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Abstract
The aim of this study is to assess the three-dimensional (3D) stability of the tunnel face with considering the possibility of 
the upper partial failure in layered rock masses. The failure characteristic of the rock material is denoted by the nonlinear 
Hoek–Brown failure criterion, and a multi-tangent method is introduced and adopted to determine the equivalent Mohr–Cou-
lomb parameters. Based on the traditional 3D rotational failure model, the whole failure model and the upper partial failure 
model are developed with considering layered rock masses and possibility of upper partial failure at the tunnel face. The 
upper-bound limit analysis approach is adopted to determine the limit support pressure and failure surface. The proposed 
method is validated by comparison with existing solutions and numerical results. Parametrical analysis is then conducted to 
investigate the influence of analytical parameters on the face stability. Finally, the effect of seepage forces on the tunnel face 
stability is presented. The results show that, the upper partial failure is likely to happen when a soft layer in the upper section 
of tunnel face. This possibility increases as properties of lower layer increase, the tunnel diameter decreases, and the layered 
position moves down. The presence of underground water delays the occurrence of upper partial failure at the tunnel face.

Keywords Upper partial failure · Layered rock masses · Multi-Tangent method · Upper-bound limit analysis approach · 
Limit support pressure · Failure surface

Introduction

In the construction of shield tunnels, the estimation of the 
limit support pressure is regarded as the most significant 
issue to assess the tunnel face stability (Hou et al. 2022; 
Zhang et al. 2022). This is because the lack of sufficient 
supporting pressures to balance the earth pressures, and the 
underground water pressures will result in the collapse fail-
ure of the tunnel face (Yin et al. 2021; Man et al. 2022a; Di 
et al. 2023a), which will then cause a large number of casu-
alties, property losses, and delay of the construction period 
(Wang et al. 2019; Man et al. 2022a; Meng et al. 2022). The 
conventional methods to determine the limit support pres-
sure include experimental tests (Lü et al. 2018; Weng et al. 
2020; Di et al. 2023b), numerical simulations (Alagha and 

Chapman 2019; Wang et al. 2022), and analytical approaches 
(Hou et al. 2022; Zhang et al. 2022; Liu et al. 2022; Jin et al. 
2021; Ding et al. 2019; Di et al. 2023c; Han et al. 2021; 
Jafari and Fahimifar 2022; Wu et al. 2021). Since analytical 
approaches can offer a meaningful physical insight into the 
governing parameters and provide a direct design for tunnel 
engineers with less time-consuming (Zou et al. 2019a; Li 
et al. 2022; Chen et al. 2022), analytical approaches, espe-
cially the upper-bound limit analysis approach, have been 
widely adopted to study the tunnel face stability issues in 
recent years (Hou et al. 2022; Zou et al. 2019a; Liu et al. 
2021; Chen et al. 2021; Zhou and Qin 2022).

To analyze the tunnel face stability using the upper-bound 
limit analysis approach, a large number of analytical fail-
ure models have been proposed in recent decades (Liu et al. 
2021; Zhang et al. 2015; Mollon et al. 2011; Ibrahim et al. 
2015; Zou et al. 2019a; Ding et al. 2019; Di et al. 2023c), 
such as the two-dimensional (2D) log-spiral failure model 
(Liu et al. 2021), the 3D multi-block failure model (Zhang 
et al. 2015), and the 3D rotational failure model (Mollon 
et al. 2011). Among them, the 3D rotational failure model 
is regarded as the most popular one due to following two 
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advantages: (1) the whole tunnel face is considered in the 
failure model; (2) the discretization and “point by point” 
techniques are employed in the generation of the failure sur-
face by following the normality condition, which makes it 
possible to incorporate the layered materials into the stabil-
ity assessment of tunnel faces. Since Mollon et al. (2011), 
the 3D rotational failure model has been extensively adopted 
to investigate the tunnel face stability (Ibrahim et al. 2015; 
Pan and Dias 2016a, 2016b; Zou et al. 2019b; Qian et al. 
2019; Chen et al. 2021; Di et al. 2023c). For example, based 
on the 3D rotational failure model, Ibrahim et al. (2015) and 
Pan and Dias (2016a) respectively analyzed the effects of 
heterogeneous and anisotropic soils on the tunnel face stabil-
ity; Pan and Dias (2016b), Zou et al. (2019b), and Di et al. 
(2023c) analyzed the effect of seepage forces on the tunnel 
face stability with the aid of numerical simulations; Qian 
et al. (2019) and Chen et al. (2021) respectively analyzed the 
effect of umbrella pipes and bolts on the tunnel face stabil-
ity. It is worth noting that these published literatures are all 
limit to the soil materials following the linear Mohr–Cou-
lomb yield criterion. However, in recent years, more and 
more rock tunnels are being constructed using the conven-
tional mining method (Pan and Dias 2018; Seghateh Mojta-
hedi et al. 2021). Some studies have showed that the linear 
Mohr–Coulomb yield criterion is intractable for assessing 
the face stability of tunnels excavated in rock masses (Man 
et al. 2022a; Seghateh Mojtahedi et al. 2021).

To solve this problem, some researches have attempted 
to assess the stability of tunnel faces excavated in rock 
masses using the nonlinear Hoek–Brown failure crite-
rion (Pan and Dias 2018; Seghateh Mojtahedi et al. 2021; 
Senent et al. 2013; Saada et al. 2013). These researches 
showed that the Hoek–Brown failure criterion can be 
effectively adopted to describe the failure characteristic of 
rock masses in front of the tunnel face (Pan and Dias 2018; 
Seghateh Mojtahedi et al. 2021). But these researches are 
all limit to the homogeneous rock masses. However, in 
practical engineering, the soil or rock masses are always 
layered due to the influence of environmental factors (Ibra-
him et al. 2015; Man et al. 2022a). The effects of lay-
ered soils on the tunnel face stability have been studied 
by Ibrahim et al. (2015) and Pan and Dias (2016a). These 
works showed that neglecting the non-homogeneities of 
soil properties will result in inaccurate estimations for the 
stability issues of the tunnel face. But few attempts have 
been conducted to analyze the influence of layered rock 
masses on the stability of tunnel faces, except Man et al. 
(2022a, 2022b), in which the 2D log-spiral failure model is 
employed to investigate the impact of layered rock masses 
on the tunnel face stability. However, the practical collapse 
of the tunnel face is 3D failure, and the 2D failure model 
will inevitably result in conservative evaluations of the 
stability issue (Mollon et al. 2011). Furthermore, some 

published literatures showed that the upper partial failure 
is more likely to happen within the tunnel face in layered 
materials (Cheng et al. 2019; Senent and Jimenez 2015). 
But in Man et al. (2022a, 2022b), only the whole failure 
at the tunnel face is considered for all cases. To authors’ 
knowledge, no attentions have been put into the analysis 
of the tunnel face stability with considering the possibility 
of upper partial failure in layered rock masses. This study 
will fill this research gap.

