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Abstract
The mechanical characteristics of sandstone under constant–cyclic loading with different amplitudes play a significant role in 
geotechnical engineering. In this research, constant–cyclic tests with stress amplitudes of 5%, 10%, and 15% of the uniaxial 
compressive strength were conducted to analyse the effect of stress amplitude on the mechanical behaviours of sandstone. 
Then, the internal crack propagation of sandstone was characterized based on the real-time record of an acoustic emission 
(AE) technique. Finally, the fragments of the rock mass distribution and failure pattern were assessed. The results showed 
that the cyclic deformation, acoustic emission response, fragmentation characteristics, and internal cracks depend strongly on 
the stress amplitude. With increasing stress amplitude, the peak strength first increases and then decreases. There may exist a 
specific loading amplitude that increases the peak strength. In addition, a higher stress amplitude may lead to peak strength 
degradation to some extent. In addition, the elastic and dissipated energy shows decreasing and increasing trends in the cyclic 
loading stages, respectively. Elastic energy accounts for the largest proportion of all input energy. The fragment distribution 
is more uneven, the percentage of large and small blocks increases, and the failure patterns are more complex under higher 
stress amplitudes, which can reveal the fracture characteristics of the sandstone under different amplitudes. These results 
can offer a reference to understand the different disruption effects on the engineering characteristics of sandstone and play 
a guiding role in the mining-induced stress boundary movement and control of dynamic disasters.
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Introduction

Sandstone is one of the most common research objects 
in various geotechnical engineering applications, such as 
coal mining (Zhang et al. 2020; Xia et al. 2021; Liang et al. 
2022), mining-induced boundary movement (Sun et  al. 
2019), landslide control (Yang et al. 2020a, b), energy stor-
age (Wang et al. 2011; Zhao et al. 2021; Zou et al. 2022a, 
b), and other human-made structures (Yang et al. 2020a, 

b; Zhang et al. 2021). Sandstone in different positions of 
geotechnical engineering, such as mining-induced boundary 
movement, will experience various disturbance types. These 
applications highlight the urgent need to better understand 
the behaviours of rock-related structures under environmen-
tal and human-induced disturbances (Zhu et al. 2019; Du 
et al. 2020) (Fig. 1). Environmental and human-induced 
disturbances are essentially cyclic and constant under labo-
ratory conditions (Cerfontaine and Collin 2018; Zou et al. 
2022a, b). Thus, the mechanical characteristics of specific 
rocks have drawn much attention from many scholars, and 
these are crucial in designing and building structures (Zhao 
et al. 2017, 2021; Yang and Hu 2018; Young et al. 2020). 
Previous studies found that rock deformation and damage 
characteristics under different cyclic loading and unload-
ing significantly differ from those under a single monotonic 
loading path (Fuenkajorn and Phueakphum 2010; Ran 
et al.2023). Stress amplitude, loading frequency, and wave-
form are the main cyclic loading parameters that affect the 
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mechanical behaviours of sandstone (Cerfontaine and Collin 
2018; Liu et al. 2018; Vaneghi et al. 2018; Zhu et al. 2020).

Blasting (Khandelwal and Singh 2009; Konicek et al. 
2013), excavation (Demirel 2011), and mechanical vibra-
tion (Zhang et al. 2016) are the main sources that generate 
disturbances in practical engineering. With increasing dis-
tance from disturbance sources, the shock wave will evolve 
from higher stress or seismic amplitude to lower amplitude 
(Fig. 2). Similar to the three constant stages, the rock dam-
age under cyclic loading can also be divided into an initial 
loading stage, a uniform stage, and an accelerated deforma-
tion stage (Zhu et al. 2020). The stress amplitude level is a 
significant factor affecting the damage properties of rocks 
(Momeni et al. 2015; Vaneghi et al. 2020). The greater the 
loading cycle number is, the shorter the rock lifetime and the 
greater the strength degradation (Vaneghi et al. 2018). The 
effect of the stress amplitude on the dynamic elastic mod-
ulus was more significant than that on the damping coef-
ficient (Deng et al. 2017). Rocks will harden under lower 
stress amplitudes and soften under higher stress amplitudes 
(Shi et al. 2014). The critical normalized stress amplitude 
depends on the rock type and composition (Taheri et al. 
2016; Li et al. 2021). The rock lifetime decreases as the 
stress amplitude increases (Du et al. 2021).

