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Abstract
Landslide is a major disaster threatening the safety and orderly production of an open-pit mine, so slope stability evaluation 
is of great significance to the support and monitoring arrangement. Landslide susceptibility mapping (LSM) was widely used 
in landslide prediction. The former research focused on the algorisms to improve its accuracy, which is relatively complete 
and left little room for further improvement. In this paper, new factors, including RQD and numerical simulation (NS), are 
selected to solve the limitation of traditional LSM on the integrity and stress state of the slope. The RQD value was obtained 
by machine learning and converted into rasters by the ordinary Kriging interpolation method. The slope stress was calcu-
lated by the finite difference method and converted into raster data using a program written by Fish language. Based on the 
information value (INV) method, gradient boosting decision tree (GDBT) was used as the main algorism to generate the 
LSM-NS. Finally, because LSM-NS contains landslides that have already occurred and those in high susceptibility due to 
its stress state, commonly used validation methods such as AUROC could no longer be used. Multiple validation methods 
were applied, such as stress monitoring and UAV tilt photography. The result indicates that the stress increases with crack 
generating in the high susceptibility area of LSM-NS, where traditional LSM could not predict. Therefore, the addition of 
RQD and NS could further improve the accuracy using existing algorism. LSM-NS is recommended as the more suitable 
model for landslide susceptibility assessment in a small area due to its excellent accuracy and efficiency.

Keywords Landslide susceptibility map · Information value · Gradient boosting decision tree · Mechanics analysis · Anchor 
cable stress gauge

Introduction

Landslide is one of the major disasters threatening the 
safety of personnel and property in open-pit mine. The pre-
vention methods, such as support and monitoring, are usu-
ally deployed in the position where historical landslides 
occurred. However, subjectivity and lack of standard in 
area selection may lead to excessive support, resulting in a 
waste of resources and economic benefits reduced. Landslide 

susceptibility map (LSM) is a favorable way to evaluate land-
slide risk, which could combine sufficient factors into account 
and have a relatively thorough guideline (Fell et al. 2008).

Landslide susceptibility modeling can be classified into 
statistics and machine learning methods. Statistical methods, 
such as Analytic Hierarchy Process (AHP), Certain Factor 
(CF), Dempster-Shafer model, and Information Value (INV), 
were used to preliminarily determine the weight relation-
ship among evaluation factors (Chen et al. 2017a; Chen 
et al. 2017b; He et al. 2019; Mondal and Maiti 2013; Zhang 
et al. 2021). To improve the evaluation accuracy, machine 
learning methods such as decision tree and random forest 
achieved good results (Chen et al. 2020; Chen et al. 2021). 
The data of landslide susceptibility is strongly non-linear 
data, and deep learning methods can extract the critical 
factors from the non-linear data; CNN is more mature in 
deep learning and can solve the problem of pattern recog-
nition (Anwer et al. 2018) and also been applied to LSMs 
(Azarafza et al. 2021; Lin et al. 2023). The GBDT model 
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is more interpretable than CNN and more suitable for land-
slide susceptibility assessment (Chen et al. 2020; Huan et al. 
2022). As more and more algorithms have been applied to 
LSM, there is little room for accuracy improvement. Fortu-
nately, specific factor selection could further improve the 
accuracy of LSM.

The slope is a fuzzy system controlled by many factors, 
in which the stress and the integrity of rock mass are essen-
tial indexes to reflect the state of the slope (Tao et al. 2020; 
Zhang et al. 2019). Some research tried to combine 2D 
mechanical calculation with LSM (Xie et al. 2006; Zou et al. 
2021). However, LSM is often used in large-scale areas, and 
the complexity of modeling and calculation makes the 3D 
qualitative methods rarely considered (Akgun and Erkan 
2016). For the slope with complex deep geological structure 
and stress release caused by excavation, the 2D mechanical 
calculation cannot accurately reflect the state of the slope 
(Zhang et al. 2019), so it is of great significance to introduce 
3D mechanical analysis into the LSM.