Based on the discussions above, this study aims to 
propose an effective approach to estimate the stability of 
shield tunnel faces in layered rock masses. The equivalent 
Mohr–Coulomb parameters of layered rock masses are 
derived using the multi-tangent method. Based on the tradi-
tional rotational failure model, the whole failure model and 
the upper partial failure model are developed with consid-
ering layered rock masses and possibility of upper partial 
failure at the tunnel face. Based on the upper-bound limit 
analysis approach, the limit support pressure is determined 
by maximizing the calculated results from these two failure 
models with the aid of the genetic algorithm. The proposed 
method is validated by comparisons with existing analytical 
solutions and numerical results. Then, parametric analysis is 
conducted to investigate the influence of analytical param-
eters on the tunnel face stability. Finally, the effect of seep-
age forces on the tunnel face stability is presented.

Nonlinear failure criterion and equivalent 
Mohr–Coulomb parameters

Because of various discontinuities with different sizes and 
orientations in rock masses, nearly all rock materials show 
the nonlinear failure characteristics at failure states (Shen 
et al. 2012; Zhao et al. 2017). This indicates that the tra-
ditional linear Mohr–Coulomb yield criterion cannot be 
used to describe the failure of rock masses (Pan and Dias 
2018; Seghateh Mojtahedi et al. 2021; Zhang et al. 2019). 
To solve this shortcoming, in this study, the generalized 
nonlinear Hoek–Brown failure criterion proposed by Hoek 
et al. (2002) is adopted to determine the tunnel face stabil-
ity in layered rock masses. In the following subsections, the 
generalized nonlinear Hoek–Brown failure criterion is first 
introduced, and then a multi-tangent method is introduced 
and adopted to determine the equivalent Mohr–Coulomb 
parameters of rock masses.

Generalized nonlinear Hoek–Brown failure criterion

The generalized nonlinear Hoek–Brown failure criterion can 
be expressed as (Hoek et al. 2002),
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where σ1 is the maximum effective principal stress; σ3 is 
the minimum effective principal stress; σci is the uniaxial 
compressive stress of the intact rock. s, a, and mb can be 
calculated by following equations.

where mi is the Hoek–Brown constant; GSI is the geological 
strength index; Di is the disturbance factor of the intact rock. 
Hence, for the generalized Hoek–Brown failure criterion, 
there are total four input parameters, namely σci, GSI, mi, 
and Di.

Equivalent Mohr–Coulomb parameters using 
the Multi‑Tangent method

To incorporate the Hoek–Brown failure criterion into the 
stability analysis of engineering structures, the common 
methods are to calculate the corresponding equivalent 
Mohr–Coulomb parameters of rock masses by using the 
direct equivalent technique or the tangent method (Yang 
et al. 2004; Pan and Dias 2018; Seghateh Mojtahedi et al. 
2021; Senent et al. 2013; Saada et al. 2013; Chen and Lin 
2019; Qin and Chian 2018; Zhao et al. 2017; Maleki and 
Imani 2022; Hoek et al. 2002). For example, Hoek et al. 
(2002) proposed the direct equivalent technique to cut the 
Hoek–Brown strength envelop, and defined the intercept 
on shear stress axis and inclination as equivalent cohesion 
and friction angle. However, it is worth noting that the 
tangent line obtained by the Direct equivalent technique 
is lower than the Hoek–Brown envelop, so this method 
fails to obtain the strict upper-bound solutions (Yang 
et al. 2004; Li et al. 2022). To deal with this drawback, 
Yang et al. (2004) proposed a tangent method to simplify 
the nonlinear criterion into a linear one (see Fig. 1a). 
Because the tangential line in the tangent method exceeds 
the original non-linear Hoek–Brown envelop, the tangent 
method can provide an upper-bound estimation for the sta-
bility issues (Seghateh Mojtahedi et al. 2021; Chen and 
Lin 2019; Qin and Chian 2018). Referring to Yang et al. 
(2004), the tangential line of the nonlinear Hoek–Brown 
envelop can be expressed as,

(1)�1 = �3 + �ci

(
mb

�3

�1
+ s

)a

(2)mb = miexp

(
GSI − 100

28 − 14Di

)

(3)s = exp

(
GSI − 100

9 − 3Di

)

(4)a =
1

2
+

1

6

[
exp

(
−
GSI

15

)
− exp

(
−
20

3

)]

where ct is the equivalent cohesion; φt is the equivalent fric-
tion angle. ct can be written as a function of φt as follows,

Note that, in Eq. (6), φt is an additional optimization 
parameter compared with the Mohr–Coulomb failure crite-
rion. Since Yang et al. (2004), the tangent method has been 
extensively adopted in the stability analysis of various engi-
neering structures in rock masses (Seghateh Mojtahedi et al. 
2021; Chen and Lin 2019; Qin and Chian 2018; Zhao et al. 
2017; Maleki and Imani 2022). However, the traditional tan-
gent method introduced above is merely employed single 
tangent line to substitute the nonlinear Hoek–Brown failure 
criterion, which will definitely reduce the accuracy of the 
results (Mao et al. 2012). To solve this shortcoming, a multi-
tangent method is introduced and adopted to determine the 
equivalent Mohr–Coulomb parameters of rock masses in 
this study (see Fig. 1b). As shown in Fig. 1b, the nonlin-
ear Hoek–Brown failure criterion is linearly cut by sev-
eral tangential lines, which ensures the varying equivalent 
cohesions and friction angles at the velocity discontinuity 
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)
=