Rock progressive failure is a process of external energy 
input, inter-energy accumulation, and excessive energy release 
(Hua and You 2001). The energy perspective can deepen the 
understanding of the mechanical behaviour of failed rocks and 
promote the understanding of disaster mechanisms (Meng 
et al. 2019; Ammirati et al. 2022). With the stress state and 
corresponding deformation changes under specific cyclic 
loading paths, the energy state and microcracks of rock will 
evolve, leading to microcrack propagation (Sang et al. 2020; 
Zhang and Zhou 2022). These macrocracks gather and form 
a fault plane and cause overall instability (Meng et al. 2019). 
The deformation process of rock specimens under single cyclic 
loading is an irreversible dissipation process, and failure is 
the final result containing a larger-scale energy release (Zhang 
et al. 2019). Energy release shows a positive correlation with 
frequency (Bagde and Petros 2009). Energy dissipation drives 
the crack propagation procedure (Duan and Yang 2018; Wang 
et al. 2020). Thus, the increase in energy dissipated under 
cyclic loading will lead to a gradual decrease in the dynamic 
elastic modulus (He et al. 2015). Many methods can determine 
crack propagation and rock failure (Cai et al. 2014; Munoz 
and Taheri 2017; Yang et al. 2018). As a reliable and widely 
used testing method, acoustic emission (AE) has attracted 
significant attention in investigating damage evolution, crack 

Fig. 1  Different sources of 
disturbances imposed on 
underground structures (Shirani 
Faradonbeh et al. 2021)
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development, and failure in real time (Lockner 1993; Ruck 
et al. 2017; Zhang et al. 2022). In addition, the AE method can 
determine the accurate crack position and describe the whole 
procedure that contains the initiation, propagation, and coales-
cence of new cracks (Meng et al. 2018; Dong et al. 2022; He 
et al. 2022). AE signals will be more noticeable when the load-
ing stress exceeds the previous loading stress threshold (Kao 
et al. 2011; Sagar and Prasad 2012). In addition, the precursory 
time series of the rise time rate is also a good indicator to fore-
cast the pseudo-prospective of catastrophic rupture (Zhang and 
Zhou 2020). Thus, this method will be more effective under 
multilevel cyclic loading stress (Lavrov 2001).

In general, microcracks exist in all kinds of rocks (Liu 
et al. 2017). Failure modes are impacted by interbeds, natu-
ral fractures, and pyrite bands (Wang et al. 2021). There are 
two ways to investigate the failure mode after an experi-
ment. One is to take photos of specimens to analyse the 
failure mode through superficial failure characteristics (Liu 
et al. 2018; Xiao et al. 2020), and then the fragment distri-
bution (Ning et al. 2019) and fractal dimension (Li et al. 
2018a, b) can be obtained. However, it is challenging and 
unrealistic work to investigate the internal crack characteris-
tics of rock specimens through surface observations (Wang 
et al. 2019). Thus, another method, CT scanning, has been 
introduced to study the internal damage of rock. Cyclic 
loading induces new cracks and the propagation of existing 
cracks (Akesson et al. 2004), and stress-induced trials are 
less smooth and bright than static loading (Erarslan 2016). 
The crack network pattern becomes complex as the stress 
amplitude increases (Wang et al. 2020).

The studies mentioned above were primarily conducted 
under single cyclic loading. However, sandstone in specific 
geotechnical engineering often experiences different ampli-
tudes of cyclic and constant loading due to various distur-
bances in actual rock-related engineering, such as mining-
induced boundary movement, blasting, and excavation. In 
addition, artificial structures in engineering will serve a 
specific long-term period that plays a vital role in rock deg-
radation. The rock response under constant–cyclic loading is 
different from that under single cyclic loading. To reveal the 
comprehensive mechanical response of sandstone, a series 
of different stress amplitude constant–cyclic tests were con-
ducted. The influence of stress amplitude on the progressive 
mechanical response staged acoustic emission and postfrac-
ture behaviour of sandstones in constant–cyclic tests was 
investigated in this paper. During the constant–cyclic loading 
process, real-time AE was used to analyse the crack propa-
gation characteristics. Ultimately, the crack distribution of 
sandstone specimens is revealed by CT scanning. Through 
the cross-sections and reconstruction of sandstone speci-
mens, the fracture mechanism of sandstone under various 
cyclic amplitudes is revealed.

