020a). For example, the Baishuihe landslide 
(Li et al. 2010; Miao et al. 2021), the Qianjiangping land-
slide (Jian et al. 2014; Jiao et al. 2014), and the Bazimen 
landslide (Tu et al. 2011; Zhou et al. 2016) were induced by 
the coupling influence of rainfall and reservoir water level 
fluctuation. The abrupt and substantial increase of reservoir 
level could change the water content of the slope, then sof-
tening the slip zone and reducing the slip resistance of the 
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slope (Zeng et al. 2023; Zhang et al. 2024). Likewise, the 
sudden drawdown of reservoir level will lead to significant 
changes in the seepage field within the slope, creating high 
seepage pressure pointing outward, which is critically det-
rimental to the stability of the slope (Chen et al. 2021; Jiang 
et al. 2011; Wang et al. 2023; Zhang et al. 2020a). Rainfall 
also directly affects the stability of the reservoir bank slope, 
the continuous infiltration of rainfall saturates the cracks at 
the rear of the slope, resulting in increased sliding force. 
Additionally, intense rainfall can trigger overall slope fail-
ure due to scouring and eroding the surface soil (Chen et al. 
2018; Li et al. 2015; Wang and Zhang 2021).

Due to variations in mineral composition, depositional 
environment, stress paths, and other geological factors, the 
properties of geotechnical parameters exhibit spatial variabil-
ity. The theory of random fields provides an effective means to 
characterize spatial variability, and research on random fields 
has made continuous advancements, ranging from one-dimen-
sional to multi-dimensional analysis and from isotropic to ani-
sotropic conditions (Ching et al. 2011; Griffiths and Fenton 
2004; Ma et al. 2024; Salgado and Kim 2014). Studies have 
demonstrated that deterministic analysis without considering 
spatial variability significantly deviates from reality (Gu et al. 
2022; Xue et al. 2020; Zhang et al. 2020b). Therefore, it is 
imperative to accurately quantify and consider the impact of 
spatial variability in geotechnical parameter analysis while 
evaluating slope stability (Jiang et al. 2022; Liu et al. 2017).

There has been limited research on multi-sliding zone 
reservoir bank landslides, and the reliability evaluation of 
this type of landslide is still missing. Therefore, in order to 
comprehensively understand the impact of reservoir water 
level fluctuation and rainfall on the annual stability of the 
landslide, as well as the relative role of these dual factors 
in triggering the landslide, the Outang landslide, a typical 
case of multi-sliding zone reservoir bank landslide in the 
TGR, was selected as a research case. Subsequently, based 
on the actual reservoir water level fluctuation and rainfall 
in 2014, sensitivity analysis was undertaken in this study to 
assess the influential factors affecting the failure probability, 
then the deterministic and probabilistic stability analysis of 
the Outang landslide within one year was evaluated (a flow 
chart of deterministic and probabilistic analysis of the Out-
ang landslide is shown in Fig. 1).

Study area

Location and hydrogeological conditions

The Outang landslide is located in Anping Town, Fengjie 
County, Chongqing Municipality, China (109°21′15″E, 
30°57′45″N), on the southern bank of the Yangtze River 
(Fig. 2). It is 12 km away from Fengjie county and 177 km 

away from the Three Gorges Dam. Outang landslide area 
is characterized by shallow medium-cut monoclinic low 
mountain valley landforms, and the planar morphology of 
the landslide exhibits an oblique and inverted ancient bell 
shape. The elevation of the landslide toe and crown is 95 m 
and 705 m, respectively, thus, the altitude difference of the 
landslide is approximately 610 m. It is estimated that the 
landslide is of about 1990 m in length, 890 m in width, 
covering an area of 176.9 × 104 m2 and with a volume of 
8950 × 104 m3. The landslide is classified as an extremely 
large bedding rock landslide, with a main slip direction of 
345°. The overlying strata in the landslide area are mainly 
composed of Quaternary residual and colluvial deposits 
(Q4

dl+el), alluvial and diluvial deposits (Qal+pl), landslide 
deposits (Q4

del), and the Lower Jurassic Zhenzhuchong 
Formation (J1z). The geomechanical properties of the soil 
and rock in this region display substantial variations, while 
the structural composition is characterized by a high degree 
of complexity. After a detailed investigation of the Outang 
landslide, this ancient instability was characterized by multi-
stages and multi-period sliding, hence, it could be divided 
into three reactivated sliding masses (Fig. 3), sliding mass 
S1 (subzone I), S2 (subzone II), and S3 (subzone III). As 
illustrated in Fig. 4, three weak interlayers (WI 1, WI 2, 
WI 3) were identified. Sliding mass S1 is of about 880 m in 
length, 1100 m in width, covering an area of 92.2 × 104 m2, 
sliding mass S2 is about 440 m in length, 650 m in width, 
covering an area of 31.6 × 104 m2 while sliding mass S3 
extends around 640 m in length, 830 m in width, covering 
an area of 54.3 × 104 m2. The rear part of the sliding masses 
S1 and S2 were covered by S2 and S3, respectively.

