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Abstract
Affected by discontinuities, the properties of rock masses are characterized by strong scale dependency and anisotropy. 
Rock mass samples taken at any scale smaller than the representative elementary volume (REV) size could lead to an 
incorrect characterization and property upscaling. To better understand the sampling problem, numerical tests based on an 
outcrop-data-based discrete fracture network (DFN) model were conducted, trying to determine the REV size and its anisot-
ropy. The model was validated and subsequently sampled to produce 455 rectangular samples with a width ranging from 0.05 
to 21 m and a constant height-to-width ratio of 2. The samples were introduced into a 3D particle flow code model to create 
synthetic rock mass (SRM) samples. Numerical uniaxial compressive tests at different loading directions were performed 
to study the scale dependency and anisotropy of mechanical parameters. The results show that the mechanical REV sizes 
in different directions differ, changing between 7 and 19 m. The mechanical properties of rock mass samples in a REV size 
exhibit strong anisotropy, with the values of uniaxial compressive strength (UCS) and elastic modulus (E) varying from 5.6 to 
10.3 MPa and 3.9 to 8.0 GPa, respectively. The simulated values of UCS were validated based on GSI and the Hoek–Brown 
failure criterion. The geometrical REV size based on the volumetric fracture intensity was calculated to be 7 m, equal to the 
minimum of the mechanical REV size; this suggests that the geometrical REV defines the lower bound of the REV size.

Keywords Anisotropy · Scale dependency · Representative elementary volume · Fracture network model · Synthetic  
rock mass

Introduction

The mechanical properties of rock masses and their anisot-
ropy are critical for the design of engineering structures, 
such as radioactive waste disposal, deep-buried tunnels, 
and hydropower dams. Affected by geological disconti-
nuities, the properties of rock masses are characterized by 
strong scale dependency and anisotropy (Bieniawski 1968; 

Oda 1983; Cho et al. 2012; Park and Min 2015; Wu et al. 
2020; Zheng et al. 2020). The strength, deformability, and 
permeability parameters obtained from rock samples in the 
laboratory rarely represent the parameters of rock masses at 
the engineering scale (Hudson and Harrison 1997; Wu and 
Kulatilake 2012; Khani et al. 2013). Although in situ tests 
provide an insight into the mechanical behaviors of rock 
masses under loading, they are expensive, time-consuming, 
and have uncertainty in determining whether the size of the 
influenced zone is large enough to represent the overall rock 
mass (Bieniawski 1973; Oda 1988). Therefore, it is still a 
challenge to obtain effective mechanical properties of rock 
masses for engineering purpose.

The representative elementary volume (REV), defined as 
the minimum volume beyond which the tested rock samples 
behave like the whole rock mass (Bear 1972; Oda 1988), 
provides a way to quantify the size-dependent property of the 
mechanical properties (Esmaieli et al. 2010). It determines 
whether a jointed rock mass could be treated as an equivalent 
continuum since there is no guarantee that a REV always 
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exists (Long et al. 1982; Min et al. 2004; Azizmohammadi 
and Matthäi 2017).

