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Abstract
Accurately obtaining rock mass discontinuity information holds particular significance for slope stability analysis and rock 
mass classification. Currently, non-contact measurement methods have increasingly become a supplementary means to 
traditional techniques, especially in hazardous and inaccessible areas. This study introduces an innovative semi-automatic 
method to identify discontinuities from point clouds. A modified convolutional neural network, AlexNet, was established to 
identify discontinuity sets. The network consists of five convolutional layers and three fully connected layers, utilizing 1 × 3 
normal vectors computed by K-nearest neighbor and principal component analysis as input and generating an output value 
“i” that represents the identified discontinuity set associated with the “i” category. Learning samples for network training 
were randomly selected from point clouds and automatically categorized using the improved fuzzy C-means (FCM) based on 
particle swarm optimization (PSO). The orientations of individual discontinuities, identified from the discontinuity set using 
hierarchical density–based spatial clustering of applications with noise, were calculated. Two outcrop cases were employed 
to validate the efficacy of the proposed method, and parameter analysis was conducted to determine optimal parameters. The 
results demonstrated the reliability of the method and highlighted improvements in automation and computational efficiency.

Keywords Point cloud · Rock mass · Discontinuity orientation · Convolutional neural network · Automatic selection

Introduction

Large-scale discontinuities, such as faults (Chigira 1992), 
bedding (Ma et al. 2018), and weak interlayers (Han et al. 
2023), often form the boundaries of potentially sliding rock 
masses. Additionally, small-scale discontinuities, like joints 
and secondary fractures, significantly influence the integrity 
and mechanical properties of the rock mass (Han et al. 2017). 
Hence, obtaining accurate and rapid information about these 
discontinuities features is essential for engineering rock 

mass classification and slope stability analysis. Currently, 
traditional manual measurement remains the predominant 
method in fieldwork, involving geologists recording dis-
continuities at accessible areas using a compass and tape. 
Nonetheless, this method has limitations, as it is subjective 
and unsuitable for steep, hazardous, or inaccessible areas 
(Gischig et al. 2011; Gigli and Casagli 2011). At present, the 
interpretation of rock mass discontinuity information from 
point clouds obtained through non-contact measurement 
has become a supplementary approach in fieldwork. This 
approach allows for validation with manual measurements 
in accessible areas and enables discontinuity information 
acquisition in otherwise inaccessible regions.

Many scholars have made efforts to extract discontinu-
ity information from point clouds, primarily utilizing two 
methodologies: point cloud segmentation and point cloud 
classification. Both these methodologies rely on inherent 
point cloud features, including spatial coordinates, normal 
vector, curvature, and color. Spatial coordinates and color 
are the fundamental attributes captured through laser scan-
ning or photographic imagery (Park and Cho 2022). Normal 
vector and curvature, on the other hand, are derived through 
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2.5D methods involving triangulation (Slob et al. 2002; Lato 
and Vöge 2012; Chen et al. 2016; Zhang et al. 2018; Li 
et al. 2019) and searching cube (Gigli and Casagli 2011; 
Guo et al. 2017). An alternative option is the application 
of a point-based 3D method (Ferrero et al. 2009; Riquelme 
et al. 2014; Menegoni et al. 2019; Zhang et al. 2019) to 
calculate attributes for points sets composed of point and 
adjacent points.

The methods for calculating normal vector and curvature 
include the least squares method (Ferrero et al. 2009; Wang 
et al. 2017; Riquelme et al. 2018; Zhang et al. 2018) and 
principal component analysis (PCA) (Jaboyedoff et al. 2007; 
Otoo et al. 2011; Mah et al. 2013; Hu et al. 2020), which, 
however, display sensitivity to outliers. Due to its robustness 
in noisy data, some researchers (Vasuki et al. 2014; Chen 
et al. 2016; Li et al. 2019) employed the Random Sample 
Consensus (RANSAC) (Fischler and Bolles 1981) to achieve 
more reliable normal estimations, despite its limited appli-
cability to curvature computations.

Point cloud segmentation methods partition point clouds 
with similar features into clusters, enabling the extraction 
of individual discontinuities. Classic point cloud segmenta-
tion algorithms include Hough transform (HT), RANSAC, 
region growth, and supervoxel. Discontinuities within rock 
masses tend to be geometrically planar. Therefore, HT and 
RANSAC have been employed by many researchers (Fer-
rero et al. 2009; Leng et al. 2016; Chen et al. 2017; Han 
et al. 2017; Yang et al. 2021) to detect planes within point 
clouds, with each plane representing an individual disconti-
nuity. However, these methods have become less popular in 
point cloud plane extraction tasks, due to their substantial 
computational memory and time requirements (Daghigh 
et al. 2022). On the other hand, based on the normal vec-
tor and curvature relationship between the seed point and 
adjacent points, the region growth algorithm (Wang et al. 
2017; Ge et al. 2018; Yi et al. 2023) facilitates the expansion 
of points belonging to the same individual discontinuity, 
and finally formed coherent regions to realize the extrac-
tion of individual discontinuities. However, as point cloud 
size and density escalate, the processing time also exhibits a 
pronounced increase. To mitigate the challenges of directly 
dealing with vast point clouds, Sun et al. (2021) proposed 
to voxelize the point cloud, and consider the connectivity of 
neighboring voxels, merging similar voxels to form super-
voxels, achieving pre-segmentation of the point cloud. After 
that, individual discontinuities were extracted based on spa-
tial connectivity, region planarity, and parallelism among 
adjacent supervoxels. Once the individual discontinuities are 
acquired using segmentation algorithms, the discontinuity 
sets can be identified by employing the K-means algorithm 
(Ge et al. 2017; Yi et al. 2023; Sun et al. 2021).