The Outang landslide area falls within the subtropical 
warm-temperate monsoon climate zone, characterized by 
distinct seasons and features such as limited sunshine, high 
humidity, abundant rainfall during autumn and summer, 
and frequent fog during winter and spring. Approximately 
70% of the annual precipitation is concentrated between 
the months of May and September, the maximum annual 
rainfall reaches 1636.3 mm, with a peak monthly rainfall of 
548.4 mm and a maximum daily rainfall of 158.6 mm, these 
values indicate a pronounced concentration of rainfall distri-
bution. In order to meet the requirements of power genera-
tion and flood control in the TGR, the reservoir water level 
fluctuates periodically between 145 and 175 m, abundant 
rainfall and periodic reservoir water level fluctuations are 
crucial external dynamic factors that significantly contribute 
to slope deformation and failure.

Deformation characteristics of the Outang landslide

Outang landslide is an ancient, giant, bedding landslide that 
has shown significant deformation in recent years. Accord-
ing to incomplete statistics, over 160 cracks of various 
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Fig. 1   Flow chart of deterministic and probabilistic analysis of the Outang landslide

Fig. 2   Overview of the Outang landslide. a Location of the Outang landslide; b Remote image of the Outang landslide
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Fig. 3   Engineering geological 
map of the Outang landslide

Fig. 4   Geological cross-section of Outang landslide (see B-B’ profile location in Fig. 3)
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sizes have been identified in the landslide area since the 
impoundment of the TGR in 2003 (Luo and Huang 2020). 
The leading edge of the sliding mass S1 is influenced by the 
fluctuation of the reservoir water level, causing the collapse 
and damage of steep slope soil and rock within the wet-dry 
zone along the riverfront, resulting in severe degradation 
of the soil and rock. The sliding mass S2 is not affected by 
the reservoir water level. Field investigations reveal fewer 
and smaller surface deformations in this area, furthermore, 
these deformations are primarily induced by heavy rainfall 
and exhibit negligible progression during the dry season. 
The sliding mass S3 is predominantly influenced by pre-
cipitation. In response to intense rainfall, the fractured rock 
mass at the leading edge of this area undergoes deformation 
towards the unconstrained space, resulting in the develop-
ment of fissure grooves on the rear slope and surface crack-
ing in residential buildings (Fig. 5).

The investigation and analysis of the macroscopic deforma-
tion of the Outang landslide indicate that the primary factors 
contributing to landslide deformation and failure are the peri-
odic fluctuation of reservoir water level and the concentrated 
temporal distribution of rainfall. The lower region of the land-
slide is primarily influenced by the fluctuation of the reservoir 
water level, while the upper region is predominantly affected 
by rainfall. The fluctuation of reservoir water level induces 
the degradation of rock mass near the wet-dry zone, causing a 
loosening of the structure. Moreover, the rapid decline in reser-
voir water level generates a distinct hydraulic gradient between 
the interior and exterior of the slope, resulting in a pore pres-
sure directed outward and promoting deformation in the lower 
region of the landslide. Concentrated rainfall enhances the 
weight and sliding force of the landslide mass while simul-
taneously weakening the mechanical strength within the slid-
ing zone. Additionally, it erodes the superficial layer of the 
soil and rock mass, thereby inducing deformation in the upper 
region of the landslide. Consequently, it can be deduced that 

the failure mode of the Outang landslide corresponds to a com-
posite push-retrogression-type landslide, which is consistent 
with the conclusions of Luo (Luo and Huang 2020) and Huang 
(Huang et al. 2020a).

Methodology

Morgenstern‑price method

The limit equilibrium method (LEM) is a typical approach 
for analyzing slope stability and has been widely applied in 
both academic and engineering fields. A variety of different 
LEM have been developed through continuous advancements, 
including the simplified Bishop method (Bishop 1955), Janbu 
method (Janbu 1973), Morgenstern-price method (Morgen-
stern and Price 1965), and Spencer method (Spencer 1967). 
Among these, the Morgenstern-price method incorporates all 
equilibrium and boundary conditions, eliminating computa-
tional errors and providing more precise solutions compared to 
the approximate solutions derived by Janbu. Consequently, the 
stability coefficient values calculated using the Morgenstern-
price method exhibit a higher degree of reliability. Therefore, 
in this study, the Morgenstern-price method is chosen for con-
ducting reliability analysis.