Numerous studies on REV have been conducted in the 
past to quantify the size of REV. To date, the parameters used 
to determine the REV size can be grouped into three board 
categories: (1) hydraulic parameters (Oda 1982, 1988; Long 
1982; Wang et al. 2002; Min et al. 2004; Azizmohammadi 
and Matthäi 2017), (2) geometrical parameters (Hudson and 
Harrison 1997; Li et al. 2018), and (3) mechanical parameters 
(Min and Jing 2003; Wu and Kulatilake 2012). A variety 
of hydraulic parameters are used to determine the existence 
of REV, such as block permeability (Kulatilake and Panda 
2000), hydraulic conductivity (Wang et  al. 2002), and 
permeability tensor (Min et al. 2004; Chen et al. 2008; Zou 
et al. 2018). The REV size is also considered a function of 
geometrical parameters of fractures, such as fracture spacing 
(Pariseau et al. 2008), fracture intensity (Esmaieli et al. 2010; 
Zhang et al. 2012; Ni et al. 2017), blockiness (Xia et al. 
2016), and fracture connectivity (Li et al. 2018). For example, 
Pariseau et al. (2008) and Xia et al. (2016) indicated that the 
REV size is 2 to 20 times fracture spacing. The mechanical 
parameters used to quantify the REV size mainly include 
uniaxial compressive strength (UCS), elastic modulus, 
Poisson’s ratio, and shear modulus. For example, Min and 
Jing (2003) and Khani et al. (2013) determined the REV 
size of rock masses using the elastic modulus and Poisson’s 
ratio. Esmaieli et al. (2010) and Laghaei et al. (2018) utilized 
elastic modulus and UCS to estimate the REV size based on 
a series of numerical uniaxial compressive tests. Wang et al. 
(2017) studied scale effects, REV, and anisotropic properties 
of rock masses using shear stress obtained by numerical 
direct shear tests. Wu et al. (2019) obtained the REV size of 
the rock mass in the Xiaowan hydropower station based on 
UCS. Huang et al. (2020) proposed a method combining the 
PFC-based synthetic rock mass model with the Hoek–Brown 
failure criterion to determine the REV size using UCS, elastic 
modulus, and geological strength index (GSI) and found that 
the GSI-based indicator yielded relatively larger REV size 
compared with traditional UCS or deformation modulus-
based indicators.

The following limitations should be considered in the 
estimation of the REV size:

1. Since geometrical parameters only provide information 
on structural characteristics of a rock mass, they cannot 
wholly reflect the mechanical behaviors, and thus, they 
can only be used for initial estimation of the REV size 
in a time-efficient manner (Ni et al. 2017; Huang et al. 
2020);

2. Hydraulic parameters are mainly derived from two-
dimensional networks, which inevitably underestimate 
the connectivity and permeability of three-dimensional 
networks (Lang et al. 2014); and

3. The mechanical properties of rock mass are character-
ized by strong anisotropy. Accordingly, the REV sizes 
in different directions vary attributed to the anisot-
ropy (Wang et al. 2017; Wu et al. 2019), which has 
not been considered by previous work when estimat-
ing the REV size.

The Songta dam, located on the upstream of the Nu River 
in southwest China, is designed to be a double-curved arch 
dam with a maximum height of 318 m (Li et al. 2014). The 
determination of rock mass strength and deformation proper-
ties is important in evaluating the rock mass stability at the 
dam site. This paper presents an investigation on the scale 
dependency and anisotropy of mechanical properties of the 
rock mass. A three-dimensional (3D) discrete fracture net-
work (DFN) model was built based on joint data collected 
from an exploration tunnel at the dam site. The model was 
validated and subsequently sampled to procure 455 rectan-
gular specimens with a width ranging from 0.05 to 21 m and 
a constant height-to-width ratio of 2. The specimens were 
introduced into a 3D particle flow code (PFC3D) model 
to create synthetic rock mass (SRM) samples. Numerical 
uniaxial compressive tests with different loading directions 
were conducted to obtain the UCS and elastic modulus of the 
SRM samples. The REV size of the rock mass was finally 
determined.

Generation of a fracture system model

Data collection

Fracture mapping was conducted in an excavation tunnel at 
the Songta dam site on the upstream of Nu River in south-
west China. The lithology is mainly composed of Cretaceous 
biotite granite. Besides, mafic intrusive rocks outcrop as 
dykes with width ranging from 0.05 to 5 m (Li et al. 2017). 
The tunnel is 200 m long, 2 m wide, and 2 m high, with a 
strike of E-W. According to the unloading and weathering 
degree, the rock mass along the tunnel is divided into three 
zones: strongly disturbed zone, weakly disturbed zone, and 
undisturbed zone (Han et al. 2016). A total of 128 joints 
were collected from a relatively homogeneous area with a 
length of 80 m using the window sampling method (Wu 
and Pollard 1995; Mauldon et al. 2001; Manda and Mabee 
2010; Li et al. 2014) (Fig. 1a): all the joints that intersect the 
south-side wall of the tunnel, with trace length longer than 
0.5 m, were mapped. The joints were grouped into three sets 
using the fuzzy K-means algorithm (Hammah and Curran 
1999), as shown in Fig. 1b: (1) set 1 composed of joints with 
shallow dip angles, (2) set 2 composed of steeply dipping 
joints, and (3) set 3 composed of moderately dipping joints.
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Estimation of UCS using GSI

