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Abstract
The morphology of granular materials, such as sands, is of significant importance due to the effect of grain shape on their 
physical, mechanical, and hydraulic behavior. As technology has progressed from visual identification to modern computer-
based techniques, numerous methods have been developed for quantifying grain shapes, many of which utilize digital image 
analysis and advances in computational techniques. A comprehensive understanding of available shape characterization 
methods is essential to make better use of these tools. This paper presents a state-of-the-art review of current methods for 
characterizing the morphology of granular materials, focusing particularly on digital image analysis techniques. It critically 
evaluates two essential aspects of shape characterization: the acquisition of particle shape information and shape measurement 
methods, discussing the strengths and limitations of each approach. Further, the application of grain shape characterization 
to analyze the effect of particle shape on the macro-scale behavior of sand is discussed. The review emphasizes the need to 
shift from classical shape characterizations developed by sedimentologists to objective-oriented shape characterizations that 
enable micro-to-macro correlations, taking into account the availability of robust tools and technologies.

Keyword Particle shape measurement · Shape descriptors · Digital image analysis · X-ray micro-CT · Spherical 
harmonics · Fractal methods

Introduction

The mechanical behavior of granular materials is influenced by 
the underlying micro-mechanisms, which are affected by the 
particle shape, fabric, contact characteristics, etc. The effect of 
particle morphology on the physical, mechanical, and hydraulic 
behavior of aggregates has been widely documented. In the 
geotechnical engineering context, the shape of sand particles 
has been found to affect the shear response, packing, stiffness, 
compressibility, and critical state parameters (Santamarina and 
Cho 2004; Cho et al. 2006; Cavarretta et al. 2010; Altuhafi 
et al. 2016). Considering other aspects of construction engi-
neering, the shapes of fine and coarse aggregates significantly 
influence the strength and properties of concrete mixtures, the 
performance of asphalt mixes, and the mechanical properties of 
unbound pavement layers (Barksdale and Itani 1989; Meininger 

1998; Masad et al. 2001; Garboczi 2002; Rao et al. 2002; Lee 
et al. 2019). The importance of considering the grain shape, 
especially in granular media like sand, is depicted in Fig. 1. 
As we can see, the grains and pore spaces determine the den-
sification characteristics of sand in unsaturated and saturated 
conditions, which is one of many macroscopic characteristics 
influenced by the particle morphology.

Despite the consensus that particle morphology plays an 
important role in the behavior of granular materials, there is 
no standard approach to quantify particle morphology or use 
it in design practices. While the recent technological revolu-
tions in digital imaging have enabled researchers to capture 
high-resolution images of particles, advancements in com-
putational tools and algorithms have helped them represent 
particle morphology through comprehensive shape indices. 
Precise morphological characterization and classification of 
granular materials and the development of useful correla-
tions between their quantifiable shape characteristics and 
mechanical behavior will ensure more judicial use of these 
materials in engineering applications.

Particle size, unlike particle shape, has been extensively 
used in design-based applications. However, the current 
practice of size-based classification is counterintuitive for 
irregularly shaped particles like sands and aggregates unless 
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supplemented by shape information. For example, studies 
reveal that the primary factors affecting the packing of natu-
ral sands are particle shape and gradation, not particle size 
(Youd 1973). Also, the size of an irregularly shaped particle 
may vary, depending on the method of measurement and 
the definition of size (Jennings and Parslow 1988). Hence, 
a more rational and comprehensive choice of morphological 
parameters of grains and their quantification is necessary for 
engineering design and practice.

The advent of digital imaging and the development of 
computers that could store and process large volumes of data 
are the two factors that contributed to significant advance-
ments in particle shape characterization. Older methods for 
morphological characterization, like manual measurement 
and chart-based methods, which were rather cumbersome 
and subjective, are now being replaced by image analysis 
methods, which are more accurate, objective, and faster. 
Advanced techniques such as scanning electron microscopy 
(SEM) and digital single lens reflex (DSLR) cameras for 
two-dimensional (2D) analysis and X-ray micro-computed 
tomography (µCT) and laser scanning for three-dimensional 
(3D) analysis are being employed to obtain digital images of 
particles. The high resolution achieved using these instru-
ments has made it possible to characterize particle shapes 
at unmatched accuracies. Particle characterization in 3D has 
also facilitated the generation of virtual particles with real-
istic shape properties to be incorporated into computational 
models (Liu et al. 2011; Mollon and Zhao 2013, 2014; Zhou 
and Wang 2017; Su and Yan 2018a). More recently, additive 
manufacturing of granular particles that exactly mimic the 
shape characteristics of real ensembles has been successfully 
demonstrated through computational models developed to 
recreate the 3D morphology of sand grains (Hanaor et al. 
2016; Adamidis et al. 2020; Ahmed and Martinez 2021; Wei 
et al. 2021).

This article aims to review the state-of-the-art techniques 
available for the morphological characterization of particles. 
Emphasis is on methods and descriptors developed based on 
digital image analysis for geotechnical engineering applica-
tions. The article will guide a researcher or practitioner who 

aims at the morphological characterization of granular mate-
rials to select a particular method based on several factors, 
such as the availability of equipment, complexities involved 
in the analysis, and the intended purpose.

Description of morphology

The shape of a grain is an expression of its external mor-
phology (Barrett 1980). Describing the shape in a manner 
that is conceivable by users is as important as obtaining 
accurate measurements. Several shape descriptors have 
been developed to qualitatively or quantitively express par-
ticle morphology. Qualitative descriptors give a general 
idea about the shape, using terms such as flaky, elongated, 
and irregular (Zingg 1935; Krumbein and Pettijohn 1938; 
Krumbein 1941; Lees 1964; Williams 1965). Researchers 
have proposed different shape diagrams to classify particle 
shapes in terms of qualitative descriptors by plotting their 
dimensional ratios together (Zingg 1935; Sneed and Folk 
1958; Blott and Pye 2008). Quantitative shape descriptors 
can be broadly classified into two categories: geometric 
shape descriptors and spectral shape descriptors. Geomet-
ric shape descriptors represent the grain geometry in ratios 
or coefficients computed from the geometric measurements 
on particles, and spectral descriptors represent the grain 
geometry through harmonic series like the Fourier series 
and spherical harmonic (SH) series.

The shape of a grain can be expressed at different lev-
els of detail, the features at one level being independent of 
the other (Wadell 1932, 1933; Wentworth 1933; Krumbein 
1941; Pettijohn et al. 1972). Barrett (1980) proposed the 
expression of shape in terms of three independent properties, 
viz. form, which describes the overall shape of the particle, 
roundness which is the mesoscale property describing the 
overall sharpness of corners; and surface roughness which 
describes the small-scale features superimposed on round-
ness (Fig. 2). Attempting a more critical evaluation, the sin-
gle factors, as proposed by Jia and Garboczi (2016), describe 
the shape of a particle at different levels of detail, while the 

Fig. 1  Schematic diagram 
showing the effect of morphol-
ogy of particles on packing: a 
Sand as a granular medium con-
sisting of grains and pore spaces 
in unsaturated condition; b The 
effect of particle roundness and 
gradation on particle pack-
ing and contacts in a saturated 
medium
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parametric series contains information on the entire mor-
phology of the grains, from which the data at any level can 
be extracted. Parametric series represents a unified approach 
to characterizing the particle shape. In addition to particle 
shape description, the expression of particle shape in terms 
of harmonic series aids the recreation of particle geometry.

The first attempts to quantitatively describe particle 
shapes have been undertaken by sedimentologists and con-
sisted of manual measurements of particle dimensions, area, 
volume, etc., to derive shape parameters. Measurements 
were either performed directly or employed on projected 2D 
outlines or silhouettes of particles. Since obtaining the 3D 
shape parameters of grains was challenging, 2D parameters 
measured on projections of particles were proposed as an 
alternative. Even though many of these early definitions of 
shape descriptors haven’t been made to define a single level 

of shape rigidly, these descriptors can be classified into form 
and roundness/angularity descriptors based on their impli-
cations. Particle form is usually measured as the closeness 
to an ideal shape, and hence form descriptors include the 
ratios of particle dimensions (which implies the elongation 
and flatness of the particle) and sphericity (which meas-
ures the closeness of the particle shape to a sphere) in 3D 
and circularity in 2D. While form descriptors thus defined 
are derived from particle dimensions, area, volume, or the 
inscribed and circumscribed sphere/circle, the roundness 
descriptors are used to quantify the sharpness of corners 
and hence constitute more detailed measurements on the 
projected particle outline. Wadell (1933) defined roundness 
as the ratio of average radii of curvature of all corners to  
the radius of the maximum inscribed circle and suggested 
that roundness should be distinguished from particle spheric-
ity. Wadell’s definition of roundness has prevailed over other  
definitions due to its functionality. A list of form descrip-
tors derived through direct measurements on the grain or 
manual measurements on particle silhouettes are provided 
for 2D and 3D measurements in Tables 1 and 2, respectively. 
Descriptors that were developed to measure roundness or 
angularity based on direct 2D measurements on particle pro-
jections are given in Table 3.

Morphological characterization using digital  
image analysis

The evolution of digital image analysis has brought a para-
digm shift into particle shape characterizations. Morpho-
logical characterization through image analyses involves 
capturing images of granular materials at sufficient reso-
lutions, applying image processing methods for shape 

Fig. 2  Different scales of morphology as depicted on a grain projec-
tion

Table 1  Two-dimensional form descriptors derived through manual measurements on particle silhouettes

a,b,c Authors used the term ‘roundness’ when in fact, they were measuring sphericity or circularity

Descriptor Formula Reference, Remarks

Circularitya A

Acircle

=
4�A

P2
Cox (1927)
A,P ∶ Area and perimeter of the 2D projection of particle, respectively, Acircle ∶ Area of a circle 

having the same perimeter as the particle projection
Circularityb A

Aequi

=
4A

�L2
Pentland (1927)
Aequi ∶ Area of a circle with a diameter equal to the longest axis of the particle (measured on the 

particle projection)
Circularityc (�s)

A

Ac

=
4A

�D2
c

Tickell (1931)
Ac ∶ Area of the smallest circumscribing circle, Dc ∶ Diameter of the smallest circumscribing 

circle
Degree of circularity (Cr) Pcircle

P
=

√
4�A

P2

Wadell (1933)
Pcircle ∶ Perimeter of a circle having the same area as the particle projection

Degree of sphericity (�) Dcircle

Dc

=
√

4A

�D2
c

Wadell (1933)
Dcircle ∶ Diameter of a circle having the same area as the particle projection, Dc ∶ Diameter of 

the smallest circumscribing circle
Inscribed circle sphericity (�o)

√
Di

Dc

Riley (1941)
Di ∶ Diameter of the largest inscribed circle, Dc ∶ Diameter of the smallest circumscribing circle
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extraction from these images, and quantifying the shape 
descriptors by analyzing the extracted shape. Further, digi-
tal imaging methods are applied to improve the accuracy of 

measurement of traditional shape descriptors. For example, 
shape descriptors like roundness and sphericity were his-
torically computed using the equations proposed by Wadell 

Table 2  Three-dimensional form descriptors derived through direct measurements on the particle

Descriptor Formula Reference, Remarks

Wentworth flatness index L+I

2S
Wentworth (1922a)
L, I, S : Longest, intermediate and shortest axes of the particle

Degree of true sphericity (�s) SAsphere

SA
=

3
√
36�V2

SA

Wadell (1932)
V  : Volume of the particle, SA : Surface area of the particle, 
SAsphere : Surface area of a sphere having the same volume as 
the particle

Sphericity (�v) 3

√
V

Vc

Wadell (1933)
Vc : Volume of the smallest circumscribing sphere

Elongation S

I
Zingg (1935)

Flatness I

L
Zingg (1935)

Krumbein intercept sphericity (�) 3

√
IS

L2
Krumbein (1941)

Corey Shape Factor S√
LI

Corey (1949)

Aschenbrenner’s working sphericity (�
�

) 12.8
3
√
p2q

1+ p(1+ q) + 6
√
1+ p2(1+ q2)

Aschenbrenner (1956)
p =

S

I
, q =

I

L

Aschenbrenner’s shape factor (F) LS

I2
Aschenbrenner (1956)

Maximum projection sphericity (�p) 3

√
S2

LI

Sneed and Folk (1958)

Flatness S

L
Sneed and Folk (1958)

Williams’ shape factor (W) I −
LS

I2
if I2 > LS,

I2

LS
− 1 if I2 ≤ LS

Williams (1965)

Janke’s form factor (E) S√
L2 + I2 + S2

3

Janke (1966)

Oblate-Prolate index 10 (
L− I

L− S
− 0.5)

S

L

Dobkins and Folk (1970)

Table 3  Two-dimensional roundness descriptors derived through manual measurements on particle silhouettes

Descriptor Formula Reference, Remarks

Wentworth Shape index Ds

Dx

Wentworth (1919)
Ds : Diameter of the circle fitting the sharpest corner, Dx : Diameter of the circle passing 

through the sharpest corner
Modified Wentworth Shape index DS

(L + I)∕2
Wentworth (1922b) (modified Wentworth (1919) formula)
L, I : Length and width of the grain in the projected plane
(L + I)∕2 : The mean particle diameter

Roundness ∑�
r

R

�

N

Wadell (1932)
r : Radius of curvature of a corner, R: Radius of maximum inscribed circle, N : Number 

of corners
Cailleux roundness index DS

L
Cailleux (1947)

Kuenen roundness index DS

I
Kuenen (1956)

Angularity (A) n∑
i = 1

�
(180 − ai)

xi

R

� Lees (1964)
ai : Angle measured between planes bounding the corner, xi : Distance from the center 

of the maximum inscribed circle to the particle tip of the corner
Modified Wentworth roundness DS

Di

Dobkins and Folk (1970)
Di : Diameter of the maximum inscribed circle (Di = 2R)

Roundness index Ds1 + Ds2

Di

Swan (1974)
Ds1,Ds2 : Diameters of circles fitting the first two sharpest corners
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(1932) through manual measurements of particle dimen-
sions. With the advancements in digital image analysis, 
computational methods have been proposed to quantify 
these descriptors automatically, without manual interven-
tion (Zheng and Hryciw 2015; Vangla et al. 2018).