The factor of safety (FoS) for the corresponding sliding sur-
face can be determined through iterative computations using 
this method (Factor of safety calculation formula schematic 
diagram is shown in Fig. 6).

(1)FoS =

∑
(cΔLR + RN tan�)∑
WLW −

∑
NLN

(2)FoS =

∑
(cΔLR cos � + RN tan� cos �)∑

N sin �

Fig. 5   Signs of landslide activity. a Collapse of the leading edge 
of the landslide (location is shown at point A in Fig.  4); b Tension 
cracks of the trailing edge of the landslide (location is shown at point 

B in Fig.  4); c Surface cracks in residential buildings (location is 
shown at point C in Fig. 4)
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Where c is the cohesive strength of the soil; � is the 
frictional angle of the soil; ΔL represents the length of each 
soil strip on the sliding surface; LW signifies the lever arm 
length from the centroid of each soil strip to the center of 
the sliding surface; LN denotes the distance between the 
midpoint of each soil strip on the sliding surface and the 
corresponding normal line; � is the angle between the tan-
gent line of each soil strip and the horizontal plane; R is 
the lever arm length taken with respect to the center; N 
represents the normal force exerted by the sliding surface 
on the soil strip; � denotes the coefficient of variation of the 
interstrip force; f (x) signifies the function describing the 
variation of the interstrip force.

Unsaturated shear strength theory

The shear strength of unsaturated soil differs from that of 
saturated soil due to the influence of matric suction. Consid-
ering that the saturation state of reservoir bank slopes con-
stantly changes under reservoir water fluctuations, accurate 
determination of the shear strength of unsaturated soil holds 
paramount importance for slope stability analysis. The shear 
strength expression for unsaturated soil can be expressed as 
follows (Fredlund et al. 1978):

Where �f  represents the shear strength of the failure 
surface; c′ denotes the effective cohesion; �′ denotes the 
effective frictional angle; � is the total stress on the failure 

(3)N =

W + �f (x)

(
cΔL sin �

FoS

)
−

cΔL sin �

FoS(
cos � +

sin � tan�

FoS

)
− �f (x)

(
cos � tan�

FoS
− sin �

)

(4)�f = c� + (� − ua) tan�� + (ua − uw) tan�b

surface; ua signifies the pore air pressure; uw signifies the 
pore water pressure; (ua − uw) represents the matric suction; 
�b denotes the rate at which the shear strength varies with an 
increase in matric suction.

Random field theory

In traditional geotechnical engineering uncertainty analysis, 
soil and rock parameters are frequently regarded as random 
variables in order to investigate the influence of parameter 
uncertainty on engineering reliability. However, the random 
field theory proposed by Vanmarcke in 1977 is an exten-
sion of random theory in spatial terms (Vanmarcke 1977), 
which can better reflect the spatial correlation of soil and 
rock parameters. As shown in Fig. 7a (Phoon and Kulhawy 
1999), a random field can be regarded as consisting of two 
components: trend component and fluctuation component 
(deviation from trend line):

Where z represents the spatial position. The trend com-
ponent, denoted as t(z) , is associated with z . When the trend 
component t(z) is constant, specifically equal to the mean � , 
the fluctuation component �(z) does not exhibit changes in its 
standard deviation and mean across different spatial positions 
z . Furthermore, if the correlation of the fluctuation component 
�(z) is solely determined by the fluctuation range of the ran-
dom field, it is referred to as a stationary random field.

Within the spatial domain, there exists autocorrelation 
among soil and rock parameters, which needs to be described 
using autocorrelation functions. The mean and variance of 
the random field of parameter � can be defined as follows:

Where μ represents the mean and σ2 represents the 
variance.

The covariance function between any two points, denoted 
as �

(
zi
)
 and �

(
zj
)
 , of the soil and rock parameters within the 

spatial domain can be expressed as follows:

In practical engineering applications, it is common 
to employ theoretical autocorrelation functions for 
computational analysis, which serve as approximations 
to the actual autocorrelation functions. Among these, 
the Markovian theoretical autocorrelation function 
expressed as follows:

(5)�(z) = t(z) + �(z)

(6)E(�(z)) = �

(7)Var(�(z)) = �2

(8)
Cov

[
�
(
zi
)
, �
(
zj
)]

= E
[(
X
(
zi
)
− �

(
zi
))

⋅

(
X
(
zj
)
− �

(
zj
))]

Fig. 6   Factor of safety calculation formula schematic diagram (after 
(Srbulov 1987))
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Where �x and �y represent the horizontal relative distance 
and vertical relative distance, respectively; �h and �v repre-
sent the horizontal and vertical fluctuation ranges, respec-
tively (A typical representation of the vertical scale of fluc-
tuation is shown in Fig. 7b (Chakraborty and Dey 2022)).