�ci ⋅ cos�t

2

[
mb ⋅ a

(
1 − sin�t

)
2 ⋅ sin�t

] a

1−a

−
�ci ⋅ tan�t

mb

(
1 +

sin�t

a

)[
mb ⋅ a

(
1 − sin�t

)
2 ⋅ sin�t

] 1

1−a

+
s

mi

⋅ �ci ⋅ tan�t

Fig. 1  Tangent method for rock masses a traditional tangent method; 
b multi-tangent method
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surfaces of the failure model. This assists in searching for 
the global optimum during the optimization operation (Mao 
et al. 2012). Combining Eq. (6), the expression of equivalent 
cohesions using the multi-tangent method can be obtained 
by,

where [φt]1, [φt]i, and [φt]k are the equivalent friction angles 
for tangential line 1, tangential line i, and tangential line k; 
k denotes the number of tangential lines adopted to cut the 
nonlinear Hoek–Brown envelop (see Fig. 1b). For simplicity, 
each rock layer is uniformly divided into k layers in verti-
cal direction, and the equivalent Mohr–Coulomb parameters 
for each rock layer are calculated based on the correspond-
ing tangential line. That is, for ith layer, the corresponding 
equivalent friction angle and cohesion are [φt]i and [ct]i (see 
Fig. 1b). Therefore, compared with the traditional tangent 
method, more optimization parameters [φt]i (i = 2,3…,k) are 
required in the optimization operation, thus determining of 
the global optimum of the objective function, i.e., the limit 
support pressure in this study. Obviously, a better optimal 
value is associated to a larger k. However, a larger k means 
a longer computation time. Therefore, a suitable value of k 
should be first determined to ensure the computation effi-
ciency without affecting the accuracy of results.

In order to study the influence of number of tangential 
line k on the accuracy and efficiency of the optimization 
issue, a series of limit support pressures and correspond-
ing calculation times with different k are obtained by using 
the analytical method developed in this study (see Fig. 2). 
Figure 2a shows the problem statement, and the obtained 
results are provided in Fig. 2b. It can be seen in Fig. 2a that 
the rock masses in the study zone is uniformly divided into 
k layers. Considering the magnitude of the failure model 
(Zou et al. 2019a, b; Di et al. 2023a, b, c), the width and 
height of the study zone are assumed to be 1.5D and 2D (see 
Fig. 2a). The parameters adopted in Fig. 2b are as follows: 
D = 10m, GSI = 10, mi = 5, σci = 1MPa, Di = 0, and γ = 25kPa. 
The computer used in the calculation is Intel(R) Core (TM) 
i5-10400F CPU 2.90GHz. From Fig. 2b, it can be seen that, 
as k increases, the increasing ratio of limit support pres-
sure σT gradually decreases. This illustrates that the larger 
upper-bound solution can be obtained with higher k. How-
ever, in Fig. 2b, one can also find that the calculation time 
nearly exponentially increases as k increases. For example, 
the calculation time is 564s for k = 1, but 2195s for k = 7. 
This indicates that the increasing of k has strong negative 
impact on the computational efficiency. To synthesize the 
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computational accuracy and efficiency, k = 3 is adopted to 
determine the equivalent Mohr–Coulomb parameters of rock 
masses in this study.

Improved failure models in layered rock 
masses

In this section, based on the traditional 3D rotational fail-
ure model proposed by Mollon et al. (2011), an improved 
failure model is first developed to make it possible to incor-
porate the properties of layered rock masses into the sta-
bility analysis of the tunnel face. The improved rotational 
failure model in layered rock masses is presented in Fig. 3. 
As shown in Fig. 3, two horizontal layered rock masses 
are assumed in this study (layer 1: σci1, mi1, GSI1, and Di1; 
layer 2:σci2, mi2, GSI2, and Di2). In Fig. 3b, ηD denotes 
the distance between the tunnel crest to the intersection 
between two-layer rock masses. In the traditional rotational 
failure model, two presumed logarithmic spirals with con-
stant friction angle were adopted to generate the failure 
boundaries, which results in the difficulty of solving the 
stability problem of non-homogeneous materials using the 
traditional rotational failure model. To solve this problem, 
the discretized failure boundaries are derived using the dis-
cretization technique (see Fig. 3b). As shown in Fig. 3b, 
the discretized boundary BF consists of a series of seg-
ments PiPi+1 (P1 = B). Therefore, to obtain the discretized 
boundary BF, the most significant issue is to calculate the 
point Pi+1 from point Pi. In this study, the discretization 
technique (Chen et al. 2023) is adopted to obtain the point 
Pi+1(yi+1,zi+1) from the given point Pi(yi,zi) (P1 = B) (see 
Fig. 3c and Eq. (8)).

where [φt]i is the equivalent friction angle at point Pi; yo 
and zo are the coordinates of the rotation center O, and can 
be written as,

where rE/D and βE are two optimization parameters in the 
determination of the upper-bound solution.

Similar to the calculation of the discretized boundary BF, 
the point Qj+1(yj+1,zj+1) can be generated using the discre-
tization technique with the given point Qj(yj,zj) (Q1 = A) as 
follows (see Fig. 3d),

(8)
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Then, the tunnel face is discretized around the tunnel 
center E using the discretization technique (see Fig. 3a). 
Finally, based on the discretized points at the tunnel face and 
the boundaries AF and BF, the 3D failure surface for the 
improved rotational failure model can be obtained using the 
“point by point” technique (Mollon et al. 2011). Note that, 
in the generation of 3D failure surface, the constant friction 
angle is substituted by the spatial varying equivalent friction 