Point cloud classification entails grouping each 
point based on its distinctive features, facilitating the 

identification of discontinuity sets. Within the same dis-
continuity set, the orientations of the discontinuity do not 
differ significantly, resulting in multiple principal orienta-
tions, with their quantity corresponding to the number of 
discontinuity sets. Various methods have been developed 
to determine principal normal vectors equivalent to the 
principal orientations including 2D kernel density analysis 
(Riquelme et al. 2014) and 3D fast search and find den-
sity peak (Kong et al. 2020; Wu et al. 2021) based on the 
density of the normal vectors. Each point is then assigned 
the nearest principal normal vector based on its angular 
deviation from the principal normal vectors. Methods like 
K-means (Chen et al. 2016; Wu et al. 2021) and FCM (Van 
Knapen and Slob 2006; Vöge et al. 2013) also explore 
principal normal vectors as cluster centroids for point 
cloud classification. Nevertheless, traditional K-means 
and FCM may often result in incorrect cluster centroid 
identification when updating cluster centroid through aver-
age value. In response, scholars incorporated optimization 
algorithms, like particle swarm optimization (PSO) (Li 
et al. 2015; Song et al. 2017), differential evolution (DE) 
(Cui and Yan 2020), and firefly algorithm (FA) (Guo et al. 
2017), to find accurate cluster centroids. There are also 
alternative methods for point clouds direct classification 
without the prerequisite for initial principal normal vec-
tor identification. For instance, Ge et al. (2022) manually 
selected training samples to train an artificial neural net-
work, enabling point cloud classification and discontinuity 
sets identification. However, this approach needs iterative 
manual reselection of samples to overcome the limitation 
of representative training samples to ensure satisfactory 
outcomes, and thereby compromising efficiency. After dis-
continuity sets are obtained, the subsequent steps involve 
applying density-based spatial clustering of applications 
with noise (DBSCAN) (Riquelme et al. 2014; Ge et al. 
2022) to further segmentation, resulting in the extraction 
of individual discontinuities.

This paper introduces a new approach to identify discon-
tinuity using convolutional neural networks (CNN) and an 
improved FCM algorithm based on PSO. The structure of 
this paper is organized as follows: the data and methods 
employed in this paper are introduced in “Methodology.” 
The application of the method to results in two case studies, 
as well as the analysis of relevant parameters, is introduced 
in “Results for case.” The discussion and conclusion are 
respectively presented in “Discussion”4 and “Conclusion.”

Methodology

The proposed methodology in this study consists of five 
steps as illustrated in Fig. 1.
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Step 1: Establishment of the convolutional neural net-
work — AlexNet.
Step 2: Calculation of point cloud feature. PCA is used 
to calculate the normal vector and curvature.
Step 3: Automatic selection of learning samples. The 
improved FCM is used to categorize randomly selected 
points of a certain proportion, and these categorized 
points are used as learning samples.
Step 4: Identification of discontinuity sets using 
AlexNet trained by automatically categorized learning 
samples.
Step 5: Recognition of individual discontinuities 
using hierarchical density–based spatial clustering 
of applications with noise (HDBSCAN) and calcula-
tion of orientation.

Dataset description

Case A

Case A is located along the TP-7101 highway in the Baix 
Camp region of Spain (Catalonia Province). It is approxi-
mately 4 km away from the nearest town, False, in the north-
west direction. The scanned rock formation is composed 
of dark grey to black, silt–clay size, small tabular, slightly 
weathered meta-siltstone, and slate, measuring about 50 m 
in length and 6 m in height. Figure 2a is a photograph of the 
rock exposure at the site. The point cloud data was obtained 
using the Optech llris 3D laser scanner on June 10, 2004. 
The average distance between the laser scanner and the rock 
formation was 11.3 m, resulting in an approximate point 

Fig. 1  Flow chart of the pro-
posed method
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cloud spacing of 5 mm. A specific region within the point 
cloud data, as indicated by the red rectangle in Fig. 2a, was 
selected as the study area. Figure 2b shows the selected 
region’s point cloud, consisting of a total of 86,749 points. 
The raw point cloud data is available at https:// www. resea 
rchga te. net/ publi cation/ 28952 3298_ raw_ point_ cloud_ data_ 
ascii_x_ y_z_ inten sity_ metad ata (Slob 2010).