This paper proposes a new LSM method considering 
rock integrity and mechanical analysis, which can solve 
the limitations on mechanical relations and deep geologi-
cal structure. Firstly, based on the INV method, the LSM 
is divided into five regions with different landslide risk lev-
els, providing a training dataset for GDBT. Then, based on 
ordinary Kriging interpolation, the continuous RQD grids 
were obtained and used as one of the factors. Furthermore, 
a program was developed with the FISH language embed-
ded in FLAC software to export and convert the calculated 
stress field into raster data. At last, taking the factors above, 

the landslide susceptibility map combined with numerical 
simulation (LSMNS) is redrawn by GBDT. LSMNS can pre-
dict landslide susceptibility based on the historical landslide 
location and potential landslide based on the stress state of 
the slope. The accuracy of LSM was evaluated by UAV pho-
tography, slope radar, and anchor cable stress meter monitor-
ing data. Compared with the traditional LSM, LSMNS has 
a stronger prediction ability. Thus, it provides a theoretical 
basis and support for the early prevention and control of 
mine slope.

Study area

Wushan Copper and Molybdenum Mine is located in 
the north boundary of Inner Mongolia, within longitude 
117°15′~117°20′ E and latitude 49°24′00″~49°26′30″ 
N (Fig. 1). The mining area covers about 9.84  km2. The 
area is a low hilly area with a north-east trend and an aver-
age elevation of about 750m. The highest elevation in the 
northern section is Daliitu Mountain, at 889.5m, while the 
southern section of the mine, Unugatu Mountain, is 862.8m 
and the lowest elevation is 650.7m. The natural slope of the 
hillside is mostly between 9.2 and 18.4°. The mining area 
is located in the mid-latitude region and has a temperate 
semi-arid continental climate. The spring season is charac-
terized by significant temperature changes, rapid transitions, 
windy, and relatively dry, with an average precipitation of 
32mm; the summer is short and warm, with long sunshine 
hours and concentrated and heavy rainfall, with an average 

Fig. 1  Study area and landslide inventory map

   259 Page 2 of 12



Bulletin of Engineering Geology and the Environment (2023) 82:259

1 3

precipitation of 212.7mm. There are few water systems in 
the area and no rivers formed.

The maximum height of the final slope is about 510m 
with slope angle of 43–45°. At present, the lowest mining is 
605m. The highest point of the pit is 855m at the top of the 
east slope, and the height difference is 250m, which belongs 
to the high steep slope. Black mica granite is widely exposed 
within the mine area, covering over 60% of the area. Other 
lithology is shown in Fig. 6d.

With the continuous expansion of rock mass exposed by 
mining, the stability of rock mass becomes worse and worse 
under the action of faults, joints, and weathering, resulting 
in 27 landslides of different scales.

Methods

Methods used in this study mainly include the following 
steps (Fig. 2): (1) UAV tilt photogrammetry and data set 
establishment; (2) RQD value obtaining and its grid gener-
ated by the ordinary Kriging interpolation method; (3) pre-
liminarily evaluation of the landslide susceptibility using 
the information value method; (4) selection of stable slope 
samples in the area with very low landslide risk; (5) land-
slide susceptibility using gradient boosting decision tree; 
(6) 3D model construction and calculation of the stress; (7) 

landslide susceptibility mapping using the LSM-NS method; 
and (8) comparison and verification of results.

Information value

Information value is a statistical analysis method developed 
from information theory (Yin 1988), which was modified 
and first applied in the field of mineral resources (Westen 
and Bonilla 1994). It has been gradually used for landslide 
susceptibility in recent years.

The INV measures the contribution rate of a particular 
factor to landslide based on grids in geological information 
system (GIS). The evaluation factors were segmented and 
the landslide grids in each section were counted. The more 
landslide grids contained in a grade of a factor, the more 
landslide susceptibility of this grade is. The information 
value I of each causative factor Xi can be expressed as:

where T is the total number of grids in the study area, N 
is the total number of grids in which landslides occurred, Ti 
is the grids number of fa Xi, and Ni is the grids number of 
factor Xi in which landslides occurred.

I
(

Xi, S
)

= ln
Ni∕N

Ti∕T

Fig. 2  Flowchart of the study
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After calculating all the information values, the suscep-
tibility in a single grid is the sum of the information values 
of each factor:

Gradient boosting decision tree

The gradient boosting algorithm is a machine learning 
method for regression and classification problems and gen-
erally forms prediction models by the combination of weak 
prediction models (Friedman 2002). Gradient boosting deci-
sion tree is a representative boosting algorithm combined 
with decision tree (Elith et al. 2008; Schapire et al. 2005), 
which can flexibly process continuous and discrete data, and 
has extreme robustness to outliers. This model can identify 
complex nonlinear relationships while calculating the rela-
tive importance of variables. The GBDT algorithm can learn 
the combination of data features that are beneficial to the 
judgment of prediction results and enrich the data features, 
which is very suitable for optimizing landslide susceptibility. 
The GBDT algorithm was developed in Python using the 
GBDT class library of scikit-learn.