The algorithm proposed by Zheng and Hryciw (2015) 
is the latest and most widely used technique for the com-
putation of roundness in 2D. The algorithm uses statistical 
methods of locally weighted regression to remove roughness 
features, identify corners using key points, and fit circles 
into the corners by minimizing the distance from the cor-
ner points to the circles. Figure 3 shows the circles fit into 
the corners of grain projections and the maximum inscribed 
circle for calculation of roundness through digital image 
analysis. Also, Wadell’s definition, which was initially pro-
posed for 2D particle projections, as it was then difficult to 
measure the 3D geometry of a particle, was later extended 
to 3D and computational algorithms were proposed for the 
calculation of 3D roundness (Nie et al. 2018a, b; Zheng et al. 
2021). The method for calculation of 2D roundness devel-
oped by Zheng and Hryciw (2015) was extended to 3D by 
Zheng et al. (2021) by developing an algorithm to fit spheres 
into the corners and ridges. Nie et al. (2018a) proposed an 
alternate method for 3D roundness calculation in which cor-
ner identification was carried out by identifying the vertices 
with high local curvature and large relative connected areas 
and then fitting spheres into these corners. Researchers have 
also developed methods of roundness calculation from the 
curvature of vertices in the SH reconstructed particle sur-
face (Zhou et al. 2018). More importantly, the measurement 
of particle roughness or surface texture, which eluded the 
researchers due to the difficulties in obtaining the images 
of particles in sufficient resolutions to quantify roughness, 
has been made possible with advanced imaging methods 
and image analysis techniques. A summary of form descrip-
tors derived through digital image analysis of 2D and 3D 
geometries of grains is given in Table 4. Roundness and 

angularity descriptors developed through image analysis, 
some of which are also employed in commercial equipment 
for morphological analysis for 2D and 3D image measure-
ments, are given respectively in Tables 5 and 6. It should be 
noted that the roughness descriptors derived through image 
analysis, as shown in Tables 7 and 8, are classified here into 
2D and 3D based on whether planar projections or surface 
profiles at multiple locations or the whole 3D geometry was 
considered for classification.

However, the method of describing particle shapes using 
characteristic descriptors suffers many limitations (Zhou 
et al. 2015). Firstly, a single descriptor is not enough to 
describe a shape, and selecting the least number of descrip-
tors that can accurately and wholly describe the particle 
shape becomes imperative. Again, as described above, dif-
ferent researchers propose different descriptors to describe 
particle morphology, making it difficult to standardize or 
unify the descriptors in different contexts (Fonseca et al. 
2012; Zhou et al. 2015). Using parametric series such as 
Fourier and SH series was proposed as ‘uniform descrip-
tors’ to overcome these limitations (Garboczi 2002; Zhou 
et al. 2015).

Morphological description using parametric series

As mentioned earlier, the shape or outline of a particle can be 
represented in terms of harmonic series such as the Fourier 
series or SH functions. It means that the complete details of a 
particle shape can be described in a limited set of numbers as 
the coefficients of the terms of the harmonic series. This will 
considerably reduce the data needed to be stored compared 
with digital methods, where details of every pixel/voxel of 
a particle image are to be stored and handled. This is par-
ticularly relevant when actual shapes are to be incorporated 
into computational models. In addition, the representation of 
shapes in terms of harmonic functions will enable the calcu-
lation of different geometric parameters related to the shape 

Fig. 3  Corners with best fitting 
circles (red) and the maximum 
inscribed circle (green) on 
binary images of grain projec-
tions for the calculation of 
Wadell’s roundness
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of the particle, like the surface area, volume, curvatures at 
a point on the surface, and moment of inertia through rel-
evant mathematical expressions (Garboczi 2002). Another 
significant advantage of the parametric series representation 
of particle shape is the feasibility of generating virtual particle 
shapes, which have representative morphological properties 
as the original sample, by manipulating the morphological 
data already available. This finds primary applications in 
the computational modeling of micro-mechanisms of granu-
lar media and the reproduction of realistic shapes through 
additive manufacturing, as it is challenging and expensive to 
obtain 3D geometries of a large number of granular materials 
through available tools like µCT scanning. Also, since the 
variations in the spatial domain can be related to the varia-
tions in the frequency domain, the morphological parameters 
at different levels of detail, like form, roundness, and surface 
texture, can be derived from the parametric series, making 
it a unified method for shape characterization. The detail 
that can be derived from the parametric series will depend 
upon the original resolution of the digital image used as the 
reference. However, the representation of shape descriptors 
in terms of coefficients of harmonic series is rather abstract 
when compared to the shape descriptors discussed so far, 
making it difficult to derive the physical meaning related to 
the morphology of the particle from the parametric represen-
tation, especially for practicing engineers who are not familiar 
with this nuanced mathematical representation. The concept 
of Fourier analysis, SH expansion, and fractal methods as 
unified methods of representing particle shape are discussed.

Fourier analysis method

If a particle can be represented by unique sets of distance 
( R ) vs. angle ( � ) as shown in Fig.  4, then the Fourier 
method in closed form (Ehrlich and Weinberg 1970) can 
be used to represent particle outline (in 2D) as a Fourier 
series (Garboczi 2002; Wang et al. 2005; Das 2007; Mollon 
and Zhao 2012) using Eq. (1):

where R(�) is the radius at an angle � , N is the total num-
ber of harmonics, n is the harmonic number, and a and b 
are coefficients giving the magnitude and phase for each 
harmonic.

Shape factor, angularity factor, and surface texture 
factor can be derived from the Fourier series represen-
tation, identifying that the low-frequency terms of the 
series contribute to the overall shape of the particle, the 
medium frequency terms contribute to the angularity of 
the particle, and the high-frequency terms contribute to 
the surface texture. However, determining the thresh-
olding frequencies by which the shape, angularity, and 
surface texture are separated could be subjective (Wang 
et al. 2005). Consequently, authors have suggested differ-
ent descriptor numbers to correspond to different levels of 
morphological detail (Wang et al. 2005; Das 2007; Mollon 
and Zhao 2012).

(1)R(�) = a0 +

N∑

n = 1

[
an cos(n�) + bn sin(n�)

]

Table 4  Three-dimensional and two-dimensional form descriptors derived through image analysis operations performed on digital images of 
particles

Descriptor Formula Reference, Remarks

Sphericity (3D) Vp

Vs

Alshibli et al. (2015)
VP : Actual volume of the particle, Vs : Volume of a sphere with diameter equals to the 

shortest dimension
Inscribed-circumscribed 

sphere ratio (3D) (�i − c)

Di − s

Dc − s

Maroof et al. (2020)
Di−s : Diameter of the largest inscribed sphere, Dc−s : Diameter of the smallest circum-

scribing sphere
Form index (2D) � = 360 − Δ�∑

� = 0

�R� + Δ� − R��
R�

Masad et al. (2001)
R� : Radius of the particle at an angle, � ∶ the directional angle

Normalized shape factor (2D) ∑N

i = 1 ��i particle�
N×45

◦ × 100 (%)
Sukumaran and Ashmawy (2001)
�i : Distortion angles, denotes the distortion of the particle outline relative to a circle, 
N : Number of sampling points

Sphericity index (2D)
1

N

N∑
i = 1

����
Dequ(i)

dS(i)
−

Dequ(i)

dL(i)

����
Alshibli and Alsaleh (2004)
Dequ : Equivalent particle diameter (diameter of the circle having the same perimeter as 

the particle), dL, dS : Longest and shortest dimension of the projection, N : Number of 
particles

Area sphericity (2D)
(SA)

Afront

Atop

Arasan et al. (2011a)
Afront : Area of a particle in front view, Atop : Area of a particle in top view

Sphericity (2D) Aa

As

Alshibli et al. (2015)
Aa : Actual area of the particle, As : Area of a circle with diameter equals to the shortest 

dimension
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The Fourier series expansion, as presented above, is valid 
only for star-like particles, where the value of R is unique for 
each � . For star-like particles, all line segments connecting the 
center to any point on the particle boundary will lie inside the 
particle boundary. For non-star-like particles which contain 
re-entrants or internal bubbles, the value of R is not unique 
along some directions, as shown in Fig. 5. Even though most 
naturally occurring granular materials obey this condition 
(Garboczi 2002), some materials, like carbonate sands, possess 
concave shell-like structures (Bowman et al. 2001). To tackle 
this problem, the complex Fourier analysis proposed by Clark 
(1981) has been adopted (Thomas et al. 1995; Bowman et al. 
2001). In complex Fourier analysis, the particle boundary is 
circumnavigated in the complex plane at a constant speed. A 
complex function is derived from the complex coordinates of 
the circumnavigated points ( x, y ), expressing the coordinates 
as functions of the Fourier series (Eq. (2)).

(2)

xm + iym =

+
N

2∑

n = −
N

2
+ 1

(
an + ibn

)[
cos

(
2�nm

M

)
+ isin

(
2�nm

M

)]

where N is the total number of descriptors, M is the total 
number of boundary points, m is the index number of the 
point on the particle, n is the descriptor number, a and b are 
the descriptor coefficients, and i is the complex square root.

Bowman et al. (2001) identified signature descriptors 
for different morphological features from the analysis of 
standard shapes, such that descriptors n = −1,−2,−3 give 
measures of elongation, squareness, and triangularity, and 
n = +1 gives a measure of irregularity.