Case B

The outcrop of case B is located along Highway 15, approxi-
mately 30 km north of Kingston, Ontario, Canada. The raw 
point cloud data was obtained by LeicaHD S6000 scan-
ner at a position about 10 m away from the scanning area 
and 2,167,515 points were obtained in total. Three dis-
tinct scan sites for placing the scanner were strategically 
established based on the discontinuity distribution in the 
outcrop. Figure 3 shows the precise locations and orienta-
tions of the three scan sites. The scanning range measures 
13.28 m × 4.21 m × 3.71 m, with an average point spacing 

of approximately 5 mm. This outcrop exhibits the develop-
ment of three nearly orthogonal discontinuity sets. Figure 3 
highlights a representative discontinuity from each of the 
three sets. The raw point cloud data is publicly accessible 
and can be obtained from the RockBench repository (Lato 
et al. 2013).

AlexNet

Compared to large-scale networks burdened by high com-
putational demands and slow processing speeds, the light-
weight convolutional neural network, AlexNet (Krizhevsky 
et al. 2012) significantly enhances training speed through 
parallel training on dual GPUs. Therefore, this study used 
AlexNet to classify the point cloud, focusing on normal vec-
tors serving as the network input. The AlexNet architecture 
suitable for discontinuity sets recognition is illustrated in 
Fig. 4. It consists of five convolutional layers and three fully 
connected layers, utilizing 1 × 3 normal vectors as input and 
generating an output value “i” that represents the identified 

Fig. 2  Case A: a Photograph 
of rock exposure (Slob 2010). 
Red rectangle: research area of 
this paper. b Point cloud of the 
research area

(a) (b)

Fig. 3  Photograph of outcrop in case B. Three locations of the scanner and three typical individual discontinuities (Lato et al. 2009)

https://www.researchgate.net/publication/289523298_raw_point_cloud_data_ascii_x_y_z_intensity_metadata
https://www.researchgate.net/publication/289523298_raw_point_cloud_data_ascii_x_y_z_intensity_metadata
https://www.researchgate.net/publication/289523298_raw_point_cloud_data_ascii_x_y_z_intensity_metadata


Bulletin of Engineering Geology and the Environment (2024) 83:159 Page 5 of 18 159

discontinuity set associated with the “i” category. Given the 
1 × 3 input data size, “same” convolution with a stride of 
1 was utilized with no pooling layers interposed between 
the convolutional layers to maintain its size. The five con-
volutional layers have 96, 256, 384, 384, and 256 filters, 
respectively, each sized at 1 × 3. The learning samples used 
in the training process were automatically categorized using 
the improved FCM algorithm. The details are described in 
“Automatic selection of learning samples.”

Point cloud feature

In this study, the point cloud features used for AlexNet input 
are normal vectors. Meanwhile, curvature is used to identify 
edges in point clouds. To enhance computational efficiency, 
instead of using different algorithms to calculate normal 
vectors and curvature separately, the PCA algorithm was 
employed in this paper to calculate both simultaneously.

Normal vector

Pi is a point member of the point cloud; K-nearest neighbor 
algorithm is employed to find the nearest K points of Pi in 
Euclidean space. As a result, Qi, comprising K points, is 
formed:

The normal vector of the plane defined by Qi is calculated 
by PCA, which identifies the eigenvalues (λ1, λ2, λ3) and 
eigenvectors for the covariance matrix of Qi. Assuming λ1 
≦ λ2 ≦ λ3, the eigenvector corresponding to λ1 is the normal 
vector of Pi.

As shown in Fig. 5, the surface of the rock mass dis-
continuity is rough and uneven, resulting in normal vector 
pointing in the opposite direction at different points on the 

⎡⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
⋮ ⋮ ⋮

xk yk zk

⎤⎥⎥⎥⎦

same discontinuity, which is necessary to adjust the normal 
vector to a unified direction. The angle θ between the normal 
vector �⃗a and the reference point �⃗b = [1 1 1] is determined by 
the following equation:

When θ > 90°, �⃗a is not pointing towards �⃗b , and the vector 
is flipped. Figure 6 shows the point clouds before and after 
normal vector adjustment in which the parameter K is set 
to 45, 40 for two cases, respectively. Several manual tests 
showed that the normal vector is more suitable when K is set 
as 45 for case A. Therefore, K was initialized with a value 
of 45 for case A. However, after a more thorough valida-
tion process in “Number of nearest neighbor K,” the optimal 
value of K was determined to be 40. Hence, for case B, K 
was set to 40. For example, in Fig. 3, the observed color of 
the discontinuity set where J3 is positioned shifts from black 

(1)𝜃 = arccos
�⃗a �⃗b

| �⃗a| × | �⃗b|

Fig. 4  The architecture of AlexNet employed in this study

Fig. 5  Normal vector direction at different points in the same discon-
tinuity
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and green to green. This indicates that the normal vectors 
have been standardized to a consistent direction.

Curvature

“Normal vector” has calculated the eigenvalues (λ1, λ2, λ3) 
for the covariance matrix of Qi. σK(Pi) determined by Eq. 
(2) is defined as the surface change at Pi within the surface 
formed by Qi.

Pauly et al. (2002) observed a strong agreement between 
σK(Pi) and the average curvature of each point across differ-
ent point cloud models. Therefore, in this method, σK(Pi) is 
used to replace the average curvature equivalent to reduce 
the computation time.