Sample preparation and test procedure

The sandstone specimens in this experiment were obtained 
from Hunan Province in China. Twenty-five specimens 
were carefully prepared by cutting Ф50 mm × 100 mm 
cylindrical specimens according to the standard ISRM 
guidelines. In addition, to ensure the reliability of the 

Fig. 2  Blasting, excavation, mechanical wave attenuation, and seismic wave simplification in a long-term constant–cyclic procedure (Li et al. 
2017; Luo et al. 2019)
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experimental results as much as possible, 3 specimens 
with similar P wave velocity and average density values 
were selected to guarantee the consistency of the speci-
mens (Table 1). Before the constant–cyclic tests, three 
specimens were used to determine the average uniaxial 
compression strength (UCS), which was approximately 
48  MPa. The mineral components of sandstone were 
measured by X-ray diffraction (XRD) and were mainly 
composed of dickite (41%) and quartz (37.2%).

Different amplitude multilevel constant–cyclic tests 
were conducted using a rock compression system. A flat 
cylinder striker can offer a cyclic triangle stress wave 
and a long-term stable mechanical environment and can 
be used to conduct different amplitude constant–cyclic 
tests, abbreviated as ACF. Two nano-30 type AE sensors 
were set at the symmetrical position of the samples. The 
threshold was set as 40 dB. Figure 3 shows the stress-
loading path of the ACF tests, which consists of three 
constant–cyclic stages and different stress amplitudes. A 
stress mode at a speed of 400 N/s in the axial direction was 
applied to the sandstone during the cyclic and constant 
loading stages. In the cyclic procedure, the cyclic stress 
amplitude varies by approximately 5%, 10%, and 15% of 
UCS. The constant loading stress was 25 and 32 MPa in 
the first and second constant–cyclic loading stages, respec-
tively, and all the hold times were 2 h. When the sandstone 
specimens failed, the ACF tests stopped. Ultimately, the 
X-ray CT scanning method was used to reveal the internal 
fracture characteristics of sandstone specimens. In addi-
tion, systematic sieving tests were conducted to quantify 
the influence of stress amplitude on the fragment char-
acteristics of sandstone specimens. The detailed testing 
procedures are illustrated in Fig. 4.

Results

Mechanical characteristics of sandstone 
under the constant–cyclic test

The stress‒strain curves of sandstone at different amplitude 
constant–cyclic tests are plotted in Fig. 5a–c. Sandstone 
specimen deformation under different amplitude constants 

and cycles shows a noticeable difference under different 
stress amplitudes. In the first 5%, 10%, and 15% ampli-
tude cyclic loadings, those specimens’ strains were 0.03%, 
0.06%, and 0.104%, respectively. The irreversible deforma-
tion of different samples showed a nonlinear increment of 
approximately 0.04%. The sandstone matrix elastic charac-
teristics may dominate this cyclic stage. In the second 5%, 
10%, and 15% amplitude cyclic loading stage, the specimen 
strains were 0.02%, 0.05%, and 0.083%, respectively. In the 
first stage, axial deformation proliferated due to fracture 
compression and elastic deformation. In the second stage, 
the axial deformation corresponded well with the increment 
of stress amplitude. Three specimens all failed at the third 
constant–cyclic stage. Figure 5 also shows the failure modes 
of sandstone specimens under constant–cyclic loading. The 
maximum stresses of the three sandstones were 39.2 MPa, 
40.5 MPa, and 39.3 MPa at 5%, 10%, and 15% stress ampli-
tudes, respectively. The sandstone specimens experienced 
some shear or tensile cracks, which show brittle failure 
characteristics of the sandstone under constant–cyclic 
loading. Furthermore, the specimens also displayed some 
differences, even though the three specimens show mainly 
shear fracture modes, which may result from the effect of 
the heterogeneity of sandstone. However, with increasing 
stress amplitude, the final failure form was more violent, 
and broken rock fragments were hard to join, which indi-
cates that the integrity of the rock was reduced under higher 
stress amplitude.