Monte Carlo simulation

Monte Carlo method is a statistical sampling-based approach 
for studying random variables. The methodology involves 
generating random variable samples that conform to a 
certain distribution through sampling. Subsequently, cor-
responding functional samples are obtained based on struc-
tural functional functions. Finally, the failure probability is 
determined by calculating the proportion of failure samples 
through statistical analysis. In the analysis of slope stability, 
failure samples can be defined as follows:

Where x represents random variable; fs represents the 
threshold value of the safety factor, the probability of slope 
failure can be defined as follows:

Where f (x) is the probability density function of the ran-
dom variable x.

(9)�
�
�x, �y

�
= exp

⎡⎢⎢⎣
−

��
2�x

�h

�2

+

�
2�y

�v

�2⎤⎥⎥⎦

(10)F =
{
Fs(x) < fs

}

(11)Pf = ∫
F

f (x)dx

According to the theory of Monte Carlo simulation, ran-
dom sample xi(i = 1, 2, 3 ⋅ ⋅⋅,N) is first generated through 
sampling based on f (x) , and then Fs

(
xi
)
 is calculated accord-

ing to the slope safety solution method. The failure prob-
ability of the slope can be expressed as follows:

Where M denotes the indicator function; If Fs

(
xi
)
< fs , 

then Mi = 1, otherwise Mi = 0.

Parameter selection and working condition 
setting

Numerical calculation model of the Outang 
landslide

Based on the engineering characteristics and geological fea-
tures of the Outang landslide, the B-B′ section was selected 
for calculating the factor of safety (FoS) and failure probabil-
ity (Pf). A two-dimensional saturated–unsaturated seepage 
slope stability model was established in SLIDE2 (Fig. 8). 
Taking into account the overall stability of the Outang land-
slide was controlled by the weak interlayer, the weak inter-
layer is designated as the sliding zone. To facilitate modeling 
convenience and enhance computational efficiency, sliding 
zone I, II and III are connected as a whole sliding zone 
through the body of the slope, as shown in Fig. 8. In order 
to reveal the relative role of different areas in the landslide, 
the model is divided into six parts: part 1 is the upper layer 
composed of silty clay with crushed stone; part 2 is the lower 

(12)Pf =
1

N

N∑
i=1

Mi

Fig. 7   a Conceptual diagram of random field theory (after Phoon and Kulhawy 1999); b A typical representation of the vertical scale of fluctua-
tion (after Chakraborty and Dey 2022)
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layer composed of cataclastic rock mass; part 3 is the sliding 
zone I; part 4 is the sliding zone II; part 5 is the sliding zone 
III and part 6 is the bedrock.

According to the meteorological, hydrological, and geo-
logical conditions in the Outang landslide area, the bounda-
ries of the computational model were established as follows: 
the leading edge below 145 m is consistently submerged by 
reservoir water throughout the year, and thus it is designated 
as a fixed water head boundary. The slope surface with an 
elevation ranging from 145 to 175 m is influenced by the 
fluctuation in reservoir water level, resulting in the imple-
mentation of a variable water head boundary. The area above 
175 m is primarily affected by rainfall, and the boundary con-
dition is determined by the intensity of precipitation. Survey 
data indicates minimal annual variations in the water level 
at the rear of the landslide mass, leading to the assignment 
of a fixed water head boundary at an elevation of 588 m for 
the trailing edge, while the bottom boundary is defined as 
impervious boundary.

Selection of geotechnical parameters

The Mohr–Coulomb model is selected to characterize the 
mechanical properties of the landslide. The hydraulic and 
mechanical parameters of the Outang landslide used in this 
study are adopted from the relevant literature and engi-
neering geologic analogy (Luo and Huang 2020; Luo et al. 
2020; Zhang et al. 2023; Zhou et al. 2023). In order to eval-
uate the relative significance of different regions in rela-
tion to landslide stability, the influence of variations in the 
statistical mechanical parameters of different regions on the 
failure probability is considered. Specifically, parameters 