The UCS of rock mass (σcm) is estimated using the 

Hoek–Brown failure criterion and the geological strength 

index (GSI) (Hoek and Brown 1997; Marinos and Hoek 

2000):

where σc is the UCS of intact rock mass which is equal to 

127.0 MPa in this work (Zhao and Huang 2018), and s is 

rock mass strength characteristic parameters. The value of 

GSI varies between 45 and 55 based on geological condi-

tions and rock types. According to Eqs. (1) and (2), the value 

of σcm varies from 6.0 to 10.4 MPa.

Fracture network modeling

The three-dimensional discrete fracture network (DFN) 

model used in this work was built by our previous research 

(Han et al. (2016)). The distribution types of joint geom-

etry parameters were obtained using statistical analysis. The 

parameters used for establishing the DFN model are listed 

in Table 1 (Han et al. 2016). To build a 3D DFN model, 

the statistical distributions for (1) the location of fracture 

centers, (2) orientation, and (3) diameter (Kulatilake et al. 

2003) should be determined. In this work, the geometry of 

a joint was considered a disk with the center following a 

homogeneous Poisson distribution (Kulatilake et al. 2003; 

Min et al. 2004; Hardebol et al. 2015; Han et al. 2016). Joint 

orientations were assumed to follow empirical distributions 

(Oda 1982; Kulatilake et al. 1993). The joint diameter can 

be estimated based on the trace length distribution using the 

stereological method (Warburton 1980; Zhang and Einstein 

1998). If the trace length has a lognormal distribution with 

mean μL and standard deviation σL, the mean diameter μD 

is calculated by the following (Zhang and Einstein 1998, 

2000):

(1)𝜎
cm

= 𝜎
c
s

0.5

(2)s = exp
(GSI − 100)

9

Fig. 1  a Fracture mapping in a tunnel using the window sampling 

method. b Upper-hemisphere and equal-area projections of 128 

joint orientations obtained from a relatively homogeneous area with 

a length of 80  m in the undisturbed zone. The joints were grouped 

into three sets: set 1 composed of joints with shallow dip angles, set 

2 composed of steeply dipping joints, and set 3 composed of moder-

ately dipping joints

Table 1  Fracture modelling parameters for the study region (Han et al. 2016)

Joint set Joint number Dip direction (°) Dip (°) Fisher constant Measured trace length Joint size Joint 

density 

 (m−3)Mean (m) Std. (m) Distribution Mean (m) Std. (m)

1 35 100.6 11.8 28.40 2.19 1.57 Gamma 2.02 1.65 0.160

2 19 265.0 82.2 10.87 1.48 0.57 Lognormal 3.55 0.90 0.030

3 74 113.3 48.3 17.11 1.35 0.79 Lognormal 3.86 1.89 0.062
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If the trace length follows a Gamma distribution, μD is 
obtained by the following (Zhang and Einstein 1998, 2000):

The volume density �V
i
 can be estimated using the normal 

linear density �1
i
 (Oda 1982; Kulatilake et al. 1993; Zhang 

and Einstein 2000).

where E(D2) is the second moment of the joint diameter 
distribution.