Even though the Fourier descriptor method does not 
suffer from the issues faced by re-entrant angles, and 
there is no need to estimate the centroid of the particle 
as in the case of the Fourier series method described 
earlier, the method did not gain much popularity. This 
was because the total number of points required should 
be equal to 2k (where k is a positive integer which dic-
tates the number of descriptors gained from the Fourier 
analysis), and the points should be spaced equally along 
the particle boundary. This problem was circumvented 
by Su and Yan (2018b), who first mapped the points 
on the particle boundary onto a circle having the same 

Table 5  Roundness descriptors derived through image analysis operations performed on 2D digital images of particles

Descriptor Formula Reference, Remarks

Angularity index (AI)
1 −

(
Aave

Amax

)
Wilson and Klotz (1996)
Aave : Average of all calculated lengths obtained through Hough transform of 

the image, Amax : Length of the longest line
Roundness index (Rn)

4�A

P2
Janoo (1998)
A,P ∶ Area and perimeter of the 2D projection of particle, respectively

Angularity index (AI) � = 360 − Δ�∑
� = 0

�RP� − REE��
REE�

Masad et al. (2001)
RP� : Radius of a particle at an angle � , REE� : Radius of the equivalent ellipse at 

an angle �
Roundness coefficient (Rc) P2

4�A

Kato et al. (2001)

Angularity Index using outline slope 
(Ai)

170∑
e = 0

e × P(e)
Rao et al. (2002)
e : Starting angle value for each 10 ◦ class interval on the particle outline 

discretized as an n-sided polygon, P(e) : Probability that the relative change in 
slope of the polygon has a value in the range e to e + 10

Roundness index (IR) 1

N

N∑
i = 1

P(i)

�[0.5×(dS(i)+dL(i)]

Alshibli and Alsaleh (2004)
dL, dS : Longest and shortest dimension of the projection, N : Number of parti-

cles
Angularity index (a)
by gradient method

N − 3∑
i = 1

���i − �i + 3
��

Masad et al. (2005)
� : Direction of the gradient vector at each edge point, i : Denotes the i th point 

on the edge of the particle, N : Total number of points on the edge of the 
particle

Angularity (K) P

Pellipse

Arasan et al. (2011b)
Pellipse : Perimeter of the equivalent ellipse

Smoothing angularity index
�

1

n − 1

n∑
i = 1

(di − d)
2

Tafesse et al. (2013)
di : Distance between two smoothing curves at the i th point along the particle 

outline, d : Mean of distance between the two smoothing curves, n : Number 
of perpendicular segments between the two smoothing curves

Roundness P

�

(
dL + dS

2

) Alshibli et al. (2015)
dL, dS : Longest and shortest diameters on the particle projection

Angularity index (AIg) by gradient 
method

2�

Δ�
− 1∑

i = 0

����(i + 1)Δ� − �iΔ�
���

Chen et al. (2016)
�iΔ� : Gradient direction at a directional angle � = iΔ� , Δ� ∶ Incremental angle
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perimeter, such that the distance between neighboring 
points is preserved while mapping. Then the horizontal 
and vertical coordinates of the particle boundary can be 
expressed using the Fourier series as a function of the 
polar angle �′ associated with each point on the circle 
(Eqs. (3a) and (3b)).

where x and y are coordinates of the particle boundary, N is 
the total number of harmonics, n is the harmonic number, 
and ax0 , ay0 , axn , ayn , bxn , byn are the Fourier coefficients.

Su and Yan (2018b) proposed a gradient-based angu-
larity index based on the reconstructed morphology using 
Eqs. (3a) and (3b). They comment that the method can be 
used for non-star-like particles also, unlike most approaches 
for calculating angularity, which can only be used for calcu-
lating the angularity of star-like particles (Masad et al. 2005; 
Chen et al. 2016).

(3a)x
(
�

�)
= ax0 +

N∑

n = 1

[
axn cos

(
n�

�)
+ bxn sin

(
n�

�)]

(3b)y
(
�

�)
= ay0 +

N∑

n= 1

[
ayn cos

(
n�

�)
+ byn sin(n�

�

)
]

Spherical harmonic expansion

While the Fourier analysis method can describe the geometry 
of a particle in 2D, SH analysis can be used to describe the 3D 
particle geometry. The points on the surface of a particle can 
be described in terms of the distance from the center of mass of 
the particle to the point Rij and the spherical polar coordinates 
( �i,�j) . Then the function r(�,�) can be described as Eq. (4):

where the function Ym
n
(�,�) is a spherical harmonic function 

given by Eq. (5):

where Px
n
(x) are the associated Legendre functions. Then the 

SH coefficients anm can be defined as Eq. (6):

(4)r(�,�) =

∞∑

n = 0

n∑

m = −n

anmY
m
n
(�,�)

(5)Ym
n
(�,�) =

√(
(2n + 1)(n − m)!

4�(n + m)!

)
Pm
n
(cos(�))eim�

(6)a
nm

=
∫

2�

0

�

∫

0

d�d� sin(�) r(�,�)Ym∗
n

Table 6  Roundness descriptors derived through image analysis operations performed on 3D digital images of particles

Descriptor Formula Reference, Remarks

Angularity factor NA∑
p = 1

NA∑
q = 1

��
a(p, q)∕a0

�2
+

�
b(p, q)∕a0

�2� Wang et al. (2012)
a, b ∶ Real and imaginary coefficients of the 2D Fast Fourier Transform 
Z(p, q) of the z coordinates of the aggregate profile z(x, y) , a0 : Average 
height of z(x, y) , NA : Threshold frequency for distinguishing angularity

Roundness (IR) Ap

4�

(
dL + dI + dS

6

)2

Alshibli et al. (2015)
AP : Actual 3D surface area of the particle, dL, dI , dS : Longest, intermedi-

ate, and shortest diameters of the particle
3D Roundness index 
(Ri)

∑�
An

ks

ki

�

∑
An

Zhao and Wang (2016)
An : Area of the n th triangular element, which is part of the corners on the 

particle, ki : Local curvature at this vertex, which could be the maximum 
principal curvature (k1) , minimum principal curvature (k2) , mean curva-
ture (km) , or Gaussian curvature (kG) , ks : The corresponding curvature of 
the particle’s maximum inscribed sphere

Angularity index (AI)
∑n

i = 1
ΔDi∑n

i = 1
Δ�i

Yang et al. (2017)
ΔDi : Angle between the gradient vectors of the i th neighboring couple of 

the surface points on an aggregate, in degrees, Δ�i ∶ Angle between the 
gradient vectors of the i th neighboring couple of the surface points on 
an ideal sphere, in degrees

3D Roundness (R3D)
∑

Rc

ncRinsc

Nie et al. (2018a)
Rc : Radius of spheres fitted to each corner, nc : Number of corners (corners 

have with radius of fitted sphere smaller than Rinsc ), Rinsc : Radius of the 
maximum inscribed sphere

Roundness (R) 1

N

∑N

i = 1

1

k1,i

rin

Zheng et al. (2020b)
N : Number of vertices on corners and ridges, 1

k1,i
 : Radius of curvature at 

the i th vertex on corners and ridges, rin : Radius of maximum inscribed 
sphere

3D Roundness (R3)
∑n

i = 1
r3,i

Nr3,in

Zheng et al. (2021)
r3,i : Radius of the i th corner or ridge sphere, N : Number of detected cor-

ner and ridge spheres, r3,in : Radius of the maximum inscribed sphere
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The calculation of volume, surface area, curvature, and 
moment of inertia can be derived from the SH expansion 
of the particle geometry. However, the method described 
here can only be used for star-like particles. For star-like 
particles, the accuracy of SH expansion can be checked 
using the value of the Gaussian curvature integrated over 
the surface (Garboczi 2002). SH expansion also serves 
as a surface interpolation scheme, such that the surface 
reconstructed through SH expansion will give a better 

approximation to the real surface of the particle com-
pared to the digital image, which will always have some 
digital roughness due to the voxel faces. Thus, using SH 
expansion can eliminate the overestimation of surface area 
when counting the voxel faces in a digital image (Garboczi 
2002). Even though the SH method as described above, 
in which the coefficients are computed based on a star-
shaped geometry assumption, has found numerous applica-
tions (Garboczi 2002, 2011; Masad et al. 2005; Grigoriu 

Table 7  Roughness descriptors derived through image analysis operations performed on 2D digital images of particles

a,b Authors argue that the surface parameter method and form factor are unified methods to characterize particle angularity and roughness, captur-
ing angularity at low resolutions and surface texture at high resolutions

Descriptor Formula Reference, Remarks

Fullness ratio
√

A

Acon

Kuo et al. (1996)
A ∶ Area of the 2D projection of the particle, Acon ∶ Area of the convex hull

Fractal dimensions (Dr)
2

m
Hyslip and Vallejo (1997)
m : Slope coefficient correlating the area and perimeter of the particles in logarith-

mic scale
Roughness (R0)

P

� × Dave

Kuo et al. (1998)
P ∶ Perimeter of the 2D projection of the particle, Dave : Average diameter of the 

particle
Roughness P

Pcon

Janoo (1998)
Pcon : Convex perimeter of the particle projection

Convexity (Cx)
A

Acon

Mora and Kwan (2000)
Acon : Convex area of the particle projection

Surface  parametera A1 − A2

A1

× 100 Masad and Button (2000)
A1,A2 : Areas of objects on an image before and after the erosion-dilation cycles, 

respectively
Form  factorb 4�A

P2
Masad and Button (2000)

Average roughness (Ra) 1

MN

M∑
i = 1

N∑
j = 1

���Zij
���

Alshibli and Alsaleh (2004)
M,N : Numbers of pixels in X and Y directions
Z : Surface height at a specific pixel relative to the reference plane (Zij = �Lij) , � : 

Wavelength used in the scan; and L : Wave value for specific coordinates at the 
particle surface

Root mean square roughness (Rq)
�

1

MN

M∑
i = 1

N∑
j = 1

Z2

ij

Alshibli and Alsaleh (2004)

Skewness (Rsk) 1

MNR3
q

M∑
i = 1

N∑
j = 1

Z3

ij

Alshibli and Alsaleh (2004)

Kurtosis (Rku) 1

MNR4
q

M∑
i = 1

N∑
j = 1

Z4

ij

Alshibli and Alsaleh (2004)

Wavelet texture Index (TIn) 1

3N

3∑
i = 1

N∑
j = 1

�
Di,j(x, y)

�2 Masad et al. (2005)
N: Total number of coefficients in a detailed image of the texture, D: Detail coeffi-

cient,i : Takes values 1, 2 or 3, for the three detailed images of texture,  j : Wavelet 
coefficient index, (x, y) : Location of the coefficients in the transformed domain, n : 
Decomposition level of the image obtained through wavelet transform

Irregularity index (I(2D))
∑ y − x

y
Blott and Pye (2008)
x : Distance from the centre of the largest inscribed circle to the nearest point of any 

concavity, y : distance from the centre of the largest inscribed circle to the convex 
hull, measured in the same direction as x

Convexity (C) A

Arectangle

Arasan et al. (2011b)
Arectangle : Area of the bounding rectangle

Regularity (R) log
(

P

P − Pcon

)
Mollon and Zhao (2012)
Pcon : Convex perimeter of the particle projection



 Bulletin of Engineering Geology and the Environment (2023) 82:269

1 3

269 Page 10 of 30

et al. 2006; Cepuritis et  al. 2017a, b; Zhou and Wang 
2017; Zhou et al. 2018; Yang et al. 2022), the method 
will give erroneous results if applied for a general shape 
particle. The discrepancies due to star-shaped assump-
tion arise because, for a particle with a concave surface, 
the distance function r(�,�) will have multiple values for 
some (�,�) , and these values will get ‘averaged’ during 

the reconstruction, hence resulting in serious errors in the 
reconstructed morphology (Su and Yan 2018a).

Garboczi (2011) adopted an error check based on the cal-
culated volume of the particle from the SH coefficients and 
the volume calculated from the voxel assembly. Any particle 
whose volume differed by at least 5% from the original voxel-
based volume was identified to be non-star shaped particles 
and discarded from the analysis. The assumption of star-
shaped particles resulted in excluding a significant proportion 
of particles from the sample analyzed. As much as 50%–9% 

Table 8  Roughness descriptors derived through image analysis operations performed on 3D digital images of particles

Descriptor Formula Reference, Remarks

Texture factor 
(TF)

N∑
p = 1

N∑
q = 1

��
a(p, q)∕a0

�2
+

�
b(p, q)∕a0

�2�
− AF

Wang et al. (2012)
a, b ∶ Real and imaginary coefficients of the 2D Fast Fourier Transform 
Z(p, q) of the z coordinates of the aggregate profile z(x, y), a0 : Average 
height of z(x, y)

N : Size of z(x, y) matrix, AF : Angularity factor
Convexity V

VCH

Zhao and Wang (2016)
V  : Volume of the particle, VCH : Volume of the convex hull enclosing the 

particle
Surface texture 

index
V1 − V2

V1

× 100 Yang et al. (2017)
V1 : Volume of the 3D images, in voxel, V2 : Volume of the 3D images 

after an opening operation, in voxel
3D fractal 

dimension (D)
2

m
Zhou et al. (2018)
m : Slope coefficient correlating the total area and total perimeter of the 

‘islands’ or ‘lakes’ identified through the ‘image projection analysis’ 
method in log–log scale

Surface texture 
using fractal 
parameters 
(Sq)

(
2�

q2
c
C0

2DPSD − 6

((
q1

qc

)2DPSD − 6

− 1

))0.5 Yang et al. (2019)
q : Spatial frequency or wave vector, qc : Threshold wavevector indicating 

the length scale separating two morphological scales, DPSD : Fractal 
dimension relating to the slope of the straight fitting line in the double 
logarithmic plane of power spectrum density versus q , C0 : Related to 
the intercept and qc , q1 : Largest wavevector, relates to the spatial inter-
val (for 3D laser scanner) or the resolution of the interferometer

Fig. 4  Fourier analysis representation of particle geometry
Fig. 5  Difficulties encountered due to re-entrant angles and ‘bubbles’ 
in non-star-shaped particles
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of particles from different size classes were found to be non-
star shaped and hence eliminated. Moreover, Su and Yan 
(2018a) computed different morphological parameters for a 
sand sample by considering the star-shaped particle assump-
tion and compared with corresponding values obtained using 
the SH analysis method for general shape particles. They 
found that significant differences exist between the param-
eters calculated from both methods and that by adopting cri-
teria by Garboczi (2011), as much as a quarter of the total 
number of sand particles in the sample are star-shaped.