(10)
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angles. Note that, the improved rotational failure model pre-
sented in Fig. 3 is the whole failure model in layered rock 
masses. The whole failure model represents that the whole 
failure happens at the tunnel face (see Fig. 3). Some recently 
published literatures showed that the upper partial failure 
within the tunnel face is more likely to happen when there 
are two-layer materials in the crossed layer of the tunnel face 
with weak properties in layer 1 and strong properties in layer 
2 (Cheng et al. 2019; Senent and Jimenez 2015; Dias et al. 
2008; Li et al. 2009). But these published studies are limit 
to the soil materials, and no attempts have been conducted 
in layered rock masses. Based on existing numerical results 
(Dias et al. 2008; Li et al. 2009), a further improved fail-
ure model is proposed with considering the possibility of 
the upper partial failure at the tunnel face for layered rock 

Fig. 2  Effect of k on the 
accuracy and efficiency of the 
optimization issue a problem 
statement; b limit support pres-
sure and computation time with 
changing k 
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masses (see Fig. 4). As shown in Fig. 4, the “transition” cir-
cular failure zone proposed by Cheng et al. (2019) is adopted 
to represent the upper partial failure within the tunnel face in 
layered rock masses. In Fig. 4, the circle Et and the circle E′t 
are internally tangent to the tunnel face, and are symmetric 
about the central axis AB of the tunnel face. According to the 
geometric conditions, the center of the circle Et(xt,yt) can be 
calculated by,

where ηD is the distance between the tunnel crest to the 
intersection between two-layer rock masses; rt is the radius 
of the circle Et (see Fig. 4). Note that, in Eq. (11), the entire 

(11)

⎧⎪⎨⎪⎩
xt =

��
D

2
− rt

�2

−
�
� ⋅ D −

D

2
− rt

�2

yt = rt − � ⋅ D

Fig. 3  Improved rotational failure model in layered rock masses a discretization of the tunnel face; b discretization of the failure boundaries; c 
generation of the discretized boundary BF; d generation of the discretized boundary AF 
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upper partial failure will happen when rt = 0. As shown in 
Fig. 4, the intersection Pt(xPt,yPt) between the circle Et and 
the tunnel face can be described as,

Different from the improved rotational failure model 
presented in Fig. 3, the discretization of upper partial 

(12)

{
xPt =

xt⋅D

D−2⋅rt

yPt =
yt⋅D+D⋅rt

D−2⋅rt

failure model at the tunnel face is around the tunnel crest 
(the point A), and can be divided into following three parts:

Part 1: the coordinates of discretization point Aj(xj,yj) 
for 0 ≤ θj ≤ arctan(xt/ηD) can be written as,

Part 2: the coordinates of discretization point Aj(xj,yj) 
for arctan(xt/ηD) < θj ≤ arctan(− xPt/yPt) can be written as,

(13)
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Part 3: the coordinates of discretization point Aj (xj,yj) 
for arctan(-xPt/yPt) < θj ≤ π/2 can be written as,

Once the discretization points of the upper partial fail-
ure model at the tunnel face are calculated, the improved 
rotational failure model with considering the upper partial 
failure can be obtained using the discretization and “point 
by point” techniques (Mollon et al. 2011).
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Upper‑bound solutions in layered rock 
masses

Referring to Mollon et al. (2011) and Chen et al. (2022), 
the upper bound limit analysis approach is employed to 
determine the limit support pressure of the tunnel face by 
equating the internal energy dissipation rate to the work 
done by external forces as follows,

(16)W�T
= Dc −W�

Fig. 4  Improved failure model 
considering the upper partial 
failure a discretization of the 
tunnel face; b discretization of 
the failure boundaries
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where Dc is the internal energy dissipation rate along the 
3D failure surface; Wγ is the work due to the gravity of rock 
masses; W�T

 is the work done by the supporting pressure.
As shown in Fig. 5, the internal energy dissipation rate 

Dc can be expressed as,

where Si,j is the element surface at the 3D failure surface; Ri,j 
is the rotation radius of the element surface Si,j; [ct]i,j is the 
equivalent cohesion at the element surface Si,j; [φt]i,j is the 
equivalent friction angle at the element surface Si,j.

The work done by the gravity of rock masses Wγ can be 
calculated by,

where Vi,j is the element volume of the failure model; Ri,j 
is the rotation radius of the element volume Vi,j; βi,j is the 
rotation angle of the element volume Vi,j; γi,j is the unit rock 
weight at the element volume Vi,j.

The work due to the supporting pressure acting on the 
tunnel face W�T

 can be described as,

(17)

Dc=∬ S

ct ⋅
||�⃗v|| ⋅ cos𝜑tdS = 𝜔 ⋅

∑
i,j

([
ct
]
i,j
⋅ Ri,j ⋅ Si,j ⋅ cos

[
𝜑t

]
i,j

)

(18)W𝛾=∭ V

�⃗𝛾 ⋅ �⃗vdV = 𝜔 ⋅

∑
i,j

(
𝛾i,j ⋅ Ri,j ⋅ Vi,j ⋅ sin𝛽i,j

)

where 
∑

j is the element face of the tunnel face; Rj is the rota-
tion radius of the element face 

∑
j ; βj is the rotation radius 

of the element face 
∑

j.
Combining Eqs. (16) to (19), the limit support pressure 

σT1 for the whole failure model can be determined by max-
imizing Eq. (20) with respect to optimization parameters 
rE/D, βE, [φt1]i and [φt2]i (i = 1,2,3) as follows,

with

The limit support pressure σT2 for the upper partial fail-
ure model can be calculated by maximizing Eq. (22) with 
respect to optimization parameters rE/D, βE, rt, and [φt]i 
(i = 1,2,3) and as follows,

(19)W𝜎T
=∬ ∑ �⃗𝜎T ⋅ �⃗vd

�
= 𝜔 ⋅ 𝜎T ⋅

�
j

�
Rj ⋅

�
j
⋅ cos𝛽j

�

(20)�T1 = max
(rE∕D,�E ,[�t1]i,[�t2]i)

(
N� − Nc

)

(21)

⎧⎪⎪⎨⎪⎪⎩

0.5 ≤ rE

D
≤ 20

1◦ ≤ 𝛽E < 90◦

1◦ ≤ �
𝜑t1

�
i
≤ 45◦

1◦ ≤ �
𝜑t2

�
i
≤ 45◦

Fig. 5  View of work calcula-
tions
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with