Factor selection

The selection of landslide susceptibility factors is the basis 
and critical problem of LSM. There are 13 evaluation factors 
commonly used in landslide susceptibility mapping (Fell 
et al. 2008); some factors such as rainfall and vegetation 
coverage rate have little change in the mining area, while 
RQD and clay mineral content have a significant influence 
on the slope stability and can be obtained due to the reduc-
tion of the evaluation range. Therefore, elevation, slope, 
aspect, lithology and fault, expansive mineral content, and 
RQD are selected to predict landslide susceptibility.

(1) Elevation

The elevation is relevant to the exposure time of the slope, 
along with the degree of weathering and erosion (Liu et al. 
2020a). The increase in height also provides a more effec-
tive surface and slide force for landslides, which is closely 
related to the occurrence of landslides (Fig. 6a).

(2) Slope

The slope is an essential factor in evaluating slope sta-
bility. Many scholars have studied the relationship between 
slope and landslide (Bandara and Ohtsuka 2017; Xie et al. 
2019). Unlike the natural slope, the slope angle of open pit 

I =

n
∑

i

I
(

Xi, S
)

=

n
∑

i

ln
P
(

Xi, S
)

P
(

Xi

)

mine was always selected as large as possible (Liu et al. 
2020c), which leads to less viscous force and more sliding 
force of the potential sliding surface and brings larger risks 
for landslide (Fig. 6b).

(3) Aspect

Aspect is a controversial factor for LSM in open-pit 
mines. Some considered aspect could hardly affect stabil-
ity in a relatively small area. However, support has been 
found in an open-pit mine in Inner Mongolia, whose north 
slope has a better stability compared to its south slope with 
little difference in geological condition. Different solar 
radiation intensity affects water evaporation, groundwater 
distribution, and rock mass’ mechanical characteristics 
(Fig. 6c).

(4) Lithology and fault

Many investigations show that the regional distribution 
of landslides is remarkably concentrated in slope with weak 
lithology. The fault fracture zone makes the rock mass lose 
its continuity and integrity, which further decreases the 
strength of the rock mass and increases the risk of landslide 
(Fig. 6d).

(5) Expansive minerals

Rapid snowmelt in spring and rainfall in summer lead 
to a large amount of water infiltration into the slope, and 
volume of expansive minerals can increase about 30% 
(Matsukura and Mizuno 1986; Zhang et al. 2016), which 
causes the expansion of the rock mass’ primary fractures, 
and produces secondary fractures. According to the geologi-
cal survey, abundant expansive minerals such as illite and 
montmorillonite exist in the internal structure and joints of 
the slope of Wushan open-pit mine (Fig. 6e).

(6) RQD

RQD is a quantitative index to measure rock quality, 
which is a specific parameter to reflect the degree of rock 
integrity (Zhang 2010; Zhang et al. 2012). Therefore, RQD 
has become essential to engineering rock mass evaluation 
(Madani et al. 2018). From the perspective of rock mass 
integrity alone, the higher RQD value is, the lower landslide 
susceptibility value should be. There are 9605 core images 
from 160 boreholes collected from Wushan open-pit mine. 
The drilling was carried out from 2007 to 2010. The explora-
tion line distance was 100 m, and the core recovery rate was 
recorded in each core image (Fig. 3).

To obtain the RQD of the whole evaluation range, the 
current RQD value is converted into a data set, and the 
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ordinary Kriging interpolation method is used to generate 
raster data (Fig. 7f).

(7) Mechanical analysis

The distance from slope to fault is often used as an eval-
uation factor in LSM (Abedini and Tulabi 2018; Lin et al. 
2017). However, the distance division is too subjective, and 
faults with different mechanical properties are usually treated 
equally, which is unreasonable considering mechanics. 
Numerical simulation is a common stability analysis method 
in open-pit mine. The calculation model contains the structure 
and mechanical properties of rock mass and faults (Fig. 4).

This paper uses the finite difference method to calculate 
the slope’s stress and displacement. Considering the Mohr-
Coulomb criterion for geotechnical mechanics (Fig. 5):

where σ3 and σt are tensile stress and uniaxial tensile 
strength of rock mass. When σ3 ≥ σt, tensile failure occurs. 
(Fig. 6).