The method proposed by Brechbuhler et al. (1995) has been 
adopted to describe general shaped particles (Zhou et al. 2015; 
Su and Yan 2018a). In this method, the surface is represented 
by three simultaneous cartesian coordinate functions, expanded 
by the SH series (Fig. 6). To follow this method, spherical 
parametrization is performed in which the surface points are 
mapped onto a unit sphere. Following spherical parametriza-
tion, the coordinates thus obtained are expressed as functions 
of the corresponding spherical coordinates as Eq. (7).

then the three coordinates x(�,�), y(�,�) , and z(�,�) can 
be expressed as SH expansions as Eqs. (8a), (8b) and (8c):

where Cm
xn

 , Cm
yn

 , and Cm
zn

 are the SH coefficients for x, y, and 
z coordinates, respectively, and Ym

n
 is the SH function as 

defined earlier.

(7)X(�,�) = (x(�,�), y(�,�), z(�,�))

(8a)x(�,�) =

∞∑

n = 0

n∑

m = −n

Cm
xn
Ym
n
(�,�)

(8b)y(�,�) =

∞∑

n = 0

n∑

m = −n

Cm
yn
Ym
n
(�,�)

(8c)z(�,�) =

∞∑

n = 0

n∑

m = −n

Cm
zn
Ym
n
(�,�)

The method was validated for real particles (Zhou et al. 
2015; Su and Yan 2018a). Different morphological param-
eters, such as area, volume, etc., can be derived once the 
SH expansion of the particle geometry is known. Also, 
SH degrees associated with different levels of details of 
morphology have been suggested by different researchers 
(Masad et al. 2005; Zhou et al. 2015). In addition, the SH 
reconstructed surface can be further used to compute shape 
parameters like sphericity or roundness. For example, Zhou 
et al. (2018) used the SH reconstructed surface to derive 
roundness based on the principal curvatures of the vertices 
on the reconstructed particle surface.

In an attempt to reduce the computational effort and the 
complexities associated with computations, Su and Yan 
(2018a) proposed that only the real parts of the SH functions 
can be used to describe the particle geometry (following the 
method used by Grigoriu et al. (2006) for star shaped par-
ticles) and validated the method with the results when the 
full spectrum was used. However, the degree of expansion 
of the SH series should be determined based on the accuracy 
of the details to be reproduced, the original digital resolution 
of the image, and the computational efforts. Hence, only 
a truncated SH series expansion is possible, and different 
researchers have proposed SH degrees in the range of 10–20 
for the expansion (Garboczi 2002, 2011; Zhou et al. 2015). 
One possible drawback associated with the SH method could 
be the phenomenon of ringing, which arises due to the trun-
cated SH series. Filtering with a Lanczos sigma factor could 
reduce these ringing artifacts, which will also remove some 
real surface details but will not affect the overall morphol-
ogy significantly (Bullard and Garboczi 2013).

SH expansion has been widely used to characterize mate-
rials ranging from standard sand particles to rocks to lunar 
soil simulants (Garboczi and Bullard 2017). Moreover, the 
SH method has been adopted to generate virtual assemblies 
of particles with major morphological characteristics of ref-
erence sand particles (Grigoriu et al. 2006; Zhou and Wang 

Fig. 6  Illustration of spherical 
parametrization: a Object space; 
b Parameter space
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2017; Zhou et al. 2018; Su and Yan 2018a; Sun and Zheng 
2021). Grigoriu et al. (2006) used non-Gaussian random field 
models to generate random star-shaped aggregates virtually. 
Zhou and Wang (2017) and Zhou et al. (2018) used principal 
component analysis (PCA) to extract the significant patterns 
associated with the morphology of natural sand particles from 
the database constituted by SH coefficients, to generate vir-
tual sand assemblies of two different kinds of sands, which 
retained major morphological features of the reference sands. 
Su and Yan (2018a) used PCA and a probabilistic approach to 
generate 3D virtual sand particles. Wei et al. (2018) used SH 
descriptors to establish a fractal nature between the multi-scale 
morphological features and used the relationship to generate 
artificial grains with major morphological features of original 
grains. Sun and Zheng (2021) developed a probability-based 
SH method to create random particles with limited morpho-
logical information from a single grain. Alternatively, Mollon 
and Zhao (2013) and Hanaor et al. (2016) proposed the 3D 
interpolation of three 2D cross sections to generate random 3D 
geometries of particles. The 2D surfaces were characterized 
through Fourier descriptors and fractal geometry. However, 
the loss of local features due to the artificial selection of the 
2D cross sections is an issue in this method (Zhou et al. 2015). 
These methods help incorporate real particle shapes with dif-
ferent morphological features into computational models to 
link the micro and macro behavior of sand without having to 
scan and digitize a large number of sand particles physically. 
This is especially useful because obtaining the 3D geometry 
of grains using µCT scanning is expensive, time-consuming, 

and demands complex and intensive calculations. Tables 9 and 
10 give different shape descriptors developed based on the 
parametric series expansion of particle geometries in 2D and 
3D, respectively.

Fractal dimension

Vallejo (1995) introduced the fractal dimensions in the context 
of the shape description of granular materials. It is argued that 
the shape of irregular particles formed in nature, like sand 
grains, is better described by fractal rather than Euclidean 
geometry (Mandelbrot 1977). The fractal dimension of a rough 
or fragmented pattern will vary depending on the degree of 
roughness of the pattern and will have a different value for 
each pattern type (Kaye 1989). Initially, fractal dimensions 
have been used to characterize the roughness of the particle 
(Hyslip and Vallejo 1997; Akbulut 2002; Arasan et al. 2011a). 
Hyslip and Vallejo (1997) used the parallel line and area-
perimeter method to evaluate the fractal dimension of parti-
cles, to conclude that the area perimeter method is the easier 
option. The basic principle behind the divider method, as put 
forward by Mandelbrot (1983), is that if a line that is irregular 
at any level of scrutiny is fractal, then the length of the fractal 
line P(�) can be defined as Eq. (9):

where P(�) is the length of the line (curve) based on unit 
measurement length � , n is a proportionality constant (equal 
to the actual and indeterminate length of the line), and DR 

(9)P(�) = n�1−DR

Table 9  Two-dimensional shape descriptors derived based on the parametric series expansion of particle geometries

Descriptor Formula Reference, remarks

Signature descriptor coefficient using 
Fourier descriptor method

√
a2
n
+ b2

n

Bowman et al. (2001)
an, bn : Fourier descriptor coefficients in the representation of 

the particle profile, n : Descriptor number
n = −1,−2,−3 give measures of elongation, triangularity, and 

squareness, respectively, n = +1 gives asymmetry or irregu-
larity, n = ±8 to ± 32 give measure of particle texture

Shape factor, Angularity factor and 
Surface texture factor using Fourier 
series (�i)

1

2

n2∑
n = n1

��
an

a0

�2

+
�

bn

a0

�2
�

Wang et al. (2005)
an, bn : Fourier series coefficients in the representation of the 

particle profile
n1 = 1, n2 = 4 for Shape factor (�s)
n1 = 5, n2 = 25 for Angularity factor (�r)
n1 = 26, n2 = 180 for Surface Texture factor (�t)

Elongation, and irregularities using Fou-
rier descriptor (Dn)

√
a2
n
+ b2

n

r0

Das (2007)
an, bn : Fourier series coefficients in the representation of the 

particle profile, r0 : Average radius of the particle
D2 describes particle elongation, D3−D8 describe main irregu-

larities of the particle contour, Dn for n > 8 describes surface 
irregularities

Gradient based angularity index (AIg) 1

2�

w−1∑
i = 0

����(i + 1)Δ�
� − �iΔ��

���
Su and Yan (2018b)
�

′ : Polar angle associated with the boundary point of particle, 
� : Gradient direction measuring from the x axis, Δ�� : Step 
size of the polar angle, Δ��

=
2�

w
 , w : Increment factor
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is the fractal dimension of the curve which is a quantitative 
descriptor of roughness.

Thus, if we measure a fractal line various times using 
increasing measurement length, we will obtain different length 
values, which, when plotted on a log–log scale, will yield a 
slope coefficient m , related to the fractal dimension as Eq. (10):

The parallel line method, as used by Hyslip and Vallejo 
(1997), was based on the divider method (Fig. 7). The area-
perimeter method is based on the principle that the “ratios 
of linear extents” of fractal patterns are in themselves frac-
tal (Mandelbrot 1983). The linear extent of a geometrical 
pattern could mean the length ( L ), the square root of area 
( A1∕2) , or the cube-root of volume ( V1∕3) . Thus, it can be 
shown that a linear relationship between area and perimeter 
on a log–log scale can be derived, with the slope coefficient 
m related to the fractal dimension DR as Eq. (11):

They also commented that the level of scrutiny with 
which the grain shape is analyzed would give fractal 
dimensions corresponding to either the structural or the 
textural details of the particle shape, relating to structural 
aspects at a low level of scrutiny and textural aspects at a 
higher level. The fractal dimension obtained through the 
area perimeter method was found to correlate with dif-
ferent morphological parameters of various samples, like 

(10)DR = 1 − m

(11)DR = 2
/
m

roundness, convexity, sphericity, and angularity (Vallejo 
and Zhou 1995; Arasan et al. 2011a). Subsequently, Guida 
et al. (2020) conducted fractal analysis on the contours 
of particles and proposed three descriptors to define the 
shape at the three levels of morphology. More recently, the 
fractal dimension of aggregate grains has been obtained 
using the power spectral density function (PSD) of the 
particle surface (Yang et al. 2016, 2019). The PSD of a 
surface was calculated as Eq. (12):

where A(x, y) is the auto-correlation function of surface 
heights h(x, y) , and q is the spatial frequency or wavevector.

A threshold value qc was defined to separate the two mor-
phological scales, i.e., shape and surface texture. The root 
mean square roughness, Sq (Alshibli and Alsaleh 2004), was 
then related to the fractal dimensions as Eq. (13):

where DPSD is the fractal dimension relating to the slope of 
the straight fitting line in the double logarithmic plane of 
power spectrum density versus q , C0 is related to the inter-
cept, and qc and q1 is the largest wavevector, related to the 
spatial interval (for 3D laser scanner) or the resolution of the 
interferometer (Yang et al. 2019).