Automatic selection of learning samples

For field slope outcrop dataset, learning samples are not 
readily available, but should be acquired from the corre-
sponding point cloud. In contrast to manual selection, this 
paper introduces an automatic method for obtaining learning 
samples. First, the edges, intersection of the discontinuity, 
are excluded to ensure that randomly chosen samples are not 

(2)�K(Pi)=
�1

�1 + �2 + �3

situated on edges with chaotic normal vectors. Then, a sub-
set of sample points is randomly selected from the remain-
ing point cloud, which is automatically classified using an 
improved FCM based on PSO, assigning a category to each 
sample point.

Discarded edge

Unlike the nearly parallel normal vectors exhibited by the 
same set of discontinuities, the normal vector of the edge 
appears chaotic and exhibits an angle deviation from the 
discontinuity, as illustrated in Fig. 7. As depicted in Fig. 8a, 
the curvature of edges is markedly higher than that of dis-
continuities. Therefore, edges are eliminated by applying a 
curvature threshold, denoted as r.

Fig. 6  The 3D point cloud: The color of each point corresponds to its normal vector with K = 45, 40 for case A and case B, respectively. Left: 
normal vector before adjustment. Right: normal vector after adjustment. a Case A: 86,749 points. b Case B: 2,761,515 points

Fig. 7  Normal vector direction at discontinuity and edge, respectively
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The sorted elements in σK(P) are taken as the cumulative 
probability (0.5/n), (1.5/n), …, ([n − 0.5]/n) quantiles, where 
n is the number of sorted elements. The linear interpolation 
method is employed to compute quantiles for a given cumula-
tive probability p between (0.5/n) and ([n − 0.5]/n). x1 and x2 
are determined by Eq. (3), corresponding to quantiles y1 and 
y2, respectively, for the given cumulative probability p between 
x1 and x2. Utilizing linear interpolation, the p quantile yp is 
derived using Eq. (4). Figure 8b shows that the edges were 
discarded when r equals σK(P) when the cumulative probabil-
ity p was set as 0.8.

where round (x) =

� ⌈x⌉, ifx − ⌊x⌋ ≥ 0.5

⌊x⌋, ifx − ⌈x⌉ ≥ 0.5

Fuzzy C‑means algorithm

To obtain categorized learning samples, FCM is employed to 
classify a small randomly selected subset of points with known 
features from the point cloud with its edges removed.

The normal vectors are represented by (P1, P2, …, PN), with 
N representing the count of selected points. The cluster cen-
troids are initialized as (V1, V2, …, Vc), where C is the number 
of discontinuity sets. The acute angle θ between Pj and Vi is 
determined by the following equation.

(3)

{
x1 =

round (p×n)−0.5

n

x2 =
round (p×n)+0.5

n

(4)yp = y1 +
p − x1

x2 − x1
(y2 − y1)

(5)� = arccos|Pj ⋅ Vi
T |

In this paper, for the grouping selected points, the dis-
tance between two points was measured using the square of 
the sine value of the acute angle between the normal vec-
tors of two points, instead of the Euclidean distance. The 
distance between Pj and Vi is then given by the following 
equation:

The FCM calculates the distance between every normal 
vector and each cluster centroid, and assigns each point to 
the closest cluster centroid based on the distance. Thus, 
the objective function E for grouping discontinuities is 
expressed in the following equation.

where uij represents the membership degree of the jth nor-
mal vector belonging to the ith cluster centroid as shown in 
Eq. (8).

Once all points have been assigned to the nearest clus-
ter centroid, the mean value for each cluster is calculated 
and adopted as the new cluster centroids. This iterative 
approach continually updates the cluster centroids until 
the objective function E is minimized. In this paper, the 
number of clusters (C) is determined by identifying color 
variations in the point cloud, where the colors are rep-
resented by normal vectors. Considering that the FCM 
heavily relies on initial centroids selection, an incorrect 

(6)D(P
j
,V

i
) = sin

2
� = 1 − (P

j
⋅ V

i

T )
2

(7)E =

N∑
j=1

C∑
i=1

uij
2D2(Pj,Vi)

(8)uij =
1

D2(Pj,Vi)

[
C∑
k=1

1

D2(Pj,Vk)

]−1

(a) (b)

Fig. 8  The 3D point cloud of case A: The color of each point corresponds to its curvature with K = 45. a Edges are not discarded. b Remaining 
69,399 points. 17,350 points belonging to edges were discarded with p = 0.8
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choice of initial centroids may lead to suboptimal cluster-
ing results and increased clustering iterations. Therefore, 
the PSO algorithm is applied to replace the conventional 
mean value for updating cluster centroids.

Particle Swarm Optimization algorithm

PSO algorithm (Kennedy and Eberhart 1995) conceptual-
izes birds in a foraging flock as weightless particles. Each 
particle has a distinct position xi = (xi1, xi2, …, xin) and 
velocity vi = (vi1, vi2, …, vin) in an n-dimensional space. 
By iteratively adjusting their movement direction and 
position, referencing their personal historical best posi-
tion xpbest and the best position of the entire group xgbest, 
the particles progressively converge towards an optimal 
solution. The xpbest and xgbest are updated in every iteration 
based on the fitness function value of the particle.