c and φ of the Outang landslide are assumed to follow log-
normal distribution in this study. Furthermore, the statisti-
cal characteristics of shear strength parameters demonstrate 
significant variations among different soil types, therefore, 
accurately determining these statistical mechanical param-
eters is crucial for the precision of numerical simulations. 
The research object of this study is the Outang landslide 
located in the Three Gorges Reservoir area. Based on 
existing literature and cases, the Zhao Shuling landslide 
which is located in the Three Gorges Reservoir area, was 
selected as a reference (Zhang et al. 2023). The coefficient 
of variation of cohesion (COVc) for the sliding mass and 
sliding zone is assumed to be 0.3, while the coefficient of 
variation of frictional angle (COVφ) is assumed to be 0.2. 
The default correlation coefficient (ρc,φ) is assumed to be 
-0.5. Additionally, the horizontal scale of fluctuation (δh) 
for the sliding mass is set to 40 m, with the vertical scale 
of fluctuation (δv) is considered to be 4 m, whereas for the 
sliding zone, the δh is set to 20 m, with the δv is considered 
to be 2 m.

The physical and mechanical parameters of the landslide 
are listed in Table 1, and the statistical mechanical param-
eters of the landslide are listed in Table 2.

Design of working conditions

According to the survey data, it is evident that the regulation 
pattern of the reservoir water level in the TGR area remains 
consistent throughout the year, approximately comprising 
five distinct stages. Stage I (January 1st—March 20th): the 
water level gradually decreases from 175 to 165 m, indicat-
ing a slow descending stage; stage II (March 21st—June 

Distance (m)

E
le

v
at

io
n
 (

m
)

Sliding zone
Silty clay with crushed stone

Cataclastic rock mass

Sliding zone of sliding mass S1

Sliding zone of sliding mass S2

Sliding zone of sliding mass S3

Bedrock

Legend

Precipitation

Fig. 8   Numerical model of the Outang landslide
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10th): the water level rapidly drops from 165 to 145 m, rep-
resenting a rapid descending stage; stage III (June 11th—
August 20th): the water level fluctuates between 145 and 
155 m; stage IV (August 21st—October 20th): the water 
level ascends from 145 to 175 m, corresponding to a ris-
ing stage; stage V (October 21st—December 31st): the 
water level mainly stabilizes at 175 m without significant 
variations.

Utilizing the actual daily variation data of reservoir water 
level and precipitation in 2014 as the transient boundary 
conditions of the slope (Fig. 13 illustrates the variations in 
reservoir water level and daily rainfall in 2014), thus the 
stability variation of the landslide within a one-year cycle 
can be computed.

Results and discussion

Sensitivity analysis

To explore the impact of diverse statistical mechanical 
parameters on slope stability, we specifically selected 
rainfall and reservoir water level data from a single day. 
As a demonstration, sensitivity analysis was performed 

through failure probability calculations. For the purpose 
of this investigation, data from June 10th were utilized for 
analysis, this analysis focuses on the coefficient of varia-
tion, correlation coefficient, fluctuation range of cohesion 
(c) and frictional angle (φ), as well as the autocorrela-
tion function. The primary objective is to investigate the 
impact of varying values of the random field correlation 
parameters on the failure probability. Moreover, in order 
to ascertain the relative significance of different regions 
in influencing slope stability, the effects of variations in 
statistical mechanical parameters within distinct regions 
on the failure probability are taken into consideration. Spe-
cifically, this study analyzes the following five regions: 
whole sliding zone, sliding zone I, sliding zone II, sliding 
zone III and sliding zone with sliding mass.

In the probabilistic analysis, the variation of statistical 
mechanical parameters of different regions in the land-
slide is taken into account respectively. Subsequently, the 
calculated failure probability (Pf) for different regions 
is compared with the overall (sliding zone with sliding 
mass) failure probability, therefore, it can be deduced that 
a smaller disparity between an individual region and the 
entirety signifies a greater significance of that region in 
controlling the slope stability.

Table 1   Physical and mechanical parameters of the landslide

Soil type Unit weight
γ (kN/m3)

Cohesion
c (kPa)

Friction angel
φ (°)

WC sat
θs (m3/m3)

WC res
θr (m3/m3)

Permeability coefficient
Ks (m/s)