(12)PSD
(
qx, qy

)
=

1

4�2 ∬

∞

−∞

A(x, y)e−i(xqx + yqy)dxdy

(13)Sq =

(
2�

q2
c
C0

2DPSD − 6

((
q1

qc

)2DPSD − 6

− 1

))0.5

Table 10  Three-dimensional shape descriptors derived based on the parametric series expansion of particle geometries

Descriptor Formula Reference, remarks

Shape indices using spheri-
cal harmonic series (AI, FI, 
and TI)

n2∑
n = n1

n∑
m = −n

��anm��
Masad et al. (2005)
n : Spherical harmonic degree from the 3D particle shape representation as 

proposed by Garboczi (2002)
anm : Spherical harmonic coefficient at degree n
n1 = 1, n2 = 4 for Form index (FI)
n1 = 5, n2 = 25 for Angularity index (AI)
n1 = 26, n2 = 30 for Surface Texture index (TI)

Volume-surface area shape 
parameter

6V
/

SA

VESD

Garboczi (2011)
V , SA : Volume and surface area of the particle shape, VESD : Diameter of a 

sphere having equal volume as the original particle
Curvature shape parameter 2K−1

VESD

Garboczi (2011)
K : Mean curvature, integrated over the particle surface area

Angularity index (AI)
s2

2�2

�∕s∑
� = 0

�∕s∑
� =0

�rP − rEE�
rEE

Zhou et al. (2015)
s : Step size, rP : Polar radius with the spherical coordinate (�,�), rEE : Polar 

radius of the equivalent ellipsoid with the spherical coordinate (�,�)
3D Roundness (R) ∑

g(k)�kmax�−1
NRins

Zhou et al. (2018)

g(k) =

{
1, ||kmax||

−1
< Rins

0, ||kmax||
−1

≥ Rins

g(k) differentiate between corners and non-corners, kmax : Maximum principal 
curvature at a vertex on the SH reconstructed surface, Rins : Radius of the 
maximum inscribed sphere, N : Total number of corners
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Yang et al. (2022) used this method to bridge the gap 
between the surface measurements between µCT measure-
ments to characterize shape and interferometer measure-
ments to characterize surface roughness. They identified 
that some surface details are removed while carrying out 
an SH expansion with a truncated SH degree. They com-
mented that an SH degree of more than 350 is required to 
characterize the surface of a particle without losing any 
details as measured through µCT, which is impractical to 
adopt during numerical simulations. They also commented 
that there is a missing scale range in the particle morphology 
measurement due to the limitations of the current measure-
ment methods. They suggested rebuilding the particle at a 
multiscale morphology by rebuilding the surface at particle 
shape scale through SH expansion to a harmonic degree that 
can be practically achieved and then superimposing the sur-
face texture details by considering the rest of the surface 
features as the surface texture scale, which can be repre-
sented by fractal parameters determined from interferometer 

measurements. This is a valuable insight that should be con-
sidered while incorporating actual particle shapes in compu-
tational models. Zhou et al. (2018) applied fractal methods 
to the entire 3D surface of the particle obtained through 
µCT measurements. They observed that the triangular prism 
method proposed by Clarke (1986), or the slit island method 
proposed by Mandelbrot et al. (1984), which are suitable for 
3D open surfaces, are not ideal for 3D closed surfaces such 
as those of sand particles. They suggested that similar to the 
slit island method where the fractal surface was ‘polished’ 
parallel to the plane base to highlight various closed regions 
in the open surface, for a closed surface, the particle could 
be polished spherically to produce a series of closed regions 
on the spherical polishing surface. The 3D fractal dimension 
was then derived from the total area and total perimeter of 
these closed regions.

The methods and descriptors, as discussed above, are not 
devoid of limitations. Several researchers have attempted 
the documentation and comparison of these methods based 

Fig. 7  An example of the paral-
lel line method, the perimeter is 
measured as the sum polygonal 
distance between the straight 
lines; as the step size decreases, 
the measured polygon perimeter 
increases
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on their accuracy in describing the desired morphological 
property, validity of the mathematical procedure, etc. (Mora 
and Kwan 2000; Masad et al. 2005; Al-Rousan et al. 2007; 
Tafesse et al. 2013; Sochan et al. 2015; Rorato et al. 2019; 
Maroof et al. 2020; Su et al. 2020; Zhao et al. 2021).

Shape measurement

The most critical development in morphological charac-
terization results from the automation of shape measure-
ment, brought about by developments in digital imaging 
and image analysis. The shape measurement methods have 
evolved from manual measurements of parameters on a sin-
gle projection photograph or silhouette of a particle to digital 
processing and analysis of images of thousands of particles 
at a time using computers. Manual methods, for example, 
the roundness measurement method adopted by Wadell 
(1935), are cumbersome, particularly while measuring the 
shape parameters of a large number of particles. Standard 
charts were developed to make shape measurement easier, 
with silhouettes of particles and corresponding measures 
of sphericity and roundness as reference (Krumbein 1941; 
Krumbein and Sloss 1951; Powers 1953). However, chart-
based methods are highly subjective, depending upon the 
operator’s judgment, and only give information about the 
2D morphology of grains. Hryciw et al. (2016) compared 
the roundness and sphericity values obtained using chart-
based methods performed by individuals with those obtained 
using computer methods for determining particle sphericity 
and roundness to conclude that the chart-based methods are 
subjective and inaccurate.

Digital image analysis also replaces direct or indirect 
measurement methods of particle size and gradation, like 
calipers, sieving, laser diffraction, etc. (Li and Iskander 
2019), giving a more critical and accurate particle size 
measurement. This is important because the particle size is 
a parameter that is widely employed for soil classification by 
many standards and codes (ASTM D6913/6913 M (2017); 
BS 1377-1 (2016); ISO 11277 (2009)). While standard sieve 
analysis methods have been developed for particle size deter-
mination, it is limited by the lack of precision, ignorance 
of the particle shape, and practical difficulties while using 
the apparatus. Also, digital image analysis can standardize 
the measurements of elongation, flakiness, and angularity, 
rendering obsolete the current manual, subjective, and inac-
curate practices.

2D Measurement methods

2D shape measurement is performed on photographs or 
projections of grains obtained by using equipment like a 
digital camera, microscope, or from thin sections depending 

upon the size of the particle and desired resolution (Kwan 
et al. 1999; Bowman et al. 2001; Sukumaran and Ashmawy 
2001; Fletcher et al. 2003; Fernlund 2005; Altuhafi et al. 
2013; Sochan et al. 2015; Vangla et al. 2018; Zhao et al. 
2021). Obtained images are pre-processed before carrying 
out image analysis using computer algorithms to calculate 
the shape parameters. However, while adopting image-based 
methods for particle characterization, it’s essential to ensure 
that the images have sufficient resolution such that the com-
puted shape parameters are not affected by the quality of 
the image being analyzed. Sun et al. (2019a) established 
the minimum resolution required for accurately estimating 
morphological parameters at different levels in terms of 
the particle length, perimeter, and area as controlling fac-
tors. At the same time, as image resolution increases, the 
field of view decreases while using the same equipment, 
thus making the imaging process more time-consuming and 
expensive. Hence, a judicial balance between the desired 
resolution and field of view must be brought about in the 
scans. It should be noted that 2D imaging systems like SEM 
can achieve a very high resolution compared to 3D imaging 
systems (Cepuritis et al. 2017b).

While image-based methods are faster, more accurate, 
and more robust when compared to manual methods, chal-
lenges remain to image a sufficiently large number of par-
ticles representative of the soil/specimen being analyzed. 
The two hurdles researchers encounter while dealing with a 
large sample are the extraction of individual particle geom-
etries from images of particle assemblies and ensuring a 
minimum resolution to the image. With the developments 
in image-based methods, several specialized imaging tech-
niques such as Aggregate Imaging System (AIMS) (Fletcher 
et al. 2003), Sedimaging (Ohm and Hryciw 2014), Translu-
cent Segregation Table (TST) (Ohm and Hryciw 2013), etc. 
were developed to obtain the images of a large number of 
particles at once, without sacrificing the quality of images. 
However, except where the sample was prepared such that 
particles were separated from one another before imaging 
(Kuo et al. 1996; Fernlund 2005; Tafesse et al. 2008; Arasan 
et al. 2011b; Fletcher et al. 2003), it was necessary to adopt 
robust segmentation algorithms to automatically segregate 
the particles digitally before carrying out image analysis. 
The watershed segmentation method, which can identify the 
particles, contacts, and voids through their shapes, was first 
adopted in geotechnical engineering by Ghalib and Hryciw 
(1999). Though this is a versatile method that can be used 
for most regularly shaped particles, it is associated with 
issues like over-segmentation and under-segmentation in 
the case of highly irregular particles, resulting in erroneous 
identification of particles and contacts. Hence, a modified 
watershed method was developed by Zheng and Hryciw 
(2016a) to resolve these issues in segmentation. By intro-
ducing a threshold value for the degree of overlap between 
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neighboring particles, this new algorithm could accurately 
distinguish the contacts and particles and helped in the pre-
cise segmentation of all particle topologies. Also, for the 
analysis of a large number of particles and the segregation 
of particles while imaging, Dynamic Image Analysis (DIA), 
which was first introduced in the pharmaceutical industry 
for grain size distribution (Yu and Hancock 2008), was 
adopted to analyze the morphology of sand grains (Altuhafi 
et al. 2013; Altuhafi and Coop 2011; Li and Iskander 2019; 
Sun et al. 2019b; Machairas et al. 2020; Li et al. 2021). An 
example of a dynamic image analysis system is the QICPIC 
imaging system (Sympatec 2008), which uses a high frame 
rate camera with a laser to obtain images of dispersed par-
ticles falling through a fall shaft (Altuhafi et al. 2013). The 
dispersing system prevents the overlapping of particles and 
allows the imaging of particles at random orientations, as 
opposed to the preferred orientation of maximum area pro-
jections in static imaging systems. The high-speed camera 
facilitates the capture of hundreds of thousands of images 
in a short time, thus resulting in statistically relevant shape 
information from a relatively small sample size. In addition, 
different camera lenses can be used to scan particle sizes 
ranging from 7 µm to 3938 µm (Li and Iskander 2019). The 
device has an inbuilt algorithm that measures several size 
descriptors and 2D shape descriptors, including convexity, 
sphericity, and aspect ratio for each particle. However, it 
should be noted that the device does not directly give the 
value of Wadell’s roundness, which is an important shape 
parameter. Even then, the images obtained through DIA can 
be imported and analyzed with any common image analy-
sis software like MATLAB (The Mathworks Inc 2022) or 
ImageJ (Schneider et al. 2012). Li and Iskander (2019) car-
ried out shape characterization of granular systems with 
particle size and shape varying over a large range using a 
QICPIC device (Sympatec 2008) and concluded that DIA 
could provide accurate shape and size information. How-
ever, the smallest particle size that can be scanned should be 
determined by considering the device’s resolution. Altuhafi 
et al. (2013) suggest that the Feret minimum diameter of 
the particle (the minimum distance between two tangents 
on opposite sides of the particle) should be greater than 10 
times the pixel size. With current specifications, the mini-
mum particle size is limited to 40 µm for accurate results, 
while the largest particle size that can be scanned is 4 mm 
(Li and Iskander 2019). Other limitations associated with the 
method include the inaccurate imaging of overlapping par-
ticles as one particle by the software, in which case special 
segmentation techniques would have to be adopted to sepa-
rate the particle images. Also, a commercial particle shape 
analyzer like QICPIC might not be accessible to everyone.

One of the more challenging tasks of morphological 
characterization is the extraction of particle shapes from 
particle assemblies. The methods discussed so far involve 

sample preparation in the laboratory. However, the charac-
terization of particles in assemblies or with complex back-
grounds becomes necessary, especially when the image is 
taken at a site. In such situations, it is essential to extract the 
shape of particles that are in full view from these particle 
assemblies. Zheng and Hryciw (2016b) presented a semi-
automated method where full projections of particles are 
selected manually, followed by which the algorithms devel-
oped by Zheng and Hryciw (2015) are employed to com-
pute the roundness and sphericity. The method of manually 
selecting the full projections is impractical to be used on a 
large number of particles. Since the problem involved pat-
tern recognition, a method of identifying full projection par-
ticles and extracting the boundaries from particle assemblies 
using machine learning tools was developed by Zheng and 
Hryciw (2018). They used previously established methods 
of pattern recognition, such as AdaBoost, to form a strong 
classifier, divided the training process into stages, and used a 
sliding window technique to identify full projection particles 
at different locations. Except for a small number of samples 
involving complex internal structures and the same color 
grains, the pattern recognition method performed success-
fully. Alternatively, Liang et al. (2019) used a lightweight 
U-net, a deep convolutional neural network, to extract par-
ticle shapes from images with complex backgrounds. They 
also proposed further analysis of the extracted shapes that 
involved the segmentation of particles using an erosion and 
flood filling algorithm and the smoothing of extracted parti-
cle boundary using a B-spline curve technique. This method 
also has the advantage of requiring a much lesser number 
of training images when compared to Zheng and Hryciw 
(2018). Machine learning techniques also find application in 
predicting the shape descriptors from input images of either 
single particles (Kim et al. 2022) or from an assembly of 
particles (Zheng et al. 2022). Kim et al. (2022) proposed a 
convolutional neural network (CNN), which is a deep learn-
ing technique that can identify and extract discriminative 
features from images, to compute the shape parameters. The 
predicted values were compared with mathematically com-
puted values of shape parameters to find that the prediction 
accuracy depended on the predicted shape parameter. While 
sphericity, slenderness ratio, and circularity were accurately 
predicted, the roundness values did not match the directly 
computed values. They concluded that the errors in the pre-
diction of roundness resulted from the ambiguity of input 
roundness values in the training data. The ambiguities are 
attributed to the possibility that the ‘ground truth’ of round-
ness value may not be deterministic. Zheng et al. (2022) pre-
sented ‘Laboratory on a smartphone,’ in which they devel-
oped a smartphone application based on a machine learning 
framework that can classify the granular soils based on 
images of particle assemblies captured using only a smart-
phone camera, into six roundness classes of very angular, 
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angular, subangular, subrounded, rounded, and well-rounded 
soils, according to Powers (1953). The machine learning 
framework of Zheng et al. (2022) used 60,000 images for 
the training dataset. They showed that the method could be 
employed even for challenging images like grains of varying 
size, the same color, different backgrounds, internal textures, 
etc., achieving a high accuracy of 93%. The most significant 
features of the ‘Laboratory on a smartphone’ technique are 
that there is no need for specialized equipment to capture the 
images other than a smartphone camera and no requirement 
for any computations. This makes the angularity characteri-
zation simple and accessible to anyone with a smartphone, 
allowing real-time evaluations. Such models based on arti-
ficial intelligence could overcome the limitations of current 
image-based methods, such as complicated algorithms, time-
intensive calculations, the need for the input of operator-
dependent parameters, problems arising from insufficient 
resolutions of images, etc. (Kim et al. 2022). However, this 
method cannot provide accurate shape quantifications as 
of now, apart from classifying the particles into qualitative 
shape groups. The potential applications of machine learning 
techniques in morphological characterization seem vast and 
robust, which are expected to enhance the capabilities of this 
method in the near future.