AE characteristics and energy dissipation 
of sandstone

Elastic and dissipated energy evolution before the peak stress

The input, elastic, and dissipated energy in each cycle of 
different stress amplitudes can be obtained based on the 
stress‒strain curves. It is assumed that there is no heat, 
light, or other forms of energy release. The external input 
energy Ut  is equal to the sum of elastic and dissipated 
energy (Li et al. 2020): 

where Ue is the elastic energy and Ud is the dissipated energy.
Figure 6 shows the relationship between the elastic 

energy and dissipated energy of rock. The area region 
below the stress‒strain curve denotes the external input 
energy, and the part under the unloading curves represents 
elastic energy. The region under the loading curves and 
above the unloading curves is the dissipated energy, which 
indicates plastic deformation, internal damage, and other 
kinds of dissipated energy. The equation of related energy 
can be expressed as Eq. (2) (Zhou et al. 2019):

(1)U
t
= U

e
+ U

d

Table 1  P wave velocity and density distribution

No P wave 
velocity 
(km/s)

Density (kg/m3) Length (mm) Diameter (mm)

1# 3.00 2390 100.4 50.2
2# 3.04 2450 101.1 49.5
3# 3.01 2430 100.7 50.0
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Fig. 3  Stress‒time curves of multilevel ACF tests: a 5% stress amplitude, b 10% stress amplitude, and c 15% stress amplitude
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The proportions of the elastic and dissipated energy dis-
tributions in the first and last cycles are shown in Fig. 7. 
Elastic energy is the leading energy in all cyclic loading 
amplitudes, at approximately 88% of the total energy. The 
proportion of elastic energy decreased at higher stress 

Fig. 4  Experimental procedures and equipment

Fig. 5  Stress‒strain curves of sandstone specimens at different amplitude constant–cyclic tests (a, b, and c represent 5%, 10%, and 15% cyclic 
stress amplitudes, respectively)
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amplitudes. In addition, the proportion of elastic energy 
also decreased under different stress amplitudes in the same 
loading procedure. However, the proportion of dissipated 
energy rises at higher stress amplitudes. Therefore, as the 
external input energy increases, the dissipated energy will 
also increase correspondingly, which subsequently causes 
rock damage.

AE events during the constant–cyclic test

The RA value is the ratio of the rise time of the AE signal 
to its amplitude, and the combination of RA and AF can 
be used to describe the fracture mode classification of rock 
materials (Zhang et al. 2020; Rodriguez and Celestino 2019).  
A combination of lower RA values and higher AF values 
results from the tensile mode. In contrast, a higher RA value 
and lower AF value indicate a shear mode (Liu et al. 2020).

Figure 8 shows the typical RA and AF value variation 
with time in constant–cyclic stress at various amplitudes. 
The AF values of the sandstone specimens are mainly dis-
tributed in the range of 0 ~ 250 kHz, while the RA values 

are mainly located in the range of 0 ~ 18 ms/V. With the 
increase in stress amplitude applied to the sandstone speci-
mens, the RA and AF values increase in both stages (Fig. 8a 
and b). At the 1st stage, the increase in the RA value and the 
decrease in the AF value indicate the tensile mode. With the 
stress amplitude increasing from 5 to 10% and 15% UCS, the 
transition from lower RA and AF values to higher RA and 
AF values means a greater extent of tensile mode (Fig. 8a). 
This indicates that the tensile mode was the dominant failure 
form in the rock sample at different amplitudes in the initial 
loading stage. As the cyclic stress amplitude increased to a 
certain level, the RA and AF values increased approximately 
100 times, which means that the shear mode was dominant 
in the sandstone in the second stage at different amplitudes.

RA-AF distribution can also be used for the qualitative 
classification of crack propagation form (Liu et al. 2020). As 
shown in Fig. 9, the RA-AF value with different amplitudes 
was mainly distributed at the first and second stages. In the 
first stage, with increasing stress amplitude, the failure mode 
transferred from almost equal tensile and shear to a tensile- 
or shear-dominated mode (Fig. 9a, b, and c). This kind of 
change will occur at higher stress levels. The shear or tensile 
crack propagation mode is almost equal at a lower stress 
amplitude. At higher stresses, the stress amplitude effect 
was similar, except for some lower cyclic amplitudes. This 
may occur because a lower amplitude may not significantly 
impact the failure mode.

Based on the analysis of failure modes considering the 
RA and AF values, when cyclic loading is applied at a 
lower stress level, crack evolution may be dominated by the 
tensile mode (Fig. 9b) or shear mode (Fig. 9c). However, 
when the stress level increased, the shear model dominated 
the crack evolution procedure (Fig. 9d, e, and f). When 
the load was close to the peak stress, the shear cracks 
increased, and the ultimate failure mode of the specimens 
mainly appeared as shear failure. These results are con-
sistent with the analysis of the failure mode of sandstone 
specimens in the “Macro-failure characteristics of sand-
stone under a constant–cyclic test” section.