Silty clay with crushed stone 20.5 16 14.6 0.32 0.09 1.22 × 10–5

Cataclastic rock mass 26 70 16.2 0.275 0.09 3.01 × 10–6

Sliding zone I 21 8 16.5 0.3 0.05 5.79 × 10–7

Sliding zone II 21 12 16.8 0.3 0.05 5.79 × 10–7

Sliding zone III 21 23 16.5 0.3 0.05 5.79 × 10–7

Bedrock 27.6 700 42 0.05 0 3.47 × 10–8

Table 2   Statistical mechanical 
parameters of the landslide

Soil type Parameters Mean COV Distribution Scale of fluctua-
tion

Correlation 
coefficient

Silty clay with crushed stone c 16 0.3 Lognormal δh = 40 m
δv = 4 m

-0.5
φ 14.6 0.2

Cataclastic rock mass c 70 0.3 Lognormal δh = 40 m
δv = 4 m

-0.5
φ 16.2 0.2

Sliding zone I c 8 0.3 Lognormal δh = 20 m
δv = 2 m

-0.5
φ 11.3 0.2

Sliding zone II c 12 0.3 Lognormal δh = 20 m
δv = 2 m

-0.5
φ 16 0.2

Sliding zone III c 23 0.3 Lognormal δh = 20 m
δv = 2 m

-0.5
φ 15.5 0.2

Bedrock c 700 - - - -
φ 42 -
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The effect of the COV

The coefficient of variation for both cohesion (c) and fric-
tional angle (φ) ranges from 0.1 to 0.5. When evaluating 
the impact of varying one parameter, keep the coefficient 
of variation of the other parameter constant. The random 
field parameters are selected according to Table 2. When 
considering the overall coefficient of variation (COV) 
changes for the sliding mass and sliding zone, as illus-
trated in Fig. 9, it can be observed that as COVφ varies 
from 0.1 to 0.5, the failure probability increases from 
2.87% to 32.22%. Similarly, when COVc varies from 0.1 
to 0.5, the failure probability increases from 7.95% to 
8.62%. In general, both cohesion and frictional angle con-
tribute to an increase in the failure probability of the slope 
as the COV increases, indicating that a higher degree of 
variability in the strength parameters adversely affects 
slope stability. By comparing the trend of the curves in 
Fig. 9a and b, it becomes evident that the variability in 
the frictional angle (φ) has a greater influence on the 
failure probability.

In addition, the results of the probabilistic analysis 
reveal the relative importance of different regions on the 
stability of the Outang landslide (as shown in Fig. 9). 
Firstly, the stability of the Outang landslide is primarily 
influenced by the sliding zone, while the sliding mass has 
a minimal impact on the stability of the landslide. Sec-
ondly, among the three sliding zones, sliding zone I exerts 
the greatest influence on the slope stability, followed by 
sliding zone III.

The effect of the correlation coefficient

The correlation between cohesion (c) and frictional angle 
(φ) in the soil and rock mass is represented by the correla-
tion coefficient ρc,φ. Considering the impact of the correla-
tion coefficient ρc,φ between c and φ on the failure probabil-
ity, the correlation coefficient ρc,φ is selected to be -0.7, -0.5, 
-0.3, -0.1, 0.1, and 0.3, respectively. The remaining statisti-
cal parameters of the random field are determined based 
on Table 2. The result obtained under different correlation 
coefficients is illustrated in Fig. 10. When considering the 
overall correlation coefficient changes for the sliding mass 
and sliding zone, as illustrated in Fig. 10, it can be observed 
that as the correlation coefficient varies from -0.7 to 0.3, 
the failure probability increases from 7.75% to 8.92%. This 
indicates that a higher magnitude of the correlation coef-
ficient corresponds to an increase in the failure probability, 
implying that a stronger negative correlation is associated 
with a lower failure probability. However, in terms of the 
actual values of the failure probability, there is not a sig-
nificant change with variations in the correlation coefficient. 
Furthermore, Fig. 10 also reveals the relative importance of 
different regions on the stability of the Outang landslide, 
which is consistent with the conclusions drawn earlier.

The effect of the autocorrelation function 
and the fluctuation

SLIDE2 incorporates three built-in autocorrelation func-
tions: Markovian 1D Separable, Markovian, and Gaussian. 
This study aims to investigate the influence of these three 

Fig. 9   Influence of COV on failure probability. a COVφ; b COVc 
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autocorrelation functions on the reliability of the Outang 
landslide. Additionally, the effects of variability in shear 
strength parameters and different ranges of fluctuations are 
considered. Specifically, the ranges for COVc and COVφ 
are set between 0.1 and 0.5, while the horizontal and ver-
tical ranges of fluctuation for shear strength parameters 
(δh and δv, respectively) are chosen as 10 m to 80 m and 
1 m to 8 m, respectively. During the parameter sensitivity 
analysis, it is assumed that when one parameter undergoes 
changes, the remaining parameters remain constant. From 
Fig. 11, it can be observed that the failure probability of 
the Outang landslide increases as the COV for the strength 
parameters increases. Additionally, the failure probability 

of the landslide is also affected by different autocorrelation 
functions to some extent. Particularly, when the COV for the 
strength parameters is relatively small, the impact of various 
autocorrelation functions on the failure probability of the 
landslide becomes more prominent.