The velocity and position of particles are adjusted 
using Eqs. (9) and (10) respectively:

where ω, known as the inertia weight, is set as 0.9 for global 
search. The cognitive and social learning factors, denoted 
as c1 and c2, respectively, are both set as 1.5. r1 and r2 are 
random numbers between 0 and 1.

For categorizing the selected points, the particle posi-
tions are corresponded to the normal vectors. The fitness 
function is the objective function E, which is minimized 
during the iterative process. Therefore, during the itera-
tion process, xpbest refers to the position where a particle 
has its lowest fitness, while xgbest represents the position 
where the particle exhibits the lowest fitness in the entire 
group. After the iteration ends, xgbest is the cluster cen-
troid for the selected points.

As particles move towards the optimal solution, they 
may encounter local extreme values that cause their 
velocities to quickly reduce to zero, leading to prema-
ture convergence of all particles on a local extreme. To 
avoid inaccurate classification due to premature conver-
gence, this paper introduces a time threshold T. If the 
convergence time is less than T, the algorithm will be 
re-executed.

Figure 9 shows 87 points, randomly selected from the 
remaining points cloud, were automatically categorized by 
the improved FCM based on PSO with C = 4 (four colors 
in Fig. 6a), T = 50, and a particle count of 1000 for case A. 
Figure 10 shows the population’s progression in achieving 

(9)
vt+1
i

= � ⋅ vt
i
+ c1 ⋅ r1 ⋅ (xpbest − xt

i
) + c2 ⋅ r2 ⋅ (xgbest − xt

i
)

(10)xt+1
i

= xt
i
+ vt+1

i

a minimum fitness of 0.36075 after the 178th iteration dur-
ing the twelfth cycle, taking 110.28 s.

Identification of discontinuity set

The categorized learning samples are used to train the net-
work model. Once trained, the model takes the complete 
point cloud with calculated features as input to determine 
the category of each point. Points belonging to the same 
category are aggregated to form a discontinuity set. While 
achieving 100% accuracy with a CNN model is challenging, 
it is expected to result in some errors. However, these error 
points are typically sparsely distributed within the point 
cloud.

In Fig. 11, the network trained on the learning samples 
in Fig. 9 successfully identifies four discontinuity sets for 
case A. However, some error points are indicated within the 
circled area in Discontinuity sets 1, 3, and 4.

Analysis of individual discontinuity

Once the points belonging to a discontinuity set are identi-
fied, each discontinuity set is further segmented to obtain 
individual discontinuities. Then, the orientation of each dis-
continuity is calculated.

Recognition of individual discontinuity

DBSCAN (Ester et al. 1996) has been widely employed for 
the extraction of individual discontinuities from disconti-
nuity sets in previous studies (Riquelme et al. 2014; Buyer 

Fig. 9  Automatically randomly selected learning samples used for 
training the AlexNet for case A
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and Schubert 2017; Singh et al. 2021). However, selecting 
two appropriate input parameters (the search radius (ε) and 
the minimum number of points (min-pts)) for DBSCAN 
is challenging, particularly when dealing with varying 

density. To address this, HDBSCAN (Campello et  al. 
2013) introduces the concept of mutual reachability dis-
tance and transforms DBSCAN into a hierarchical cluster-
ing algorithm, thus offering a solution for clustering issues 

Fig. 10  Fitness variation curve with iterations at different cycle

Fig. 11  Identification of discontinuity sets for case A with one color per discontinuity set. Red circles denote the location of error points. a Dis-
continuity sets 1–4, b Set 1, c set 2, d set 3, and e set 4
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with varying densities. The mutual reachability distance 
between two points is defined by Eqs. (11).

where d(pi, pj) represents the Euclidean distance between 
pi and pj. coremin−pts(pi) and coremin−pts(pj) represents the 
distances of pi and pj to their nearest min-pts neighbors, 
respectively.

Convert the minimum spanning tree generated from mutual 
reachable distances into a hierarchical cluster structure. Then, trav-
erse the hierarchy and identify new clusters created by the split with 
sizes smaller than the minimum cluster threshold (minCluster) as 
“fall out of a cluster,” facilitating the condensation of the cluster tree 
and, ultimately, the extraction of clusters. For more comprehensive 
information, refer to prior studies (Campello et al. 2013).

In practice, the primary parameter, minCluster, is intuitive, 
fairly robust, and easy to select (McInnes and Healy 2017). 
Additionally, a quantity threshold, DisTh, related to the 
exposed area and resolution of the point cloud is set to prevent 
generating too small clusters that represent excessively small 
individual discontinuities. Both smaller regions with higher 
resolution and larger areas require a larger DisTh.

Calculation of orientation

In the context of a right-hand coordinate system with the 
Z-axis pointing vertically upwards, the orientation of the 
discontinuities is determined by the following equations.

(11)
dmreach

(
pi, pj

)
= max

{
coremin−pts(pi), coremin−pts(pj), d

(
pi, pj

)}

where A, B, and C are the three components computed using 
the PCA algorithm mentioned in “Normal vector” of the unit 
normal vector of the discontinuity.