σ3 ≥ σt

where σ1and σ3 are the maximum and minimum principal 
stresses, and c and φ are the cohesion and internal friction 
angles. Shear failure will occur when fs>0.

As the number of selected factors increases, some factors 
with strong correlation will influence the model’s prediction 
accuracy. The correlation coefficients among the selected 
factors are calculated (Table 1). Pearson correlation coef-
ficient is calculated by the following formula:

where σX 、 σY is the standard deviation of X and Y, and 
COV(X, Y) is the covariance of X and Y.

The result shows that there is no apparent correlation 
among the factors. The factors are converted into raster and 
re-graded. The study area is composed of 43221392 grids 
of 0.5 × 0.5m.

Results

Information value

According to the information value (Table 2), the slope 
located in 690–780m has a positive susceptibility, which is 
reasonable due to longer exposure time and more merged 
stages. The slope angle between 30 and 70° has a similar 
value because the average angle is 60°, and nearly all land-
slides occurred only conclude single stage in Wushan open-
pit mine. For the aspect factor, slopes facing north (315–90) 
have a relatively high risk, which confirms that the aspect 
does affect slope stability. Fault, due to its low integrity and 

fs = �1 − �3

1 + sin�

1 − sin�
− 2c

√

1 + sin�

1 − sin�

ρ(X,Y) =
COV(X, Y)

�X�Y

=
E
[(

X − �X

)(

Y − �Y

)]

�X�Y

Fig. 3  RQD based on machine learning (Liu et al. 2020b)

Fig. 4  Calculation model

Fig. 5  Mohr-Coulomb criterion
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Fig. 6  Landslide influencing factors maps: a elevation; b slope; c aspect; d lithology; e clay minerals; f RQD
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Table 1  Pearson correlation of 
each factor

Elevation Slope Aspect Lithology and faults Expansive minerals RQD

Elevation 1
Slope −0.05018 1
Aspect −0.00733 −0.02868 1
Lithology and faults −0.03461 0.02545 −0.04744 1
Expansive minerals −0.00533 0.01924 −0.02286 −0.05535 1
RQD −0.13286 −0.09872 0.09598 −0.00433 −0.06584 1

Table 2  Segmentation and 
information values of evaluation 
factors

Influencing factors Classes Landslide grids Class grid Information volume

Elevation(m) 608–630 298 2172076 −4.14875
630–660 6922 3189310 −1.38751
660–690 34875 5449129 −0.30609
690–720 104540 6969137 0.545671
720–750 91094 7112776 0.387592
750–780 113598 9407414 0.32876
780–810 24355 6905772 −0.90203
810–846 0 2015778 0

Slope(°) 0–10 14669 30010893 −2.87823
10–20 9787 4492890 −1.38385
20–30 29296 2326902 0.370506
30–40 87399 1813408 1.712869
40–50 99520 1773053 1.865248
50–60 80460 1608797 1.749866
60–70 48510 965726 1.754238
70–80 5941 203454 1.211785
80–90 100 26273 −0.82578

Aspect(°) 0–45 47467 5791327 −0.05873
45–90 62499 4010550 0.583815
90–135 43096 3698345 0.293137
135–180 2837 4309777 −2.58055
180–225 1432 5270876 −3.46553
225–270 26338 6273487 −0.72773
270–315 78794 7358331 0.208596
315–360 113219 6508703 0.693776

Lithology Group3 255556 31500513 −0.06897
Group1 61608 3478720 0.71172
Group2 30651 4573687 −0.26006
Fault 45261 885545 1.77159

RQD < 20% 217073 11496110 0.775818
20–40% 143276 11273309 0.379928
40–60% 13353 7110647 −1.53226
60–80% 301 8009639 −5.4437
80–100% 1679 7454112 −3.65297

Expansive minerals ≤ 15% 47748 25583026 −1.49046
15%–30% 125849 15374258 −0.01208
≥ 30% 202085 4386533 1.71568
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cohesion, is significantly large (1.77) compared with other 
lithology, which is the main controlling factor in Wushan 
open-pit mine. The expansive mineral content is propor-
tional to landslide susceptibility, while RQD is the opposite. 
The information value of each factor is shown in Table 2.

Gradient boosting decision tree

Based on the landslide susceptibility map generated by the 
INV, stable samples are randomly selected in very low land-
slide susceptibility areas. Data sets contain 9214 grids which 
were divided into verification sets and training sets in a 3:7 ratio. 
To improve the model’s prediction ability, parameters such as 
learning rate in GBDT are adjusted and optimized according to 
the prediction results (Table 3). The Huber method is selected 
as the loss function, and a smaller quantile alpha is chosen to 
enhance the model’s adaptability to the data set.