When considering the autocorrelation function as Marko-
vian, an analysis of Fig. 12 reveals that the failure probabil-
ity increases from 7.35% to 12.40% as δh varies from 10 to 
80. Similarly, when δv varies from 1 to 8, the failure prob-
ability rises from 6.33% to 14.30%. These data indicate that 
an increase in the scale of horizontal or vertical fluctuations 
corresponds to a gradual increment in the failure probability, 
implying a decrease in slope stability. Comparing the trend 
of the curves in Fig. 12a and b, it can be inferred that the 
variation of the failure probability is more significantly influ-
enced by the vertical scale of fluctuation (δv). Furthermore, 
Fig. 12 highlights that when the horizontal scale of fluctua-
tion is small, the influence of different autocorrelation func-
tions on the failure probability becomes relatively apparent. 
Conversely, when the vertical scale of fluctuation is large, 
the influence of different autocorrelation functions on the 
failure probability becomes more prominent. In summary, 
the impact of different autocorrelation functions on the fail-
ure probability of the Outang landslide is more pronounced 
when the soil strength parameter coefficient of variation is 
small and the vertical scale of fluctuation is large.

Calculation of annual stability

The calculation of overall stability of the Outang landslide 
in a complete annual cycle was computed in SLIDE2, with a 
selected time step of one day. The computed factor of safety 

Fig. 10   Influence of correlation coefficient on failure probability

Fig. 11   Influence of autocorrelation function and COV on failure probability. a COVφ; b COVc 
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(FoS) changes within a one-year cycle is illustrated in Fig. 13. 
The FoS varies between 1.18 and 1.27 throughout the year. 
Notably, the FoS decreases during the period of water level 
drawdown and increases in the impoundment period. This 
observation implies a close relationship between slope sta-
bility and the fluctuation of the reservoir water level. Specifi-
cally, the declination of water level is detrimental to the stabil-
ity of the slope, while the increase of water level is conducive. 
The substantial decline in reservoir water level started on May 
2nd, while the noticeable decrease in the FoS began on May 
5th, suggesting that the fluctuation in reservoir water level has 
a lagging effect on slope stability. In general, there is a strong 
consistency and synchronicity between the changes in the FoS 

and the reservoir water level. This indicates that the fluctua-
tion in the reservoir water level serves as the predominant 
controlling factor influencing the stability of the Outang land-
slide, whereas the impact of rainfall is comparatively limited. 
Nevertheless, due to the effect of rainfall, the variation curve 
of FoS is not as smooth as the fluctuation schedule.

Calculation of annual reliability

Stage I (January 1st ~ March 20th)

During this stage, the reservoir water level gradually 
decreases and rainfall is minimal. As shown in Fig. 14a, 

Fig. 12   Influence of autocorrelation function and scale of fluctuation on failure probability. a Horizontal scale of fluctuation (δh); b Vertical 
scale of fluctuation (δv)

Fig. 13   Annual variation of 
rainfall, reservoir water level 
and factor of safety
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the highest failure probability of the slope is 4.64%, while 
the lowest is 2.77%. Although there are fluctuations, they 
remain at a relatively low level, indicating that external 
factors have a minimal impact on slope stability during 
this stage. The variation curve of the failure probability 
during this stage reveals more subtle phenomena compared 
to the safety factor variation curve, for instance, between 
February 3rd and February 20th, the variation curve of the 
safety factor shows minimal changes, resembling a straight 
line, whereas the failure probability curve demonstrates a 

process of initial decrease followed by an increase. This 
observation indicates a higher sensitivity of failure prob-
ability to changes in rainfall and reservoir water level.

Stage II (March 21st ~ June 10th)

During this stage, the decrease rate of reservoir water level 
significantly accelerated, accompanied by a gradual increase 
in rainfall intensity and frequency. As shown in Fig. 14b, 
the slope failure probability rises from 4.43% to 8.10%. 

Fig. 14   Variation of failure probability of different stages. a Stage I; b Stage II; c Stage III; d Stage IV; e Stage V
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This observation indicates that as the reservoir water level 
decreases, the slope stability gradually diminishes as well. 
Moreover, a faster decline in reservoir water level results 
in a higher failure probability, aligning with the findings of 
conventional deterministic analysis. In general, the failure 
probability of the slope is primarily influenced by changes 
in the reservoir water level, with rainfall being a secondary 
factor.