Limitations of 2D methods and alternatives

The 2D projection of an irregular particle is not the true 
representation of its 3D geometry. The 2D image of an 

irregular particle will depend on the angle at which the 
image was taken. This is particularly true for sand par-
ticles, which are rarely truly spherical. The effect of the 
angle of projection on the projected surface area of a 3D 
geometry can be seen in Fig. 8, which shows the 3D ren-
dering of a sand grain and the 2D projections of the same 
at different angles of projection. From the visual examina-
tion, it is clear that the projections exhibit different shapes. 
Jia and Garboczi (2016) demonstrate this through the 
example of a cylinder; depending upon the angle at which 
the image of the cylinder is taken, it could be mistaken 
for a sphere, disc, rectangular plate, cube, or spherocyl-
inder. However, since 3D imaging systems had only been 
recently adopted to characterize granular materials, most 
shape indices are defined on 2D projections, which were 
relatively easy to acquire. Even today, shape characteri-
zation of granular materials is mainly carried out on 2D 
projections since 3D methods are rather expensive and 
complex compared to 2D methods, and 3D instruments are 
not available in most laboratories except where intensive 
research takes place in the area. 2D and 3D shape indices 
have been compared for regular geometries like ellipsoids 
and cylinders and their projections at different projection 
angles (Vickers 1996; Brown and Vickers 1998; Cavarretta 
et al. 2009; Yan and Su 2018) or 3D particle geometries 
obtained through different 3D measurement techniques 
and their projections or 2D particle images (Kutay et al. 
2011; Fonseca et al. 2012; Alshibli et al. 2015; Cepuritis 
et al. 2017a; Zheng et al. 2019; Su and Yan 2020; Zhao 

Fig. 8  Effect of the angle of 
projection on the projected 
surface area of an image: a 
Three-dimensional image of a 
particle; b Two-dimensional 
projections of the particle at 
different projection angles
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et al. 2021), and significant differences between obtained 
2D and 3D parameters have been reported.

Several techniques have been developed to acquire 
information about a grain that is not obtainable from its 2D 
projection. While these methods do not acquire or analyze 
the entire 3D geometry of the grain, they are developed 
as simple and cost-effective solutions to collect additional 
information about the geometry of the grain. When par-
ticles are placed on a surface, they tend to lie in the most 
stable position. Thus, they will have their maximum pro-
jection area, and the shortest dimension will be normal to 
the maximum projection area. The maximum projection 
area contains information about the longest and interme-
diate axes of the particle, while the shortest axis cannot 
be computed. The simplest solution to obtain the third 
dimension is to obtain more than one image of the parti-
cles at directions normal to each other. Researchers have 
employed various methods, which include a camera setup 
that is rotated to obtain top and front views of the images 
(Arasan et al. 2011b), obtaining images of the particles in 
lying and standing positions (Fernlund 2005; Tafesse et al. 
2008, 2012), and attaching particles to transparent trays 
and obtaining images at two normal orientations (Kuo 
et al. 1996). All these methods can be said to come under 
static imaging systems (Tafesse et al. 2012), as they don’t 
have any moving components. Another static imaging 
system is the Aggregate Imaging System (AIMS), which 
was developed to image particles at different resolutions, 
and fields of view using different lighting techniques by 
scanning particles placed in a glass tray with marked grid 
points (Fletcher et al. 2003; Mahmoud et al. 2010). Some 
dynamic imaging systems that were developed include the 
University of Illinois Aggregate Image Analyzer (UIAIA), 
which uses three synchronized cameras to image the top, 
side, and front views of particles as they move on a con-
veyor belt (Rao and Tutumluer 2000; Rao et al. 2002) 
and the WipShape system which uses two synchronized 
cameras to obtain the top and side views of the particles 
moving on either a conveyor belt or a translucent rotating 
table (Maerz and Lusher 2001; Maerz 2004). Addition-
ally, a 3D Dynamic Image Analysis (DIA) system has been 
introduced, which tracks a particle as it falls through the 
imaging frame and captures the images of the same par-
ticle from 8–12 different perspectives, and the size and 
shape parameters are calculated as average values from 
these projections (Li and Iskander 2021; Li et al. 2022). 
The features and performance of 2D and 3D DIA devices 
have been compared by Li and Iskander (2021) and Li 
et al. (2022). Sympatec QICPIC and Microtrac PartAn3D 
were used in these studies for 2D and 3D analysis, respec-
tively. Currently, the image resolutions that can be cap-
tured using 2D and 3D DIA devices remain at 4 µm and 
15 µm, respectively, and hence the minimum size of the 

particles that 3D DIA could analyze is higher compared 
to 2D DIA. In addition to resolution, they differ in terms 
of the frame rate of the camera, lighting, and algorithm 
employed. Although 3D DIA is better than 2D DIA, it is 
inferior to µCT imaging and 3D image analysis.

More advanced methods that can capture the half-particle 
geometry have been developed to quantify parameters not 
directly obtained from 2D images. These methods are sim-
pler and cost-effective compared to 3D methods yet acquire 
more important information compared to 2D methods. Sun 
et al. (2019c) proposed a structural light system that uses a 
projector and camera system to analyze the 3D coordinates 
of particles. It uses the principle that a pattern emitted onto 
the particle surface will appear differently in the camera 
view depending upon the surface irregularities. Zheng and 
Hryciw (2014) used a stereo photography method that uses 
two parallel images to obtain the 3D contour of particles. 
The basic concept behind this method was that the informa-
tion about the third dimension, which is lost when the 3D 
shape is projected onto a 2D plane, could be recovered by 
taking a second image offset at a known distance from the 
first. The imaging setup consisted of a DSLR camera that 
could be moved vertically and horizontally over a horizontal 
testing table and controlled through a computer. After the 
two images have been captured, the techniques of image rec-
tification and point identification are used to obtain the con-
tour map of each particle. After using the methodology to 
analyze particles of varying sizes, Zheng and Hryciw (2014) 
observed that the contour lines match the shape and surface 
topography of the particles well. Kim et al. (2002) devel-
oped a laser-based aggregate scanning system to quantify 
the 3D geometry of particles. The laser scanner uses a laser 
source and a camera to scan the aggregate sample spread 
on a horizontal platform. The data points thus acquired are 
integrated to obtain the half-particle geometry. While these 
methods can capture the third dimension of particles, which 
was the intended purpose, they can only capture the half-
particle geometry exposed to the camera view. Thus, they 
fall between 2 and 3D measurements and can be termed 
‘2.5D measurements’ (Zheng et  al. 2020a). Comparing 
particle size distribution obtained from 2.5D methods with 
sieve analysis results showed that these methods can accu-
rately characterize the 3D particle size (Kim et al. 2002; Sun 
et al. 2019c; Zheng and Hryciw 2014). The application of 
2.5D methods to determine 3D shape parameters has been 
investigated by Zheng et al. (2020a). They compared the 
shape parameters obtained from 2.5D and 3D geometries 
of particles and found that while certain shape parameters, 
including roundness and intercept sphericity, agreed well for 
the two geometries, convexity did not match the two geom-
etries. It should be noted that 2.5D methods are economical 
because they require simple equipment, unlike µCT meth-
ods. They can overcome the constraints of resolution and 
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field of view usually associated with µCT devices and scan 
a higher particle size range, though they cannot match the 
accuracy of 3D methods.

As discussed earlier, methods of 3D morphological char-
acterization became established only recently, and even 
then, the methods are often more expensive, complicated, 
and inaccessible. 2D methods are widely documented and 
practiced by many researchers. Also, 2D size and shape 
descriptors are used in design and research to develop cor-
relations with mechanical behavior. Hence, it is logical to 
try and correlate the 2D shape parameters with its 3D shape 
properties. Given that a reliable correlation is established, 
practitioners without access to equipment to capture 3D 
morphology can utilize these relations to get a more accurate 
shape characterization using 2D methods. Empirical cor-
relations have been developed to determine the 3D shape 
parameters from one, two, three, or multiple 2D projections 
of grains (Kutay et al. 2011; Bagheri et al. 2015; Cepuritis 
et al. 2017a; Zheng et al. 2020b; Ueda 2022). This research 
bridges the gap between more accurate, less accessible 3D 
measurements and the more accessible, less accurate 2D 
measurements. However, it should be noted that the cor-
relations developed are often limited to a particular type of 
aggregate in each size range. More importantly, these studies 
demonstrate that using multiple 2D projections rather than a 
single image gives more accurate information regarding the 
morphology of the particle, thus underscoring the limita-
tions of most of the morphological characterization methods 
that are employed currently.

3D shape measurement methods

The developments in µCT technology in the past two decades, 
with resolutions achievable in the order of micrometers, can be 
considered the most significant factor that contributed to the 
advancements in 3D shape measurement. It is a non-destructive 
imaging method that can map the surface and interior of a par-
ticle through variations in mass density (Stock 2008). During 
the µCT scanning, the sample is rotated around its axis between 
an X-ray source and a detector to acquire 2D radiographs. 
These radiographs are reconstructed using a back projection 
algorithm to yield the 3D grayscale image of the specimen. 
In the grayscale image, the grains will have a higher grayscale 
value, while air or medium surrounding the grains will have a 
lower grayscale value. The application of µCT scanning in the 
context of granular geomaterials includes the characterization 
and visualization of grains (Matsushima et al. 2009; Katagiri 
et al. 2010, 2015; Garboczi 2011; Fonseca et al. 2012; Alshibli 
et al. 2015; Zhou et al. 2015, 2018; Cepuritis et al. 2017a, b; 
Zhao and Wang 2016; Erdogan et al. 2017; Suh et al. 2017; 
Kong and Fonseca 2018; Su and Yan 2018a; Rorato et al. 2019; 
Zheng et al. 2019, 2020b; Yang et al. 2022), the evolution of 
grains and granular fabric under loading (Ando et al. 2013; 