To calculate the limit support pressure, the widely adopted 
optimization algorithm is the unconstrained optimization tool 
(fminsearch) in MATLAB (Pan and Dias 2016a; Zou et al. 
2019b). However, this optimization algorithm is intractable to 
search the global optimal value when the number of optimi-
zation parameters is more than four. To solve this issue, the 
genetic algorithm was introduced and adopted by Xu and Du 
(2023) to accurately assess the slope stability under multi-
optimization parameters. Based on it, the genetic algorithm is 
employed to determine the limit support pressure of the tunnel 
face under multi-optimization parameters in this study. Because 
the limit support pressure for the tunnel face is the upper-bound 
solution for layered rock masses, the final limit support pressure 
is the maximum of Eq. (20) and Eq. (22) as follows,

Note that, in Eq. (20) and Eq. (22), Nγ and Nc respectively 
denotes the influence of the rock weight and the equivalent 
cohesion on the limit support pressure, and can be expressed 
as,

Figure 6 provides the limit support pressures and cor-
responding 3D failure surfaces for the cases of two-layer 
rock masses with D = 10m, η = 0.5, and γ1 = γ2 = 25kN/m3. 
The parameters adopted in Fig. 6a are as follows: layer 
1 (mi1 = 5, GSI1 = 10, σci1 = 1MPa, and Di1 = 0); layer 2 
(mi2 = 5, GSI2 = 20, σci2 = 2MPa, and Di2 = 0). The param-
eters adopted in Fig. 6b are as follows: layer 1 (mi1 = 5, 
GSI1 = 10, σci1 = 1MPa, and Di1 = 0); layer 2 (mi2 = 10, 
GSI2 = 20, σci2 = 3MPa, and Di2 = 0). From Fig. 6a, it can be 
seen that the whole failure at the tunnel face happens, and 

(22)�T2 = max
(rE∕D,�E ,rt ,[�t1]i)

(
N� − Nc

)

(23)

⎧
⎪⎪⎨⎪⎪⎩

0.5 ≤ rE

D
≤ 20

1◦ ≤ 𝛽E < 90◦

0 ≤ rt ≤ 𝜂⋅D

2

1◦ ≤ �
𝜑t1

�
i
≤ 45◦

(24)�T = max
(
�T1, �T2

)

(25)
N�=

∑
i,j

�
�i,j ⋅ Ri,j ⋅ Vi,j ⋅ sin�i,j

�

∑
j

�
Rj ⋅

∑
j

⋅cos�j

�

(26)Nc=

∑
i,j

��
ct
�
i,j
⋅ Ri,j ⋅ Si,j ⋅ cos

�
�t

�
i,j

�

∑
j

�
Rj ⋅

∑
j

⋅cos�j

�

there exists an obvious transition in the 3D failure surface 
at the intersection between two-layer rock masses, which 
is consistent to the results observed by Man et al. (2022a, 
2022b) using the 2D log-spiral failure model. From Fig. 6b, 
it can be found that the upper partial failure at the tunnel 
face occurs for this selected case. Combining Fig. 6a and 
b, one can conclude that the possibility of upper partial 
failure will increase as properties of lower layer increase.

Validation of the proposed method

Validation in soil masses

Validation with published solutions

Firstly, a comparison between the limit support pressures 
obtained from the proposed method and published solutions 
from Senent and Jimenez (2015) are presented in Table 1. 
The parameters adopted in Table 1 are as follows: D = 10m, 
η = 0.5, [φt]1 = 30°, [φt]2 = 30°, [ct]1 = 0–35kPa, [ct]2 = 0kPa, 
and γ1 = γ2 = 20kN/m3.

From Table 1, it can be seen that, for these selected cases, 
the whole failure will occur when [ct]1 ≤ 15kPa, and the 
partial failure will happen when [ct]1 > 15kPa. Also, from 
Table 1, one can find that the analytical solutions obtained 
by Senent and Jimenez (2015) are slightly larger than the 
numerical results with the average difference up to 4.5%, 
and the limit support pressures calculated from the proposed 
method are closer to the numerical results with average dif-
ference less than 2.2%. This observation illustrates that the 
proposed method is an effective approach to investigate the 
tunnel face stability in layered materials.

Validation based on practical tunnel engineering

Then, the proposed method is validated based on practical 
tunnel engineering. Figure 7 shows the geological section 
from Qili Station to Minxiluxi Station in Nanchang Metro 
Line 4, which is located in Nanchang, China. The total 
length of this section is 2017m. The tunnel was excavated by 
using a circular shield machine with an excavation diameter 
of 6m. The study zone in this section is shown in Fig. 8. The 
soil parameters in the study zone are summarized in Table 2.

Based on the proposed method, the limit support pres-
sure and corresponding failure surface can be obtained, as 
shown in Fig. 9. To validate the proposed method, a numeri-
cal analysis based on the finite element limit analysis (Zhang 
et al. 2019) is conducted. Figure 10 presents the comparison 
between the results from the proposed method and numeri-
cal analysis. From Fig. 10, it can be seen that the limit sup-
port pressure calculated from the proposed method is slightly 
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lower than the numerical result with the difference less than 
6%, and both analytical solution and numerical result are 
smaller than the practical engineering design value (15kPa) 
considering a certain security reserve. Also, one can find 
that the failure surface from the proposed method is slightly 
smaller than the numerical one in Fig. 10. These observations 
further illustrate the effectiveness of the proposed method.