Stage III (June 11th ~ August 20th)

During this stage, the variation curve of the failure prob-
ability remains closely correlated with changes in reservoir 
water level, but there are differences observed in certain 
periods, as shown in Fig. 14c. From July 1st to July 10th, 
as the reservoir water level rises, the failure probability 
rapidly decreases to 6.35%. Subsequently, as the reservoir 
water level declines until July 25th, the failure probabil-
ity exhibits a rapid increase. These findings suggest that 
an increase in reservoir water level favors slope stability, 
which is consistent with conventional deterministic analy-
sis. However, during the period from August 5th to August 
15th, despite a rise in reservoir water level, it does not 
lead to a decrease in failure probability, possibly due to the 
influence of rainfall, maintaining the failure probability at 
a relatively high level.

Stage IV (August 21st ~ October 20th)

During this stage, the reservoir water level continues to rise, 
while rainfall remains at a relatively high level. As shown in 
Fig. 14d, the slope failure probability decreases from 8.02% 
to 0.15%. It is noteworthy that between October 4th and 
October 20th, the failure probability exhibits slight fluc-
tuations at a low level, while the safety factor continues to 
increase (Fig. 13). This can be attributed to the fact that the 
failure probability is already very small during this period, 
leaving limited room for further decline. Therefore, in situ-
ations where the failure probability is already small, it fails 
to effectively reflect the changes in slope stability.

Stage V (October 21st ~ December 31st)

During this stage, the reservoir water level remains essen-
tially constant at a high level of 175 m, and the rainfall sig-
nificantly decreases compared to previous periods, as shown 
in Fig. 14e. The failure probability curve during this stage 
exhibits a trend of initial stability, followed by an increase, 
and then stable fluctuations. The decline in slope stability 
during this period may be attributed to the prolonged influ-
ence of the high reservoir water level, which leads to the 
degradation of the physical and mechanical properties of the 
slope's rock and soil mass.

Through the analysis of the annual stability and annual 
reliability of the Outang landslide, it is evident that the 
results obtained from deterministic analysis and proba-
bilistic analysis are generally consistent. However, proba-
bilistic analysis exhibits greater sensitivity to changes in 
rainfall and reservoir water level, allowing for the obser-
vation of more subtle variations. Nonetheless, probabil-
istic analysis also presents certain limitations, such as its 
inability to effectively reflect changes in slope stability 
in situations where the slope safety factor is already high 
and the failure probability is small. To fully leverage the 
advantages of both deterministic analysis and probabilistic 
analysis, it is recommended to conduct stability evalua-
tions of slopes in practical engineering projects through 
the combined use of deterministic analysis and probabil-
istic analysis.

Conclusions

Based on the monitored data of the hydrologic conditions 
from 2014, the Outang landslide in the TGR is studied 
under the combined effect of rainfall and reservoir water 
level fluctuation. Sensitivity analyses of the coefficient of 
variation, correlation coefficient, the scale of fluctuation and 
autocorrelation functions were conducted using the numeri-
cal model established by SLIDE2, subsequently, the annual 
variation of factor of safety and failure probability of five 
representative stages were calculated. Several conclusions 
can be drawn as follows:

(1)	 The results of the probabilistic analysis reveal the rela-
tive importance of different regions on the stability of 
the Outang landslide. The overall stability of the land-
slide is primarily governed by the sliding zone, with 
sliding zone I demonstrating the most pronounced 
influence on slope stability, followed by sliding zone 
III.

(2)	 The spatial variability of soil strength parameters had 
a significant impact on the failure probability of the 
slope. The failure probability demonstrates an increas-
ing trend with the elevation of the COV, correlation 
coefficient, and the scale of fluctuation, respectively, 
and the COV has the greatest impact on the failure 
probability, followed by the scale of fluctuation, and 
finally the correlation coefficient. Nevertheless, the 
variation of the failure probability is more significantly 
influenced by the frictional angle (φ) and vertical scale 
of fluctuation (δv). Furthermore, the impact of different 
autocorrelation functions on the failure probability of 
the Outang landslide is more pronounced when the soil 
strength parameter coefficient of variation is small and 
the vertical scale of fluctuation is large.



Bulletin of Engineering Geology and the Environment (2024) 83:176	 Page 15 of 16  176

(3)	 The stability of the Outang landslide decreases during 
the period of water level drawdown and increases in 
the impoundment period, and fluctuation in reservoir 
water level has a lagging effect on the slope stability. 
Meanwhile, the variation curve of the failure probabil-
ity reveals more subtle phenomena compared to the 
safety factor variation curve, in order to fully leverage 
the advantages of deterministic analysis and probabil-
istic analysis, it is recommended to employ a combined 
approach of deterministic analysis and probabilistic 
analysis for slope stability assessment in practical engi-
neering. In general, the stability of the Outang landslide 
is predominantly governed by the water level fluctua-
tion, with the impact of rainfall being comparatively 
negligible.
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