Results for case

Case A: results and relevant parameters analysis

Result for case A

In Fig. 11, some points on the edges of sets 1 and 3 are misi-
dentified as belonging to set 2. This misclassification can 
be attributed to the chaotic appearance and angle deviation 
of normal vectors at the edges, as illustrated in Fig. 7. Fur-
thermore, the practical constraints of convolutional neural 
networks, which cannot achieve 100% accuracy in real-world 
applications, also contribute to a certain degree of classifica-
tion error for points along the edges.

Figure 12 presents the clustering results of case A with 
minCluster = 5, and DisTh = 50. It can be observed that 

(12)dip = cos−1(|C|)

(13)

⎧
⎪⎨⎪⎩

dipdirection = 90◦ − tan−1
�

B

A

�
A > 0

dipdirection = 270◦ − tan−1
�

B

A

�
A < 0

Fig. 12  Results of clustering for case A with one color per individual discontinuity. a Sets 1–4, b set 1, c set 2, d set 3, and e set 4
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successful segmentation of each discontinuity set has been 
achieved, resulting in the extraction of individual disconti-
nuities. Additionally, the outlier points in Fig. 11 have been 
eliminated.

Several labeled discontinuities in Fig. 13 were measured 
on-site by Slob (2010). The orientations of these disconti-
nuities, calculated using the method proposed in this paper, 
are compared with the field measurements in Table 1. From 
the comparison, the deviations are within 5°, except for dis-
continuity 21, which has a dip direction deviation of 7.80°. 
Considering the rough and uneven nature of the rock mass 
discontinuity, these deviations can be considered acceptable, 
affirming the reliability of the proposed method.

Number of nearest neighbor K

The value of K significantly influences normal vector calcu-
lations in step 2. For each labeled discontinuity in Fig. 13, 
Fig. 14 shows the standard deviation of angles between the 
normal vectors of all points situated on the discontinuity 
and the corresponding discontinuity normal vector across 
various K values (5, 15, 40, 60, 100, 200, 500, 1000, 2000). 
Except for discontinuity 42, the others display a trend of 
initially decreasing and then increasing as K values rise. This 
is because a larger K may group points from different discon-
tinuities, while a smaller K may result in differences in the 
same discontinuity due to its rough and uneven nature. Fur-
thermore, discontinuity 12, 13, 21, and 31; discontinuity 11 
and 41; and discontinuity 14 exhibit the minimum standard 

Fig. 13  Several labeled discontinuities are used for comparison

Table 1  Comparison of the orientation of labeled discontinuities cal-
culated by the proposed method and field measurements for case A

Disconti-
nuity ID

Orientation by the 
proposed method (°)

Orientation by field 
measurements (°)

Δ (°)

11 84.29/89.51 81/90 3.29/0.49
12 71.40/79.28 71/82 0.40/2.72
13 87.14/83.74 87/86 0.14/2.26
14 76.58/78.13 75/76 1.58/2.13
21 349.80/43.33 342/43 7.80/0.33
31 47.07/87.37 51/85 3.93/2.37
41 151.66/56.20 148/57 3.66/0.80
42 158.13/54.67 155/56 3.13/1.33

Fig. 14  Calibration of param-
eter K for different discontinui-
ties labeled in Fig. 13
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deviations at K = 40, 20, and 60, respectively. Considering 
that most discontinuities reach their minimum standard 
deviations at K = 40 and show no significant difference from 
those at 20 and 60, K = 40 is considered the optimal value.

Cumulative probability p

The curvature threshold r, determined by the cumula-
tive probability p, relates to whether learning samples 
include positions of non-discontinuity, which in turn 
affects the subsequent identification results of disconti-
nuity sets. If there are many points located on the edges 
in the learning samples, the FCM tends to cluster the 
edges as a separate set during point classification, lead-
ing to one output of the network being recognized as 
edges, which hampers the identification accuracy of 
discontinuity sets.

Figure 15a–d illustrate the removal of edges for dif-
ferent cumulative probabilities p. When p is set as 0.9, 
some points on the edges are not eliminated, but at 
p = 0.8, most edge points are removed. However, select-
ing a smaller p would remove points from discontinui-
ties due to their rough and even nature. Therefore, it is 
advisable to select a p between 0.8 and 0.9 to achieve 
the desired results.

Time threshold and number of learning samples

By conducting a comprehensive analysis, an appropriate 
number of learning samples and time threshold T are deter-
mined. Figure 16 illustrates the elapsed time during multiple 
executions of the PSO algorithm for case A, considering 

Fig. 15  Point cloud with different cumulative probability p. a p = 0.9; b p = 0.8; c p = 0.7; d p = 0.6

Fig. 16  Calibration of the learning samples quantity and threshold 
time T 
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various numbers of learning samples. It can be observed 
that there is a distinct time gap that serves as a criterion 
to identify premature convergence in the PSO algorithm. 
Figure 16 also presents the longest time for premature con-
vergence, as well as the shortest and longest times for non-
premature convergence under different numbers of learning 
samples. It is evident that as the number of learning samples 
increases, both the shortest and longest time increases. When 
the sample is more than 300, the shortest time of 159.15 s at 
a sample quantity of 300 is an acceptable range. However, 
the longest time increases significantly to 3233.51 s when 
the sample quantity is 1000, resulting in a substantial time 
increase. Therefore, the sample quantity should be below 
300, as both the minimum and maximum times fall within 
an acceptable range. Furthermore, at a sample quantity of 
300, the longest time required for premature convergence is 
49.71 s. Taking all factors into consideration, this study sets 
the time threshold as 50 s.