Mechanics analysis

Unlike the natural slope, stress unloading caused by exca-
vation changes the distribution of stress and displacement 

of the slope. Flac3D software is used to calculate the 
maximum principal stress and maximum shear stress 
of Wushan open-pit mine after excavation from 2018 to 
2020 (Fig. 7). Rock mechanical parameters are shown in 
Table 4. According to the calculation results, lithology, 
faults, and different mechanical parameters of slope lead 
to uneven stress distribution under the effect of excavation. 
Slopes in high stress areas tend to landslide even if there 
is no landslide that happened before. Therefore, the pre-
diction ability of LSM can be improved considering slope 
stress status. A program was developed by Fish language 
to export the calculation result into vector data sets and 
then converted into raster data in SuperMap software.

Landslide susceptibility mapping

Landslide susceptibility using INV is similar to that gener-
ated by GBDT, but LSM generated by GBDT decreases the 
landslide susceptibility of the non-mining area and shows a 

Table 3  Parameters of gradient 
boosting decision tree

Parameter Value

n estimators 80
Learning rate 0.1
Subsample 0.8
Loss Huber
Alpha 0.7

Fig. 7  Simulation result: a maximum principle stress; b maximum shear stress

Table 4  Rock mechanical parameter

Lithology Cohesion 
(KPa)

Friction 
angle 
(°)

Young 
modulus/
Gpa

Poisson’s ratio

Dacitic brec-
cia

330 35 15.37 0.18

Fault 125 29 13.32 0.17
Biotite granite 400 37 17.78 0.31
Granite por-

phyry
310 34 9.98 0.29
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better ability in landslide prediction, so GBDT was selected 
as the main algorism of LSM. By comparing the LSM with 
and without RQD factor and numerical simulation, three 
major differences are found (Fig. 8). In LSM-NS, the land-
slide susceptibility of area 1 and area 3 was heightened; 
according to the record, there are landslides that occurred 
in these areas during the mining process, but little landslide 
happened in area 2. Zone 3 is the location of fault F5, where 
small-scale landslides often occur, posing a threat to the ore 
transport corridor. During the support, a landslide occurred 
in this area, resulting in equipment loss. There has been no 
landslide in area 1 so far; due to the excavation of rock mass 
on three sides, its stability will continue to weaken. Accord-
ing to the situations above, LSM-NS shows a better ability in 
landslide susceptibility mapping. Then, based on the Natural 
breakpoint method, the LSM-NS map was divided into five 

levels. The distribution of LSM-NS risk levels is shown in 
Table 5.

Susceptibility assessment and validation

Landslide data sets are often divided into training sets and 
test sets, and the test sets are used to evaluate the prediction 
accuracy. AUC is mainly used to measure the accuracy of 
the landslide susceptibility map (Bui et al. 2016; Pham et al. 
2018; Tien Bui et al. 2017). However, it is still a verifica-
tion of the existing data, which could not fully represent the 
prediction ability of the algorism. To verify the landslide 
susceptibility, anchor cable stress gauges were deployed in 
areas mentioned in 5.4 (Fig. 9).

This study selects the monitoring data until November 
2, 2021. The mean value of each group is shown in Fig. 10. 

Fig. 8  Landslide susceptibility map using: a INV; b GBDT; c LSMNS

Table 5  Landslide susceptibility 
zoning raster statistics

Landslide 
susceptibility

Landslide grids Proportion of 
landslide

Total grids Grid Proportion Landslide ratio(%)

Very low 0 0 5614095 0.129892 0
Low 12397 3.299865 18133872 0.419558 0.068364
Moderate 26299 7.000335 14734840 0.340915 0.178482
High 278472 74.12439 4429189 0.102477 6.287201
Very high 65514 17.43868 309396 0.007158 21.17481
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There will be two stages after the installation of anchor cable 
stress meter (Yang et al. 2020). The first is the stress relaxa-
tion stage caused by the creep of anchoring rock mass. Sig-
nificant stress fluctuation always occurs during this period, 
so the monitoring value is unavailable for slope stability 
assessment. In the second stage, the stress curves become 
smooth. According to the data, the southeast slope is stable 
after cutting slope treatment, while the stress of southwest 
750m platform keeps fluctuating between −2kN and 5kN. 
The increase mainly shows in the southwest 765m platform 
and the crush station with 7kN and 10kN in 10 days, which 
is consistent with the LSMNS.