Validation in rock masses

To validate the proposed method in rock masses, a 
comparison between the limit support pressures calculated 
by the proposed method with existing analytical solutions 
(Senent et al. 2013) and numerical results is first conducted 
for homogeneous rock masses. Then, the comparisons 

Fig. 6  Failure surfaces based 
on the proposed method a 3D 
whole failure surface; b 3D 
upper partial failure surface
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between the limit support pressures obtained from the 
proposed method and numerical results are provided for 
layered rock masses. Figure  11 shows the established 
numerical model based on the FLAC3D. As shown 
in Fig.  11, the numerical model is large enough with 
length = 8D, width = 5D, and height = 8D. The bottom of 
the numerical model is full fixed; the vertical faces of the 
numerical model are fixed in the normal directions; the top 
of the numerical model is free to displace. Referring to Pan 
and Dias (2018), the shell of the excavation tunnel is denoted 
by a linear structural element with Poisson’s ratio = 0.2, 
Young’s modulus = 20GPa, and thickness = 22mm. In the 
numerical model, the rock masses are assumed to obey the 
Hoek–Brown failure criterion. From Senent et al. (2013), it 
can be concluded that the divergences of results calculated 
based on the associated flow rule and the non-associated 
flow rule are limited, and adopting the associated flow rule 
to assess the tunnel face stability is acceptable. Therefore, 
for simplicity, the associated flow rule is assumed in the 
analytical and numerical analysis in this study. To validate 

the proposed method in layered rock masses, two-layer rock 
masses are adopted with layer 1 (mi1, GSI1, σci1, Di1, Em1, and 
vm1) and layer 2 (mi2, GSI2, σci2, Di2, Em2 and vm2). Em1 and 
Em2 respectively represent the Young’s modulus of the rock 

Table 1  Validation with published solutions in layered materials 
(unit: kPa)

[ct]1 Analytical solutions 
(Senent and Jimenez 
2015)

Numerical solutions 
(Senent and Jimenez 
2015)

This study

σT,global σT,partial

0 29.2 16.5 27.3 28.2
5 25.3 16.5 23.3 24.3
10 21.4 16.5 19.9 21
15 17.7 16.5 17.3 17.3
20 14.1 16.5 16.2 15.9
25 10.6 16.5 16 15.9
30 7.1 16.5 16 15.9
35 3.9 16.5 16.1 15.9

Fig. 7  Geological section from Qili Station to Minxiluxi Station in Nanchang Metro Line 4

Fig. 8  The study zone in this section

Table 2  Soil parameters in the study zone

Soil γ (kN/m3) [ct] (kPa) [φt] (°)

Miscellaneous fill 18 10 10
Silty clay 18 29.3 17.4
Medium sand 19 0 28
Coarse sand 19.8 0 31
Gravelly sand 20 0 30
Moderately weathered 

muddy siltstone
25 350 32
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mass in layer 1 and layer 2, and can be calculated by (Hoek 
and Diederichs 2006),

(27)

⎧⎪⎨⎪⎩

Em1 = 105 ⋅
�

1−0.5⋅Di1

1+exp[(75+25⋅Di1−GSI1)∕11]

�

Em2 = 105 ⋅
�

1−0.5⋅Di2

1+exp[(75+25⋅Di2−GSI2)∕11]

�

vm1 and vm2 respectively represent the passion ratio of 
the rock mass in layer 1 and layer 2, and can be expressed 
as (Vásárhelyi 2009),

In order to determine the limit support pressure using the 
numerical model, the supporting forces at the tunnel face are 
gradually reduced from an appropriately large value (500kPa 
in this study), and the corresponding horizontal displace-
ments of control point (maximum displacement point) at the 
tunnel face are recorded for each iteration of the calculation. 
Figure 12 shows the relationship between the supporting 
forces with the corresponding horizontal displacements of 
the control point. The limit support pressure corresponds 
to the sharp change point of the displacement for the con-
trol point, where the collapse failure of the tunnel face first 
happens (Zou et al. 2019a). In Fig. 12, it can be seen that 
the limit support pressures for these two selected cases are 
respectively equal to 56.3kPa and 22.0kPa.

Validation in homogeneous rock masses

Figure 13 presents the comparisons between the limit sup-
port pressures calculated by the proposed method with those 
from Senent et al. (2013) and numerical results in homoge-
neous rock masses for D = 10m, mi = 5, σci = 1MPa, Di = 0, 
and γ = 25kN/m3. In Senent et al. (2013), a single tangent 

(28)
{

vm1 = −0.002 ⋅ GSI1 − 0.003 ⋅ mi1 + 0.457

vm2 = −0.002 ⋅ GSI2 − 0.003 ⋅ mi2 + 0.457

Fig. 9  Limit support pressure and corresponding failure surface for 
the study zone

Fig. 10  Validation of the pro-
posed method based on numeri-
cal analysis
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line was employed to cut the non-linear Hoek–Brown 
envelop to calculate equivalent Mohr–Coulomb parameters 
of rock masses. It can be seen in Fig. 13 that the numeri-
cal results are slightly higher than those from the proposed 
method and Senent et al. (2013). From Fig. 13, one can 
also find that the limit support pressures obtained from the 
proposed method are closer to the numerical results when 
compared with those from Senent et al. (2013). The big-
gest difference is less than 5.8% between results from the 
proposed method and Senent et al. (2013), and less than 

2.2% between the proposed method and numerical results. 
This indicates that the proposed method using multi-tangent 
method can provide more accurate estimations for the tun-
nel face stability. Moreover, because of numerous itera-
tive calculations, it takes more than 300 min to obtain one 
numerical result. But it only takes approximately 10 min to 
calculate the analytical solution using the proposed method. 
These observations indicate that the proposed method is 
an effective approach to analyze the tunnel face stability in 
homogeneous rock masses.

Fig. 11  Numerical model

Fig. 12  Calculation of limit 
support pressures using the 
numerical model
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Validation in layered rock masses

Table 3 shows the comparisons between the limit support 
pressures calculated by the proposed method with numeri-
cal results for five cases with D = 10m and γ1 = γ2 = 25kN/
m3 in layered rock masses. In these five cases, two rock lay-
ers are assumed with η = 0.5, and the material properties 
of rock masses in the upper layer are as follows: GSI1 = 10, 
mi1 = 5, σci1 = 1MPa, and Di1 = 0. From Table 3, it can be 
seen that the limit support pressures obtained in this study 
is slightly lower than the numerical results with the big-
gest difference less than 3.6%. Moreover, one can also find 
that the limit support pressure varies with the changing of 
material properties in the lower layer when the whole failure 
happens, but remains constant when the upper partial failure 
occurs. To better validate the proposed method, the compari-
sons between the failure surfaces obtained by the proposed 
method and the numerical model are presented for case 3 
and case 5, as shown in Figs. 14 and 15. From Figs. 14 and 
15, one can see that failure surface obtained in the numeri-
cal model is slightly wider than the one from the proposed 
method, but the failure surface obtained in this study covers 
main deformation zone of the rock masses observed in the 
numerical model. From Fig. 14, it can be found that the 

whole failure at the tunnel face occurs for case 3, and both 
failure surfaces from the proposed method and the numerical 
model for case 3 have obvious transitions at the intersec-
tion between two-layer rock masses. From Fig. 15, it can be 
seen that, for case 5, both of the failure surfaces calculated 
by the proposed method and the numerical model are upper 
partial failures at the tunnel face, which indicates that the 
upper partial failure happens for case 5. These observations 
illustrate that the proposed method is an effective approach 
to analyze the tunnel face stability in layered rock masses.