Optimal parameters

The optimal values for the parameters in different steps of 
the proposed method are as follows: In step 2, the value 

of K used to compute the normal vector and curvature is 
set as 40. For automated learning sample selection at step 
3, the curvature threshold p, as analyzed in “Cumulative 
probability p,” is set between 0.8 and 0.9. The number of 
colors assigned to the point cloud determines the number 
of clusters C during colorization based on normal vectors. 
The sample quantity and time threshold, analyzed in “Time 
threshold and number of learning samples,” are set as less 
than 300 and 50 s, respectively.

Result for case B

Figure 6b displays three distinct colors with K = 40, indicat-
ing the presence of three discontinuity sets in case B, which 
is consistent with the results of the field investigation. Uti-
lizing the optimal parameters described in “Optimal param-
eters,” a total of 184 points were randomly selected from the 
edge-removed point cloud of case B (p = 0.85) and subjected 
to classification using improved FCM. Figure 17 illustrates 
the distribution of the 184 points, which are categorized into 
three sets: 43 points in discontinuity set 1, 43 points in set 2, 
and 98 points in set 3.

Fig. 17  184 learning samples 
for case B

Fig. 18  Identification results and clustering results of discontinuity set for case B. a Discontinuity sets 1–3. One color per discontinuity set. b 
518 individual discontinuities. One color per individual discontinuity



 Bulletin of Engineering Geology and the Environment (2024) 83:159159 Page 14 of 18

Figure 18a illustrates the results of discontinuity 
set identification obtained through training a net-
work on 184 points. It can be observed that the entire 
point cloud is divided into three sets, and the group-
ing results align with Fig. 6b, demonstrating accurate 
grouping. Figure 18 b illustrates the clustering results 
of the three discontinuity sets, with minCluster = 10 
and DisTh = 200.

Figure 19 shows the stereographic projection of all the 
discontinuity orientations in case B using an equal-angle 
lower hemisphere projection. The mean orientation of the 
three discontinuity sets obtained through our method is 
compared with that from the PlaneDetect software (Lato 
and Vöge 2012) and DSE software (Riquelme et al. 2016) 
in Table 2. Compared to the PlaneDetect software, set 1 
and set 2 show a good agreement with a maximum devia-
tion of 3°. Although set 3 exhibits a larger orientation 
deviation, it closely aligns with the results from the DSE 
software. This may be attributed to the rough and uneven 
nature of the discontinuity and differences in software rec-
ognition accuracy. Overall, the deviations are within an 
acceptable range.

Discussion

Compared to 2D or 2.5D methods that simplify surface 
information, potentially leading to the loss of valuable infor-
mation, our approach for calculating normal vectors is a true 
3D method that considers each point. Although the gener-
ated normal vector data is much larger than that of 2.5D 
methods, the capability of CNN to handle massive amounts 
of data effectively solves this problem. By combining the 
improved FCM with the AlexNet, the entire point cloud can 
be classified using a small subset of data, thereby avoiding 
the need to directly process the point cloud using the cluster-
ing algorithm such as the improved FCM mentioned in this 
paper, or the fast search and find of density peaks (CFSFDP) 
algorithm used by Kong et al.(2020). As a result, the data 
processing time is greatly reduced.

Kong et al. (2020) proposed employing CFSFDP for 
extracting discontinuity within two point clouds (approxi-
mately 500,000 points and 1,500,000 points). The tasks took 
1.5 h and 5.5 h, respectively, using a laptop equipped with 
a 2.30 GHz(R) Intel Core i5-6300Q processor and 4 GB of 
RAM. The CFSFDP algorithm is based on the assumption 

Fig. 19  Stereographic projec-
tion of all the discontinuity 
orientations in case B

Table 2  Comparison of 
orientation results of case B

Set Number of points Number of 
discontinui-
ties

Dip direction/dip (°) Deviation (°)

Proposed method Plane detect DSE Plane detect DSE

1 415,126 181 194/31 194/34 187/33 0/3 7/2
2 511,586 154 29/77 29/76 30/75 0/1 1/2
3 1,240,803 183 138/86 309/90 135/87 9/4 3/1
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that cluster centers are surrounded by neighbors with lower 
local density and that they are at a relatively large distance 
from any points with a higher local density (Rodriguez & 
Laio 2014). For each data point i, the local density ρi and 
distance δi depend only on the distances dij. Therefore, the 
CFSFDP algorithm requires computing the distance matrix 
dij between any two points, resulting in a time complexity 

of O(n^2) (where n is the number of points), causing a sig-
nificant increase in the processing time for large datasets. 
Table 3 compares the processing time cost by the improved 
FCM, and DSE software developed by Riquelme et  al. 
(2014), and the method proposed in this paper to case B. 
It is evident that even with a simplified point cloud (10% 
of the original point cloud, a total of 216,752 points), 

Table 3  The computation time cost by the DSE software, proposed method and improved FCM for case B