Discussions

The monitoring result shows that LSMNS can effectively 
improve the limitation in mechanical mechanisms and deep 
geological structure, thereby improve the prediction accu-
racy and prediction ability of landslide susceptibility. In the 
past decades, scholars have used statistical methods or com-
bined with machine learning methods to evaluate landslide 
susceptibility. These studies have contributed greatly to the 
advance of methods; however, little research has taken RQD 
as a factor or combined with mechanical analysis.

LSM is based on the theory that landslides in an area 
always have similar characteristics and regular distribu-
tion. But some slopes, especially artificial slopes, tend to 
landslide in non-regular areas, which is usually influenced 
by deep geological structures and excavation. LSM has 
few predictions ability in this kind of landslide. Based on 

Mohr-Coulomb theory, the calculation of stress, displace-
ment, and safety factor has been widely used in slope stabil-
ity analysis and is a recognized effective method (Kumar 
et al. 2017; Liu et al. 2020a; Umrao et al. 2017). However, 
some factors such as slope direction, clay mineral content, 
and angle between the structural plane and slope surface are 
often difficult to be reflected in mechanical analysis model-
ling. GIS technology has advantages in reflecting these fac-
tors. Therefore, LSM combined with mechanical analysis 
can improve their limitations and comprehensively evaluate 
slope stability.

AUC is often used in LSM accuracy measurement. This 
method requires landslides to be randomly divided into 
training and validation sets. However, these methods take 
historical landslides as the validation set, which can only 

Fig. 9  Monitoring design based 
on landslide susceptibility map

Fig. 10  Tendon anchorage dynamometer curve
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prove the prediction accuracy for existing landslides, but not 
the prediction ability for potential landslides. Stress value 
is an important index reflecting the stability of geotechni-
cal engineering. Monitoring data has higher rationality and 
scientific connotation to measure the results of landslide 
susceptibility.

The LSM based on mechanical analysis proposed in this 
paper is applied to open-pit mines to assist with early sup-
port schemes. With the mining process, the slope condi-
tions are constantly changing. Therefore, a static landslide 
susceptibility map still cannot fully meet the needs of slope 
stability evaluation.

Conclusions

Open-pit mine landslide susceptibility analysis improves the 
visualization and precision of landslide prediction and may 
satisfy the need of early protection and treatment of mine 
slopes. In this study, five factors suitable for open-pit mine 
were selected from 13 commonly used landslide suscepti-
bility factors. Considering the determinants of mine slope 
stability, new factors relevant to open-pit mine landslide 
susceptibility mapping were proposed.

This method considers the influence of rock integrity and 
mechanical relationship on slope stability. Rock integrity is 
measured by the RQD index. Based on the core data of 160 
boreholes, the rock integrity grid is obtained by the ordinary 
Kriging interpolation method. Based on Fish language, the 
stress is calculated by Flac3D software and converted into 
raster data. Using this method, the landslide source area is 
determined through the combination of UAV, slope radar, 
and other monitoring means, which can provide a sufficient 
basis for formulating an early slope protection plan.

Moreover, this study suggests that the LSMNS method 
has certain advantages and prospects in improving the rea-
sonability and applicability of landslide susceptibility evalu-
ation in the mining area. The innovation of this method lies 
in the reasonable adjustment of evaluation factors according 
to the evaluation scope and the addition of more detailed 
factors. Based on the traditional landslide susceptibility map 
theory, it believes that landslides are spatially aggregated 
and affected by the slope failure mechanism.

Finally, the proposed method is applied to a case study of 
Wushan open-pit mine, and various monitoring methods are 
arranged to verify the prediction results. The LSMNS results 
are in accordance with the actual disaster situation and the 
monitoring results, which strongly suggest that LSMNS can 
provide specific guidance for evaluating open-pit landslide 
susceptibility.

In addition, an accurate landslide susceptibility map can 
better guide the formulation of slope support treatment plan 
to reduce the cost of slope treatment under the premise of 

ensuring mine safety. Therefore, the landslide susceptibility 
map prepared in this study will help mine decision-makers 
better plan the mining sequence and construction location 
of critical facilities, which is applicable to Wushan open-pit 
mine and other landslide-prone areas with similar conditions 
in the world.
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