Druckrey et al. 2016; Druckrey and Alshibli 2016; Alam et al. 
2018), and the characterization of the structure of porous media 
(Al-Raoush and Alshibli 2006). For commercial µCT devices, 
resolutions usually vary between 1–10 µm, and the maximum 
specimen size is up to 10 mm (Zhao and Wang 2016). Fonseca 
et al. (2012), as a rule of thumb, suggested that the voxel size 
of the image be 0.018 × d50 , where d50 is the median particle 
diameter. It is to be noted that µCT scanning is a time-intensive 
process, and the time taken could vary for each instrument, 
depending on the selected operating conditions. An advance-
ment over the conventional µCT technique is the Synchrotron 
µCT, which incorporates an X-ray source capable of generating 
higher intensity beams, resulting in images with higher reso-
lution, less noise, and crisp boundaries (Alshibli et al. 2015; 
Druckrey and Alshibli 2016). However, the Synchrotron µCT 
technique is available only with specific research groups. Even 
though a highly accurate and popular method for 3D imaging, 
µCT scanning has certain limitations, including the high ini-
tial cost, the requirement for a skilled technician for operation 
and maintenance, and the demand for time and computation. 
Also, the field of view could be limited due to the constraints 
in minimum resolution, allowing only the scanning of a small 
sample size at a time (Garboczi 2002; Zheng et al. 2020b). 3D 
laser scanning is an alternate method for 3D morphological 
characterization, which is rather simple and cost-effective com-
pared to µCT scanning (Lanaro and Tolppanen 2002; Hayakawa 
and Oguchi 2005; Asahina and Taylor 2011; Anochie-Boateng 
et al. 2013; Sun et al. 2014; Ouhbi et al. 2016). Laser scanning 
involves emitting light onto the surface of a particle and evalu-
ating the position of each point on the particle based on the 
time taken by the reflected light or through triangulation. While 
suitable for granular materials with sizes over a few millim-
eters, the limited resolution of 3D laser scanning devices often 
restricts their use for smaller particles (Zhao and Wang 2016). 
Anochie-Boateng et al. (2013) reported the measurement of 
particle shape using a laser scanner with the highest resolu-
tion of 0.1 mm. The accuracy of the laser scanning technique 
compared to µCT for measuring the particle geometry of rock 
fragments with sizes in the range of 2–4 cm was established by 
Asahina and Taylor (2011). Hayakawa and Oguchi (2005) have 
reported accurate measurements of the shape of gravel parti-
cles using laser scanning. Some other cost-effective options to 
obtain the 3D geometry of grains include methods based on 
photogrammetry (Paixao et al. 2018; Zhao et al. 2021) and the 
reconstruction of the planar projections of the grain acquired 
at different angles of rotation (Nadimi and Fonseca 2017). The 
photogrammetry method employed by Paixao et al. (2018) 
involves imaging a particle rotating on a pedestal from differ-
ent angles and then employing special algorithms to identify 
shared features in these images to reconstruct a 3D point cloud. 
Since the method only requires a digital camera, it costs around 
one-tenth of a laser scanner. However, the resolution achieved 
by the setup was around 0.05 mm, which makes it suitable for 
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only ballast-sized particles. Other possible drawbacks include 
the requirement of good lighting conditions, the computational 
effort required to extract the point cloud, and the time taken to 
scan each particle. Nadimi and Fonseca (2017) used a setup for 
incremental rotations of the particle so that 2D planar projec-
tions could be acquired at different projection angles using a 
digital camera, which is reconstructed to a 3D volume. The 
setup only requires a camera and other simple tools and can be 
easily implemented in a laboratory, making it much more acces-
sible when compared with a µCT scanner. Using this method, it 
is possible to obtain a resolution of a few micrometers depend-
ing on the lens system used, and hence the method is suitable 
for grains with sizes around 1 mm. However, the method allows 
scanning only one particle at a time, which is a limitation of the 
method. It should also be noted that while these methods can 
obtain information about the particle surface, no information 
about the internal structure of the particles is obtainable, unlike 
in µCT scanning.

Image processing is performed on the reconstructed µCT 
images to obtain the 3D voxel assembly of the particle. 
Image processing includes the binarization of the grayscale 
image and image segmentation to extract individual parti-
cle geometries before any further image analysis procedure. 
Before binarization, the noise in raw µCT data is usually 
removed through filtering. For this purpose, the Gauss and 
median filters are the most adopted algorithms. Both are 
filters that operate at a local level; the Gauss filter computes 
the weighted average over a small local window centered 
around a voxel to replace the intensity of that voxel with 
the computed value, whereas the median filter replaces the 
intensity value of a voxel by the median of the intensity 
values in its neighborhood. Recently, filters that have a 
non-local nature, which better preserves the sharpness at 
the grain-void and grain-to-grain contacts when compared 
with filters local in nature, have been explored (Vlahinic 
et al. 2014). Binarization separates the grains from the sur-
rounding medium; in the resulting binary image, the solid 
voxels corresponding to the particle have a grayscale value 
of one (appearing white), and the voxels corresponding to 
the surrounding medium have a grayscale value of zero 
(appearing black). The most common thresholding technique 
adopted for binarization is Otsu’s thresholding (Otsu 1979), 
which uses a single intensity threshold to classify voxels into 
foreground and background. In a binary image, the grains 
could still be touching each other. To separate and extract 
the individual grain geometries, segmentation techniques are 
adopted. The extraction of individual morphologies from an 
assembly of scanned particles could pose a problem for 3D 
shape analysis just as it did for the 2D case, especially for 
µCT devices where the sample is placed in a holding tube 
and scanned. Some have opted to separate the particles and 
fix them into a stationary position before imaging by embed-
ding them in a resin or using transparent plastic sheets, or 

dispersing them in silicone grease or silica oil, such that the 
contrast in X-ray attenuation rate between the sample and 
the medium separating the grains will help avoid the need 
to use complex segmentation algorithms in the later stages 
(Matsushima et al. 2009; Zhao and Wang 2016; Su and Yan 
2018a; Zhou et al. 2018; Yang et al. 2022). However, the 
sample preparation could be tedious, and in some methods, 
retrieving the sample from the embedded medium is diffi-
cult; hence it is not exactly a non-destructive method.

To segment contacting particles, the watershed segmenta-
tion method has been adopted (Faessel and Jeulin 2010; Shi 
and Yan 2015; Alam and Haque 2017). Watershed analysis 
detects any constrained areas in the volumetric image and 
then segments this constrained area, assuming that it corre-
sponds to the contact between two particles. However, this 
method often fails to give accurate results for highly irregu-
larly shaped particles. Over-segmentation of particles could 
result in inaccurate size and shape description during the 
subsequent image analysis (Sun et al. 2019d). The need to 
eliminate the problem of over-segmentation has prompted 
different researchers to modify or improve the watershed 
segmentation technique (Faessel and Jeulin 2010; Shi and 
Yan 2015; Alam and Haque 2017; Kong and Fonseca 2018; 
Sun et al. 2019d). Among these methods, those proposed by 
Kong and Fonseca (2018) and Sun et al. (2019d) gave accu-
rate results for a wide range of particle shapes and sizes with-
out requiring manual intervention. Kong and Fonseca (2018) 
introduced an adaptive watershed method incorporating an 
iterative segmentation procedure to refine the segmentation 
after each iteration. Even though successful in segmenting 
highly irregularly shaped particles like shelly carbonate sands, 
the method suffered from complexity and high computational 
demand. A simpler, faster, improved watershed segmentation 
technique was developed by Sun et al. (2019d) by extending 
the improved watershed segmentation technique in 2D devel-
oped by Zheng and Hryciw (2016a) into 3D. The method was 
highly effective in accurately segmenting irregularly shaped 
particles, successfully eliminating over-segmentation in all the 
specimens. Alternatively, Vlahinic et al. (2014) developed a 
level-set-based method to extract the grain geometry directly 
from the 3D grayscale image in the form of a smooth, continu-
ously differentiable surface. The level set method captures 
the closed surface through a set of functions called level sets. 
They argued that the proposed method eliminates the need to 
convert the grayscale volumetric image into voxels, thus pre-
serving critical information that would otherwise have been 
lost. This information is important to quantify the physical 
parameters like the fabric and contact forces. The accuracy 
of the method was validated by segmenting µCT images of 
highly irregular and highly rounded geomaterials. Further, 
Lai and Chen (2019) adopted a machine learning technique 
called ‘trainable Weka Segmentation’ and a level-set-based 
method to segment and reconstruct particles in µCT images 
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of multi-constituent systems. They observed superior perfor-
mance of the method over conventional watershed segmenta-
tion methods. It is worthwhile to mention that even though 
there is no commercial equipment for 3D morphological 
characterization as there exists for 2D shape characteriza-
tion with built-in particle separation methods and image pro-
cessing and analysis modules, commercial and open-source 
software packages are available to perform image processing 
operations, including segmentation. One popular open-source 
software worth mentioning is the ImageJ software (Rasband 
1997−2011; Abramoff et al. 2004), widely adopted to analyze 
µCT images (Shi and Yan 2015; Zhou et al. 2018; Yang et al. 
2022).

Once the voxel assembly of each particle is obtained 
through image processing techniques, it can be further used 
to quantify the particle shape. Mainly, researchers have 
adopted three approaches to quantify particle shape from 
the voxel assembly. The first method involves performing 
direct image analysis and computational operations on voxel 
assembly to measure the volume, surface area, principal 
dimensions, and moment of inertia (Lin and Miller 2005; 
Fonseca et al. 2012; Alshibli et al. 2015; Zhao et al. 2015). 
However, the scale dependency of the surface area and the 
saw tooth pattern of the voxelated surface results in discrep-
ancies in the computed surface area (Zhou et al. 2015). The 
second approach is to reconstruct the particle morphology 
obtained from the µCT images using different smoothing 
algorithms and perform computations on the reconstructed 
surface (Yang et al. 2022). Lin and Miller (2005) and Zhao 
and Wang (2016) adopted the Marching Cubes algorithm, 
which assigns probabilities to the voxels and interpolates 
them based on this information to obtain the reconstructed 
surface composed of triangular meshes. Alternatively, the 
surfaces of particles obtained through laser scanning are 
also divided into triangular sub-surfaces, on which the 
required calculations are performed (Asahina and Taylor 
2011; Anochie-Boateng et al. 2013; Sun et al. 2014). Even 
though better than the voxel-based approach, the triangulated 
surface is still not completely continuous and differentiable, 
resulting in inaccuracies in the computed surface curvatures 
(Zhou et al. 2018). As discussed previously, the level set-
based approach is used to reconstruct the smooth particle 
surfaces and has superior performance compared to smooth-
ing algorithms like the Marching Cubes algorithm (Vlahinic 
et al. 2014; Lai and Chen 2019). The third approach is to 
mathematically characterize the surface of a particle as con-
tinuous functions using an SH series, from which the shape 
parameters can be extracted (Garboczi 2002, 2011; Taylor 
et al. 2006; Liu et al. 2011; Bullard and Garboczi 2013; Zhou 
and Wang 2017; Zhou et al. 2018; Su and Yan 2018a; Yang 
et al. 2022). An earlier section dealt with the representation 
of 3D particle morphology using the SH expansion. Some 
of the recent studies are successful in accurately quantifying 

the particle shape at multiple length scales through spherical 
harmonic-based fractal analysis (Zhou et al. 2018; Khan and 
Latha 2023). These studies used µCT scanning of particle 
assemblies, separation of grain contacts through powerful 
segmentation algorithms, reconstruction of the 3D grain sur-
faces using spherical harmonics, and computing 3D shape 
descriptors from the reconstructed grain surfaces. Figure 9 
represents the 3D morphological characterization of a sand 
particle at different scales using the current, versatile tech-
nologies; image acquisition using an µCT device and shape 
reconstruction and analysis of multi-scale morphology using 
the SH reconstruction method (Khan and Latha 2023). From 
Fig. 9, it is evident that 3D characterization gives a more 
accurate picture of the morphology of grain when compared 
to 2D characterization, as discussed in the previous section. 
Different image processing and image analysis techniques 
adopted by recent studies for 3D morphological characteri-
zation of sands are provided in Table 11. It can be seen that 
much emphasis has been given to µCT reconstruction and 
subsequent image processing and image analysis techniques 
in recent times.

Surface roughness measurements

The surface texture of grains has been obtained from 2D or 
3D binary images captured at high resolution using SEM, 
High-Definition cameras, or µCT devices (Masad and Button 
2000; Altuhafi et al. 2013; Zheng and Hryciw 2015; Vangla 
et al. 2018; Zhao and Wang 2016; Yang et al. 2017; Zhou 
et al. 2018). However, converting grayscale images to binary 
images results in the loss of information, which will par-
ticularly affect the measured texture or roughness more than 
form and angularity/roundness (Masad et al. 2001). Subse-
quently, grayscale images have been used to compute surface 

Fig. 9  Three-dimensional morphological characterization of grain at 
different scales (Khan and Latha 2023)
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texture (Masad et al. 2001; Fletcher et al. 2003). Currently, 
to obtain the surface profile of grains, high-resolution opti-
cal interferometry is being employed (Alshibli and Alsaleh 
2004; Alshibli et al. 2015; Yang et al. 2016, 2019, 2022; 
Yao et al. 2019). The method yields an interferogram which 
is a function of sample heights at discrete points. From the 
interferogram, surface roughness can be computed by quan-
tifying the surface departure from a mean plane (Alshibli 
et al. 2015) or using the power spectral density function of 
the surface heights and a fractal method (Yang et al. 2016, 
2019, 2022). Generally, since the interferometer measures 
the surface at a smaller scale, the measurement area is lim-
ited; hence, multiple measurements are to be taken at dif-
ferent locations for the same grain (Yao et al. 2019; Yang 
et al. 2022). To analyze the texture on the entire 3D surface, 
computations should be done on the surface data obtained 
by high-resolution µCT measurements (Zhou et al. 2018). 
However, the analysis will be done on a larger scale, result-
ing in less accurate measurements. Attempts have been made 
to correlate the surface texture measured using a large-scale 
measurement device like a 3D laser scanner or a µCT device 
and that measured at smaller scales using an interferometer 
using power spectral density and fractal dimensions so that 
the measurements made at a larger scale could be extended 
to a smaller scale for analysis and modeling purposes (Yang 
et al. 2019, 2022).