DSE Proposed method Improved FCM (216,752 points)

Procedure Time (s) Procedure Time (s) Procedure Time (s)

Local curvature calculation 1121.6 Point cloud feature 42.7 Point cloud feature 3.6
Statistical analysis of the 

planes
Density estimation 7.2 Learning samples auto-

matic selection
117.4 Discontinuity set identi-

fication
13,491

Semi-automatic set identi-
fication

1.3 Model training 12.3

Cluster analysis 636.1 Discontinuity set identi-
fication

169.5

Individual discontinuity 
recognition

67.6 Individual discontinuity 
recognition

3.8

Total 1766.2 Total 409.5 Total 13,498.4
Computer configuration Desktop brand: Legion Ren7000K-261AB

Processor: 12th Gen Intel(R) Core (TM) i5-12600KF 3.70 GHz
Installed memory (RAM): 32.00 GB (31.7 GB usable)

Fig. 20  Comparison of results between our proposed method using CNN, and Ge et al. (2022) proposed method using ANN: a CNN, discontinu-
ity sets 1–3; b ANN, discontinuity sets 1–3
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the processing time (3.75 h) cost by the improved FCM 
increases significantly. Meanwhile, compared with the DSE 
software, the calculation time of the method proposed in this 
paper is reduced from 1766.2 to 409.5 s, demonstrating the 
proposed method has an improved computation efficiency.

When using the improved FCM to determine learning 
samples, the number of clusters is determined through color 
classification, which is accurate and avoids the need for 
iterative determination of the appropriate number of FCM 
clusters. Furthermore, a time threshold is incorporated to 
prevent premature convergence of the PSO algorithm, and 
the processing time is generally less than 300 s.

Manually selecting learning samples is both time-con-
suming and burdensome on the operator’s eyes. Further-
more, the accuracy heavily relies on the subjective selection 
of learning samples, which can result in incorrect identifica-
tion. The iterative process of selecting and reselecting learn-
ing samples repeats until satisfactory results are achieved, 
leading to a significant increase in time and effort expended. 
The results show that the automatic sample selection method 
proposed in this paper is reliable and greatly improves the 
automation level.

In classification tasks, ANN learns complex relationships 
between input features and output labels through multiple 
layers of nodes and a fully connected structure, where each 
node is connected to all nodes in the preceding layer with-
out considering the spatial structure of the data. However, 
CNN, with its local connections through convolutional ker-
nels, captures spatial local features more effectively, enhanc-
ing the processing efficiency for spatially structured data. 
Figure 20 compares the point cloud classification obtained 
through two different approaches: the one proposed in this 
paper, which utilizes AlexNet, and the method used by Ge 
et al. (2022) employing artificial neural networks (ANN). 
The recognition results for Discontinuity set 2 and 3 are 
almost identical for both methods. Nevertheless, when deal-
ing with discontinuity set 1, the ANN-based method mis-
classified some edge points as discontinuity set 1, leading 
to lower recognition precision compared to the proposed 
method in this paper, which yields better recognition results.

Conclusion

The article presents a new semi-automated method for 
identifying and extracting rock mass discontinuity using 
an improved FCM and CNN. The main conclusions are as 
follows:

A modified convolutional neural network, AlexNet, 
trained with learning samples automatically categorized by 
the Fuzzy C-Means based on particle swarm optimization, 
is designed for identifying discontinuity set within point 

clouds, which overcomes the problem of manual sample 
selection, simultaneously enhancing automation and accu-
racy, and enables the network to complete training within 
an exceptionally short timeframe. Individual discontinui-
ties are extracted by segmenting the discontinuity set using 
HDBSCAN and the PCA is applied to calculate the normal 
vectors of each discontinuity, providing their orientations. 
HDBSCAN provides a solution for clustering issues with 
varying densities, and the required parameters are intuitive 
and easy to select.

The method was applied to two real field outcrops and 
compared with the results of field surveys and previous 
studies. By comparing the results with the field survey 
results of case A, the reliability of the proposed method 
in this study was verified. Sensitivity analysis was con-
ducted to determine the optimal parameters, which were 
then applied to case B, also yielding reliable outcomes.

This study combines the improved FCM and CNN to 
process point clouds, addressing the issue of the time-con-
suming of using the improved FCM alone. It also avoids 
the manual selection of learning samples when using neu-
ral networks, which may potentially necessitate reselec-
tion and result in increased time and effort consumption. 
In addition, compared with DSE software, the proposed 
method also improves computational efficiency. While our 
method takes slightly longer during the point cloud classi-
fication using AlexNet compared to the approach proposed 
by Ge et al. (2022) using ANN, it achieves better results 
in the recognition of the discontinuity set. The lightweight 
network AlexNet, proposed in this paper for identifying 
discontinuity set from point clouds, can complete training 
in a short time. In summary, the proposed method consid-
ers an overall balance between computational accuracy 
and efficiency.

Furthermore, the method can be easily extended to cal-
culate other parameters of the discontinuity, including 
trace length, spacing, and roughness. However, extracting 
the aperture of discontinuity from point clouds remains 
a challenging problem that requires further investigation 
in future research.
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