Results and discussions

In this section, the limit support pressures obtained from 
the proposed method are first presented with changing rock 
properties in lower layer for D = 10m, η = 0.5, GSI1 = 10, 
mi1 = 5, σci1 = 1MPa, and γ1 = γ2 = 25kN/m3 (see Fig. 16). 
Because shield tunnel excavation has nearly no disturbance 
to the intact rock, Di1 = Di2 = 0 is adopted in the parametric 
analysis (Seghateh Mojtahedi et al. 2021). To better study 
the effect of rock properties on the tunnel face stability, the 
longitudinal sections of the 3D failure surfaces with chang-
ing rock properties are plotted in Fig. 17.

Fig. 13  Validation of the proposed method in homogeneous rock 
masses

Table 3  Validation of the 
proposed method in layered 
rock masses

Case GSI2 mi2 σci2 (MPa) FLAC3D (kPa) This study (kPa) Failure type

1 20 5 1.5 34.5 33.6896 Whole failure
2 10 10 2 31.3 30.6176 Whole failure
3 20 5 2 30.5 29.5936 Whole failure
4 20 10 3 22.0 21.216 Upper partial failure
5 30 10 5 22.0 21.216 Upper partial failure

Fig. 14  Comparisons between the failure surfaces from the proposed 
method and the numerical model for case 3
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From Fig. 16, it can be seen that the normalized limit sup-
port pressure σT/γD first decreases and then remains constant 
with the rock properties (GSI2,mi2,σci2) increase. This observa-
tion can be attributed to the fact that the whole failure within the 
tunnel face will happen for weak rock properties in the lower 
layer, and the upper partial failure will occur when the rock 
property (GSI2, mi2, or σci2) reaches a certain value in the lower 
layer (see Fig. 17). For example, for σci2 = 1MPa and mi2 = 5, 
when GSI2 < 45, the whole failure of the tunnel face will hap-
pen, and the upper partial failure of the tunnel face will happen 
when GSI2 ≥ 45 (see Fig. 17a); for σci2 = 1MPa and GSI2 = 10, 
when mi2 < 35, the whole failure will happen, and the upper 
partial failure of the tunnel face will happen when mi2 ≥ 35 (see 
Fig. 17b); for mi2 = 5 and GSI2 = 10, when σci2 < 12MPa, the 
whole failure will happen, and the upper partial failure of the 
tunnel face will happen when σci2 ≥ 12MPa (see Fig. 17c). From 
Fig. 17, one can also find that the magnitude of the failure sur-
face slightly reduces with the rock properties increase when the 
whole failure happens. This observation can be used to illustrate 
the decrease of the limit support pressure with the increasing of 
rock properties before the occurrence of the upper partial failure 
at the tunnel face. When the upper partial failure happens, the 
limit support pressure and the failure surface are only related 
to the rock properties in the upper layer, and the changing of 
rock properties in the lower layer has no influence on the tunnel 
face stability (see Fig. 16). Combining Fig. 16 and Fig. 17, one 
can also conclude that, for whole failure, a larger limit support 
pressure is associated to a larger failure surface.

Then the effect of η on the tunnel face stability with differ-
ent mi2 is presented in Fig. 18. The adopted parameters are as 
follows: D = 10m, GSI1 = 10, mi1 = 5, σci1 = 1MPa, GSI2 = 10, 
σci2 = 2MPa, and γ1 = γ2 = 25kN/m3. It can be seen in Fig. 18a 
that, for η = 0.00 and 0.25, σT/γD continually decreases as mi2 
increases; for η = 0.50 and 0.75, as mi2 increases, σT/γD first 
decreases when mi2 < 20 and then remains constant when 
mi2 ≥ 20; for η = 1.00, σT/γD remains constant as mi2 increases. 

These observations illustrate that, for these selected cases, the 
whole failure will happen at the tunnel face for η = 0.00, 0.25 
and 1.00; for η = 0.50 and 0.75, the whole failure will happen 
when mi2 < 20 and the upper partial failure will occur when 
mi2 ≥ 20. This indicates that the possibility of upper partial 
failure at the tunnel face will decreases with η decreases. Also, 
from Fig. 18(a), one can find that σT/γD greatly increases as 
η increases, which can be partially illustrated by the failure 
surfaces with changing η presented in Fig. 18b.

Finally, the effect of tunnel diameter D on the tunnel 
face stability with different mi2 is provided in Fig. 19. The 
adopted parameters are as follows: η = 0.5, GSI1 = 10, mi1 = 5, 
σci1 = 1MPa, GSI2 = 10, σci2 = 2MPa, and γ1 = γ2 = 25kN/m3. 
From Fig. 19a, it can be seen that, for these selected cases, 
the upper partial failure will happen for D = 8m and D = 10m 
when mi2 ≥ 20; for D = 12m and D = 14m, the upper partial 
failure will happen when mi2 ≥ 25. This indicates that the 
possibility of upper partial failure at the tunnel face will 
reduce as D increases. Also, from Fig. 19a, one can find 
that σT/γD greatly increases as D increases, which can be 
illustrated by the change of the failure surface from a smaller 
size to a larger one with D increases (see Fig. 19b).