A comparison of different equipment used in recent stud-
ies to extract 3D morphological information from granular 
geomaterials, the make of the equipment, and the resolution 
of image output are given in Table 12. These comparisons 
show that a variety of equipment is currently available to 
suit the particle size ranges and resolution requirements. 
The following section briefly discusses the application of 
the morphological characterization of grains to correlate 
the micro and macro-scale behavior of sands. The objec-
tive was to understand how developments in morphological 

characterization could be successfully applied to derive 
the micro-to-macro correlations rather than to carry out an 
extensive review of the effect of particle shape characteris-
tics on the macro-scale behavior of sand, as it is out of scope 
for this paper.

Applications of morphological 
characterization and the way forward

Following the developments in the morphological character-
ization of grains, researchers have undertaken several studies 
to correlate the shape of grains to the physical, mechanical, 
and hydraulic behavior of sands. The digitization of particle 
shape measurement enabled fast and accurate characteriza-
tion of shape for a large number of particles, fueling labora-
tory experiments using grains with different morphological 
characteristics (Sukumaran and Ashmawy 2001; Cavarretta 
et al. 2010; Yang and Luo 2015; Suh et al. 2017; Lakkimsetti 
and Gali 2023). Further, it provided the basis for incorpo-
rating realistic shapes in numerical simulations of granular 
materials, such as Discrete Element Method (DEM) simu-
lations (Ashmawy et al. 2003; Garcia et al. 2009; Jerves 
et al. 2016; Nie et al. 2020; Xu et al. 2021). It should be 
noted that such simulations are particularly helpful in bridg-
ing the gap between the continuum and discrete behavior of 
granular material by facilitating the accurate estimation of 
micro-mechanisms responsible for macroscopic behavior. 
In addition, attempts were made to correlate the mechani-
cal properties of sands that have already been documented 
in the literature to the shape parameters of these sands now 
obtained through morphological characterization (Altuhafi 
et al. 2016). The results of these studies demonstrated the 
dependence of the macroscale properties of sands, such as 
their fabric, strength, stiffness, and permeability, on the 
shape of grains. This aspect was also elaborated by Cho 

Table 11  Image processing and image analysis techniques adopted by recent studies for 3D morphological characterization

Study Image processing technique Surface smoothing and reconstruction 
algorithm

Software used

Garboczi (2011) Thresholding segmentation Spherical Harmonic (SH) functions MATLAB, ImagePro
Alshibli et al. (2015) Filtering based on anisotropic diffusion and 

interactive segmentation
None MATLAB, Avizo Fire

Zhao and Wang (2016) 3D Median filtering and thresholding segmen-
tation

Marching Cubes algorithm with a Gaussian 
filter

MATLAB

Zhou et al. (2018) 3D median filtering, thresholding segmenta-
tion and modified 3D watershed segmenta-
tion

Spherical Harmonic (SH) functions MATLAB, ImageJ

Zheng et al. (2020b) Non-local means filtering and thresholding 
segmentation

Marching Cubes algorithm MATLAB, Avizo 9.0

Khan and Latha (2023) 3D median filtering, thresholding segmenta-
tion and modified 3D watershed segmenta-
tion

Spherical Harmonic (SH) functions MATLAB
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et al. (2006), and it was concluded that the current soil clas-
sification systems, like the Unified Soil Classification Sys-
tem (USCS), are based on only the size of the particles and 
overlook the shape. A recommendation was given to provide 
complete shape characterization of grains along with the size 
analysis, especially for granular soils.

Particle shape was found to substantially affect the pack-
ing of grains, which is one of the important parameters that 
affect particle-level interactions. Through experimental stud-
ies, it was demonstrated that particle regularity affects the 
maximum and minimum void ratios of an ensemble such that 
as particles became more irregular, i.e., as their roundness 
and sphericity decreased, the maximum and minimum void 
ratios increased (Cho et al. 2006; Altuhafi et al. 2016; Suh 
et al. 2017). It was postulated that the irregularity hinders 
the mobility of the particles and thereby reduces their ability 
to attain denser configurations (Cho et al. 2006). Studies by 
Santamarina and Cho (2004) and Rodriguez (2013) demon-
strated that soil compaction is initiated by particle rotation 
when equilibrium is disturbed by external forces, and higher 
sphericity, higher roundness, and lesser roughness contribute 
to easy rotation and higher compaction. The effect of par-
ticle roundness on crushability was investigated by Miura 
et al. (1997). They found that the crushability increased with 
the angularity of grains and attributed the increased local-
ized crushing of angular particles at contact points as the 
reason for this behavior. Particle shape was also found to 
affect the deformability of sand such that the small strain 
stiffness decreased with a decrease in the particle round-
ness and sphericity, whereas an increase in compression and 
decompression indices was found with decreased regular-
ity of the grains (Cho et al. 2006). Cavarretta et al. (2010) 

showed that angular particles exhibited greater plasticity 
during the oedometer tests carried out using crushed glass 
ballotini as analog soil. They also noted that while the sur-
face roughness of particles influenced the behavior of this 
soil under compression and shear, angularity and form had a 
much greater effect on these mechanical properties. A simi-
lar observation was made by Altuhafi et al. (2016) that the 
surface roughness affected the mechanical behavior of sands 
to a lesser extent compared to other shape parameters. More 
recent studies by Pillai and Gali (2022, 2023) revealed that 
particle angularity and roughness could improve the shear 
response of sand-geosynthetic clay liner interfaces under dry 
and wet conditions because of increased sand-fiber inter-
locking and reduced hydration effects.

In addition, experimental and numerical investigations 
into the effect of particle shape on the liquefaction resist-
ance of sands demonstrated that more angular or irregular 
particles exhibited greater resistance to liquefaction due to 
stronger inter-particle contacts and a tighter fabric of irregu-
lar particles (Ashmawy et al. 2003; Cho et al. 2006; Yang 
and Luo 2015; Lakkimsetti and Latha 2022; Lakkimsetti and 
Gali 2023). Further, particle shape was found to significantly 
influence the critical state parameters of sand through exper-
imental investigations (Cho et al. 2006; Yang and Luo 2015; 
Altuhafi et al. 2016; Suh et al. 2017). It was found that, at 
the critical state, with a decrease in regularity, the critical 
state friction angle and the intercept of the critical state line 
increased (Cho et al. 2006). Suh et al. (2017) established 
relationships between the critical state parameters and the 
shape parameters and found that the gradient of the critical 
state line, void ratio intercept, the effective stress ratio at 
the critical state, and critical state friction angle decreases 

Table 12  Comparison of different equipment adopted by recent studies to extract 3D morphological information from granular geomaterials

Study Equipment (manufacturer) Imaging resolution Size range of particles analyzed

Garboczi (2011) SkyScan 1172 model (Bruker µCT, USA) 1.3 – 12 µm/voxel 20 µm–300 µm
Fonseca et al. (2012) Nanotom (Phoenix|X-ray, GE, Germany) 5 µm/voxel  ~ 300 µm
Alshibli et al. (2015) Beamline 13D, Advanced Photon Source (Argonne 

National Laboratory, USA)
3.79 μm/voxel 0.297 mm–0.429 mm

Katagiri et al. (2015) SPring-8 Synchrotron radiation facility (Japan Synchro-
tron Radiation Research Institute and RIKEN, Japan)

2.0 μm/voxel 105–250 μm

Zhao et al. (2015) V|tome|x M (GE Phoenix, Germany) 3.3 μm/voxel 1 mm–2 mm
Zhou et al. (2015) Nanome|x (GE Phoenix, Germany) 10 µm/voxel 1·18 mm–2·36 mm
Zhao and Wang (2016) Nanome|x (GE Phoenix, Germany) 15 µm/voxel 1 mm–2 mm
Zhou et al. (2018) Metrotom 1500

(Zeiss, Germany)
32.65 µm/voxel 1·18 mm–2·36 mm

Kong and Fonseca (2018) Nanotom M (GE Phoenix, Germany) 6.67 µm/voxel 400 µm–2100 µm
Zheng et al. (2020b) Xradia microXCT-400 (Zeiss, USA) 3 µm/voxel 350 µm–600 µm
Yang et al. (2022) Toscaner-3000 (Toshiba, Japan) 15.5 µm–18.5 µm/voxel 0.6 mm–2 mm
Li et al. (2022) PartAn3D (Microtrac, Germany) and QICPIC (Sympa-

tec, Germany)
4–15 μm/pixel 530 μm–2400 μm

Khan and Latha (2023) SkyScan 1272 model (Bruker µCT, USA) 10 µm/voxel 1 mm–2 mm
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with an increase in the overall regularity of the particles. 
Similar observations were also made from numerical simu-
lations (Jerves et al. 2016; Nie et al. 2020; Xu et al. 2021). 
An increase in the peak and critical state shear strengths, as 
well as dilation, was reported with an increase in particle 
irregularity (Nie et al. 2020; Xu et al. 2021).

The application of 3D printing technology to physically 
reproduce granular materials with representative shape prop-
erties could be viewed as the next big advancement in the 
field of micro-to-macro correlations of soil properties. For 
this purpose, 3D printed particles are recreated either from 
the µCT scans of sand particles or from the artificial digital 
geometry with desired shape properties created using SH 
functions. Ahmed and Martinez (2022) carried out bender 
element tests using 3D printed media with controlled shape 
parameters and showed that for a given void ratio, relative 
density, and mean effective stress, higher values of shear 
wave velocity and shear modulus are achieved for the speci-
men constituted of particles with higher roundness and sphe-
ricity. Similarly, using 3D-printed grains with controlled 
shapes, Wei et al. (2021) noted a decrease in permeability 
with an increase in irregular features of the particle surface 
for uniformly graded specimens with the same porosity.

It should be noted that while most of the experiments 
with natural sands utilized 2D morphological characteri-
zation methods, DEM simulations and experiments using 
3D printed media utilized the full 3D information of the 
grain shape. Going forward, DEM simulations incorporat-
ing realistic grain shapes could be the norm in the micro-
to-macro linking of granular material characteristics. As 
3D-printed granular media can be used for experimental 
setups that can enable the validation of DEM models, a 
framework involving 3D morphological characterization, 
3D printing of analog particles, and DEM simulations could 
be expected to bring about breakthrough developments in 
the understanding of micro-mechanisms responsible for the 
mechanical behavior of granular materials and hence micro-
to-macro correlations.

Conclusions

The paper summarizes various methods developed for char-
acterizing the morphology of granular geomaterials, focus-
ing on the critical review of state-of-the-art techniques. 
From the analysis of different methods of shape description, 
imaging, and image processing technique and the application 
of shape characterization to derive micro-to-macro correla-
tions for sands, the following conclusions are drawn:

• Grain morphology is an important factor that signifi-
cantly influences the physical and mechanical behavior 
of sands. Thanks to the advancements in digital imag-

ing and computational capabilities, robust and precise 
methods for characterizing sand particle morphology are 
available. These current methods can enable researchers 
to quantify particle morphology on a routine basis and 
apply the information thus obtained.

• The number of methods and descriptors available for 
shape characterization are many, spanning from manual 
measurement to digital image analysis of 2D and 3D par-
ticle geometries. However, while choosing a method of 
shape characterization, one should be aware of the pos-
sibilities and limitations of the method being adopted. 
State-of-the-art methods provide the most accurate and 
robust results.

• 3D morphological characterization using µCT technol-
ogy along with spherical harmonic expansion remains 
the most versatile method for characterizing grain mor-
phology, with applications that can be extended to the 
regeneration of virtual grains and computational mod-
eling. However, the higher cost of equipment and the 
complexity associated with imaging, image processing, 
and image analysis for 3D methods, when compared with 
2D methods, make them less accessible and popular.

• The definitions of particle morphology, such as form, 
roundness, and roughness, are still mostly those proposed 
decades earlier by sedimentary geologists, even though 
the methods of measurements have evolved rather drasti-
cally. Since the most critical objective of the morphologi-
cal characterization of grains is to link the microscopic 
characteristics to the macroscopic behavior, shape quan-
tifications must be focused on obtaining the most rel-
evant microscopic information.
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