Fig. 6  Relationship between external input energy, elastic energy, and 
dissipated energy of sandstone in single cyclic loading (Zhou et al. 2019)

Fig. 7  Characteristics of the 
energy proportion under 5%, 
10%, and 15% cyclic amplitude: 
a 1st stage and b 2nd stage

(a) (b)
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Peak frequency in cyclic loading is vital for characteriz-
ing the crack source properties (K 1962). Different types of 
disturbance sources will produce different scale fractures for 
specific rock specimens. Lower frequency signals represent 
larger-scale cracks. The distribution of the peak frequency 
of AE signals in different stages offers noticeable zone fea-
tures, and these peak frequencies are in ranges of 0–15 kHz, 
15–30 kHz, and 30–45 kHz (Fig. 10).

To analyse the variation in peak frequency, the percent-
ages of three peak frequency bands at different amplitudes 
are plotted on the right side of Fig. 10a and b. As the stress 
amplitude increases, the distribution of the signals shows 

a similar trend. High peak frequency was not apparent in 2 
stages. Lower and middle peak frequencies were the most 
dominant in the cyclic loading part, which means that rela-
tively large cracks were the main part of the whole process. 
In contrast, the signals were lower at this stage. In addition, 
the AE counts also decreased in the two stages at differ-
ent amplitudes. In the first and second stages, as the stress 
amplitude increases, the signals are characterized by rela-
tively small-scale cracks, and the proportions of signals with 
frequencies are mainly in the range from 15 to 30 kHz. The 
0–15 kHz signals are mainly disturbed at 10% amplitude, 
which leads to relatively larger cracks.

Fig. 8  Stress, RA, and AF value versus time at 5%, 10%, and 15% cyclic loading amplitude: a 1st stage and b 2nd stage

(a) (b) (c)

(d) (e) (f)

Fig. 9  Distribution of RA-AF values in sandstone at different amplitude: a 5% in first stage, b 10% in first stage, c 15% in first stage, d 5% in 
second stage, e 10% in second stage, f 15% in second stage
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Macro‑failure characteristics of sandstone 
under a constant–cyclic test

Internal crack characteristics

Figure 11 shows an overview of the CT scanning results of 
three sandstone specimens under different amplitude con-
stant–cyclic stresses. In Fig. 11b, blank regions were cracks; 
other regions indicated no surface cracks, demonstrating that 
CT scanning effectively explores the internal crack distribu-
tion in sandstone specimens.

Figure 12 demonstrates the vertical cross-section image 
slices and 3D fractures of the sandstone specimens under 

constant–cyclic loading. When the depth × approached 
12.5 mm, relatively large cracks were observed in the cross-
section under constant–cyclic compression. Furthermore, the 
width of the crack was larger under higher amplitude stress. 
The failure modes were similar to the surface fracture crack 
mode. When the depth × approaches 25 mm, all cross-section 
cracks are located in the centre of the sandstone specimens. 
The crack failure mode with a lower amplitude was progra-
dation on one side. Fault planes are more evident at 10% and 
15% amplitudes. At 15% amplitude stress, both sides of the 
fault plane were apparent. Its failure progress was more violent 
compared with lower amplitude. When the depth × approaches 
37.5 mm, new cracks are initiated in the specimens under 

(a) (b)

Fig. 10  Peak frequency distribution at different cyclic amplitudes. a 1st stage and b 2nd stage

(a)(b)

Fig. 11  Overview of the X-ray CT scanning procedure. a X-ray CT observation and b 3D reconstruction result
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various amplitudes. This means that the damage degree was 
highly correlated with the cyclic amplitude.

Figure 13 illustrates horizontal cross-section slices of sand-
stone specimens under different cyclic amplitudes. When the 
height z approaches 25 mm, some open cracks were observed 
in the slice images under various cyclic amplitudes. How-
ever, those cracks were more minor at lower amplitudes. 
Rock specimens can maintain their completeness. The rock 
specimens were shattered at higher amplitudes compared with 
lower cyclic amplitudes. When the height approached 50 mm, 
the slice images were located in the centre of the rock speci-
mens. The number and extent of cracks were higher under 
higher cyclic stress amplitudes. The small and immature 
cracks were more noticeable than more significant degrees 
of crack penetration under higher cyclic amplitudes. When the 
height approached 75 mm, the crack distribution was similar 
to that at 25 mm. The crack distribution analysis of postfailure 

specimens illustrates the importance of the X-ray CT scanning 
method to investigate the behaviour of the internal crack.