Tunnel face stability considering seepage 
forces

To better investigate the tunnel face stability considering the 
upper partial failure in layered materials, the effect of seep-
age forces on the tunnel face is conducted in this section. To 
obtain the seepage forces induced by the tunnel excavation, a 
numerical model based on FLAC3D is established, as shown 
in Fig. 20. In Fig. 20, the vertical surfaces of the numeri-
cal model and tunnel linings are assumed to be hydraulically 
impervious, but the tunnel face is pervious. Once the numeri-
cal seepage field is obtained, the interpolation tool (griddata) 

Fig. 15  Comparisons between 
the failure surfaces from the 
proposed method and the 
numerical model for case 5 a at 
the longitudinal section of the 
failure surface; b at the tunnel 
face
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Fig. 16  Normalized limit sup-
port pressures with changing 
rock properties a σci2 = 1MPa; b 
GSI2 = 10; c mi2 = 5
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Fig. 17  Failure surfaces with 
changing rock properties a 
σci2 = 1MPa and mi2 = 5; b 
GSI2 = 10 and σci2 = 1MPa; c 
mi2 = 5 and GSI2 = 10
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in MATLAB is then employed to calculate the interpolated 
seepage field (see Fig. 21). Note that, in Fig. 21, the seep-
age forces in the tunnel are set to zero, and only the interpo-
lated seepage field in the study area is provided. Based on the 
interpolated seepage field, the seepage forces can be more 
efficiently incorporated into the analytical model to assess 
the tunnel face stability compared with the traditional method 
using the numerical seepage field (Pan and Dias 2016b, 2018; 

Zou et al. 2019b). Referring to Pan and Dias (2016b), the 
work rate done by the seepage forces can be described as,

where ui,j denotes the seepage force in the center of Si,j. 
Combining Eq. (20) and Eq. (22), the limit support pressures 

(29)

Wp = −∫ S

u ⋅ n ⋅ vdS = � ⋅

∑
i,j

(
ui,j ⋅ Ri,j ⋅ Si,j ⋅ sin

[
�t

]
i,j

)

Fig. 18  Effect of η on the tunnel 
face stability a normalized limit 
support pressures with changing 
η and mi2; b failure surfaces 
with changing η (mi2 = 20)
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Fig. 19  Effect of D on the 
tunnel face stability a normal-
ized limit support pressures 
with changing D and mi2; b 
failure surfaces with changing D 
(mi2 = 25)
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considering the seepage forces for whole and upper partial 
failures can then be respectively expressed by,

with

(30)�T1 = max
(rE∕D,�E ,[�t]i)

(
N� + Np − Nc

)

(31)�T2 = max
(rE∕D,�E ,[�t]i,rt)

(
N� + Np − Nc

)

The final limit support pressure considering seepage 
forces can then be obtained by the maximum of Eq. (30) 
and Eq. (31).

Figure 22 shows the effect of seepage forces on the tunnel 
face stability with different mi2. The adopted parameters are as 
follows: η = 0.5, GSI1 = 10, mi1 = 5, σci1 = 1MPa, γ1 = γ2 = 25kN/
m3, GSI2 = 10, and σci2 = 3MPa. From Fig. 22a, it can be seen 
that, compared with the case with no seepage forces (see 
Fig. 16b), the limit support pressure considering seepage forces 
greatly improves, and the limit support pressure significantly 
increases as the relative water table Hw/D increases. Also, in 
Fig. 22a, one can find that, for different Hw/D, the whole fail-
ure will happen when mi2 < 25, and the upper partial failure 
will happen when mi2 ≥ 25. Therefore, combining Fig. 16b, one 
can conclude that the presence of underground water can delay 
the occurrence of upper partial failure at the tunnel face. From 
Fig. 22b, it can be seen that, compared with the case with no 
seepage forces, the failure surfaces considering seepage forces 
are much wider, and the magnitude of the failure surface greatly 
increases as Hw/D increases. This observation is similar to the 

(32)Np =

∑
i,j

�
ui,j ⋅ Ri,j ⋅ Si,j ⋅ sin

�
�t

�
i,j

�

∑
j

�
Rj ⋅

∑
j

⋅cos�j

�

Fig. 20  Numerical model to calculate the seepage field

Fig. 21  Interpolated seepage 
field based on numerical results 
using the interpolation tool in 
MATLAB (Hw/D = 2.0)
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result obtained by Di et al. (2023c) in homogeneous soils. This 
can be used to partially illustrate the increase of the limit sup-
port pressure with the increasing of Hw/D.

Conclusions

In this study, an effective approach is proposed to assess 
the tunnel face stability with considering the possibility of 
the upper partial failure at the tunnel face in layered rock 

masses. Compared with previous works, the following 
improvements are achieved.

(1) To incorporate the properties of layered rock masses 
into the stability analysis of the tunnel face, a multi-
tangent method is introduced and adopted to calculate 
the equivalent Mohr–Coulomb parameters. The influ-
ence of number of tangential lines k on the stability 
issue is conducted, and the results show that k = 3 is 
the best choice for these selected cases, which ensures 

Fig. 22  Effect of seepage forces 
on the tunnel face stability a 
limit support pressures with 
changing Hw/D and mi2; b 
failure surfaces with changing 
Hw/D (mi2 = 20)
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the computational efficiency and satisfies the accuracy 
of results.

(2) Validations of the proposed method by comparing with 
published analytical solutions and numerical results 
are conducted, showing that the proposed method is 
an accurate and effective approach to assess the tunnel 
face stability under different types of failure (whole 
failure or upper partial failure) in layered materials.

(3) Based on the proposed method, the effects of rock prop-
erties, layered position and tunnel diameter on the tun-
nel face stability are presented. It is shown that, when 
a soft material in the upper section of tunnel face, the 
upper partial failure is likely to happen and this pos-
sibility will increase as the properties of lower layer 
increase, the tunnel diameter decreases and the layered 
position moves down. The properties of lower layer 
have strong influence on the stability issue when whole 
failure happens at the tunnel face. For cases of whole 
failure or upper partial failure, a larger limit support 
pressure is associated to a larger failure surface.

(4) With the aid of numerical simulation, the effect of 
seepage forces is also incorporated into the stability 
analysis of tunnel faces. The results show that the limit 
support pressure and the magnitude of failure surface 
greatly increases under seepage forces, and the pres-
ence of underground water delays the occurrence of 
upper partial failure at the tunnel face.
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