Fragmentation characteristics

The post-mortem examination of samples is helpful to obtain 
the fragment size distributions, rock mass distribution, and 
failure characteristics of sandstone specimens. Figure 14a, 
b, and c shows the failure characteristics and mass distribu-
tion of sandstone specimens corresponding to three typical 
cyclic stress amplitudes. The recovered specimens depicted 
the fragment size distributions, rock mass distribution, and 
failure patterns under different specimens. It can be observed 
that sandstone specimens break into blocks relatively uni-
formly. The fragment distribution of sandstone was not 
similar under different cyclic loading amplitudes. Sandstone 
specimens shattered into small or more significant blocks, 

Fig. 12  Front vertical cross-
sections and 3D fracture 
distribution of failed sandstone 
specimens under constant–
cyclic stress with respect to dif-
ferent cyclic stress amplitudes. 
a Five percent amplitude; b 10% 
amplitude; c 15% amplitude

(a)

(b)

(c)
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which were more obvious under a relatively high cyclic load-
ing amplitude. Especially when the stress amplitude reached 
15%, the percentage of more significant and small blocks 
was higher. The sieving results of the rock mass distribu-
tion for sandstone specimens under different cyclic loading 
conditions are shown in Fig. 14. With the cyclic loading 
amplitude increasing, all sandstone specimens’ cumulative 
mass percentage curves show a growing percentage of small 
rock mass, indicating that the sandstone specimens are more 
polarized under a high cyclic stress amplitude. A higher 
cyclic loading amplitude promoted relatively more and larger 
cracks, which led to larger blocks. In addition, relatively 
small-scale blocks increased due to violent friction under 
higher cyclic loading amplitudes. This phenomenon can 
also be seen at cyclic loading amplitudes of 5% and 10%. In 
addition, the number of small sandstone particles increased 
at higher stress amplitudes. This may be due to the friction 
between rock particles, and a larger stress amplitude may lead 
to an increase in the percentage of slight sandstone particles.

Influencing mechanism of cyclic  
stress amplitude

In this study, the sandstone deformation under constant–cyclic 
tests shows a nonlinear variation with different stress ampli-
tudes. In general, when the maximum cyclic stress is less than 
the cyclic threshold, the rock specimens may be strength-
ened by cyclic loading. Conversely, it is degraded when the 

maximum cyclic stress is higher than the cyclic threshold 
(Günther and Salzer 2012). The influencing mechanism of 
the stress amplitude is illustrated in Fig. 15. The peak strength 
of the tested sandstone samples reaches a maximum when the 
loading stress is the amplitude combined with 10% UCS and 
constant stress. This may be due to the competition of the 
lower amplitude stress hardening effect and higher amplitude 
stress softening effect. Lower stress amplitude loading leads 
to rock specimen hardening, and higher amplitude loading 
may result in damage accumulation, leading to rock strength 
degradation. In addition, with increasing cyclic amplitude, 
the shear mode extent will increase simultaneously. A certain 
cyclic stress level may exist that is considered the distinction 
between tensile and shear modes. Overall, the stress amplitude 
may not be that obvious at lower stress amplitudes. With the 
cyclic stress levels reaching a certain level, the rock specimens 
experienced tensile mode initially and then approximately 
equal shear or tensile effect at a higher amplitude.

In addition, the larger or small-scale cracks with samples 
may produce resonance during the crack propagation pro-
cedure (Fig. 15a). On the one hand, this may be because the 
rock specimens are sensitive to specific stress amplitudes. 
On the other hand, this kind of frequency can also be derived 
from the stress waves in constant–cyclic tests. Thus, the 10% 
amplitude may be close to the critical amplitude that causes 
rock resonance and leads to relatively larger cracks domi-
nated by resonance. However, when the stress amplitude 
increases, the larger cracks are mainly propagated by the 
stress amplitude.

Fig. 13  Horizontal cross-section slice images of failed sandstone in the constant–cyclic test under different cyclic stress amplitudes. a Five per 
cent amplitude; b 10% amplitude; c 15% amplitude
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In addition, with increasing cyclic loading amplitude, all 
sandstone specimens’ cumulative mass percentage curves 
show a growing percentage of small fragments, demonstrat-
ing that the sandstone specimens are more polarized in a 

high cyclic stress amplitude. A higher cyclic loading ampli-
tude promoted relatively more and larger cracks, which led 
to larger blocks. In addition, the percentage of small-scale 
blocks increased due to violent friction under higher cyclic 

Fig. 14  Fragment size and rock mass distribution of the sandstone specimens under constant–cyclic tests, mm: a 5% amplitude, b 10% ampli-
tude, c 15% amplitude
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loading amplitudes. This phenomenon can also be seen at 
cyclic loading amplitudes of 5% and 10%. In addition, the 
number of small sandstone particles increased at higher 
stress amplitudes. This may be due to the friction between 
rock particles and particle damage, and a larger stress ampli-
tude may increase the percentage of small sandstone parti-
cles (Fig. 15b).

In underground coal mining, the overlying strata mining- 
induced stress boundary is under constant–cyclic load-
ing conditions in essence. Its movement is governed by 
dynamic mining-induced or other kinds of disturbance 
with static mining-induced stress. Different disturbance 
effects on this boundary vary with distance and its origin 
properties. The actual effect on the specific boundary is 
different amplitude stress disturbance, which may play an 
essential role in this boundary movement. Our experimen-
tal results reveal that different stress amplitudes combined 
with constant loading may produce a hardening or soften-
ing effect. A higher stress amplitude may lead to rock fail-
ure. It is vital to avoid significant disturbances through any 
kind of stress relief method, such as blasting, hydraulic 
slotting, and fracturing. Another measure may be to main-
tain a proper distance from disturbance sources, especially 
those that quickly cause boundary movement or dynamic 
disasters. This may offer a reasonable explanation for why 
it is difficult to detect stable mining-induced boundaries.

Note that the influence of stress amplitude on sandstone 
is negligible because the confining stress surrounding the 
cylindrical surface of sandstone samples can remarkably 
increase the friction (Liu et al. 2021). In addition, the grain 
size can also affect the mechanical behaviour fracturing 
response. The small grain size will result in a more uni-
form spatial distribution of grain size (Li et al. 2018a, b). 

Therefore, in the future, the confining pressure and grain 
size of sandstone will be studied. In addition, acoustic 
emission positioning techniques should be used to detect 
the AE source location and compare them with CT results; 
in this way, we can obtain more reliable results about the 
internal damage of sandstone.

Conclusion

This study analysed the deformation, AE, energy, and frag-
ment evolution of sandstone under different stress ampli-
tude constant–cyclic loadings. The real-time AE method 
was used during the cyclic loading stage to explore the 
acoustic behaviour of sandstone under uniaxial compres-
sion. The CT scanning technique also analysed the post-
failure sandstone specimens under different cyclic stress 
amplitudes. Based on the above results, some conclusions 
can be obtained:

1. Based on the mechanical results of sandstone specimens 
under different amplitudes in constant–cyclic loading. 
The deformation depends strongly on the stress ampli-
tude. As the cyclic loading amplitude increased, the 
strain showed a nonlinear increase, and the maximum 
stress showed an increase first and then decreased.

2. Elastic energy accounts for the largest proportion of all 
input energy. The elastic energy percentage decreases under 
increasing stress amplitude. The elastic energy shows an 
increasing trend at 5%, 10%, and 15% loading amplitudes.

3. The AE counts of sandstone under different stress ampli-
tudes were highly dependent on the stress level. Generally, 
the RA-AF peak frequency distribution directly corresponds 

Fig. 15  The influencing mechanism of the cyclic stress amplitude on the friction force between particles of sandstone
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with the stress amplitude. However, the crack propagation 
procedure is complex at higher stress amplitudes.

4. The internal fracture characteristics of sandstone under dif-
ferent stress amplitudes were investigated by slice image 
analysis and reconstructed 3D images of sandstone, and 
systematic sieving tests revealed the ultimate failure char-
acteristics of the sandstone. Shear failure patterns are the 
main part of the post-specimens. The failure modes in the 
CT scanning slice image varied with the depth and height 
position. With the increase in the stress amplitude, the 
percentage of large block and slight block mass increase, 
which means the uniformity of rock failure increases.
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