The size of the 3D DFN model was set as 100 m × 60 m  
× 60 m. The Monte-Carlo method was used to simulate the 
location, orientation, and size of joints according to their 

(3)�
D
=

128(�
L
)3

3�3[(�
L
)2 + (�

L
)2]

(4)�
D
=

64(�
L
)2 − 3�2[(�

L
)2 + (�

L
)2]

8��
L

(5)�V
i
=

4�1
i

�E(D2)

statistical parameters using a Poisson process (Chen et al. 
1995; Hardebol et al. 2015). Finally, a 3D DFN model was 
established by combining the three geometry parameters 
into one model (Fig. 2). The model was verified by com-
paring joint data measured in the tunnel with the simulated 
joint data obtained from an artificial sampling window in 
the DFN model which has the same size and location as the 
field sampling plane. The compared parameters include the 
number of joints, mean dip direction, mean dip angle, mean 
trace length, and spherical standard deviation, as listed in 
Table 2. Table 2 shows that the simulated joint data agree 
well with the field data.

Synthetic rock mass models

In this study, a series of numerical simulations using the 
3D particle flow code (PFC3D) were carried out. A syn-
thetic rock mass (SRM) technology was used to simulate 
jointed rock masses. In SRM, rock matrix is represented as 

Fig. 2  3D DFN model (red lines 
joint set 1, blue lines joint set 
2, green lines joint set 3). In the 
model, the x-direction refers 
to the west, and the y-direction 
refers to the south
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Table 2  Comparison between 
the field data and the simulated 
data obtained from the DFN 
model

Joint set Joint number Dip direction (°) Dip (°) Trace 
length (m)

Spherical Std. (°)

1 Field 35 100.6 11.8 2.19 8.75
Simulated 34 89.8 8 2.47 9.88

2 Field 19 265 82 1.48 14.43
Simulated 20 272.5 79 1.26 13.08

3 Field 74 113.3 48.3 1.35 10.01
Simulated 73 112.1 45.3 1.65 9.85
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an assembly of bonded particles using the bonded particle 
model (BPM) (Potyondy and Cundall 2004), and disconti-
nuities are simulated by the smooth joint model (SJM) (Ivars 
et al. 2008, 2011). The SRM model is established by inte-
grating a DFN within PFC3D particle assembly. Figure 3 
shows the main components of a SRM sample.

Micro‑parameters of the bonded particle model 
for intact rocks

PFC3D simulates rock matrix and discontinuities by assign-
ing microscopic parameters to particles and contact models, 
rather than directly using mechanical parameters obtained 
from laboratory tests. The contact model between particles 
in BPM for intact rocks is the parallel bond model (PBM). 
The micro-parameters of the PBM and SJM need to be cali-
brated to fit the laboratory properties in a trial-and-error 
manner (Potyondy and Cundall 2004; Bastola et al. 2020).

In this research, calibration of the micro-parameters of 
intact rock models was carried out by performing a series 
of uniaxial compressive tests (Fig. 4a) and comparing the 
simulation results with the laboratory test results. The wall-
based loading procedure in PFC3D (Esmaieli et al. 2010) 
with a displacement rate of 0.15 m/s was applied on 13 
intact rock models with a constant height-width ratio of 2 
and width ranging from 0.05 m to 21 m (i.e., 0.05, 0.5, 1, 
3, 5, …, 21 m). It is assumed that the strength of the intact 
rock samples with different sizes remains constant. The tar-
get values of uniaxial compressive strength (UCS), elastic 
modulus (E), and Poisson’s ratio (v) of the intact rock mod-
els with different sizes are 127.0 MPa, 38.7 GPa, and 0.15, 
respectively (Zhao and Huang 2018). Poisson’s ratio v was 
obtained by calibrating the normal-to-shear stiffness ratio 
kn/ks, the effective modulus E was modified to acquire the 
target elastic modulus, and the uniaxial compressive strength 
(UCS) was obtained by calibrating bond tensile strength and 

(a) BPM simulation of intact rock (b) SRM (c) SJM simulation of discontinuities

Fig. 3  Schematic diagram of the SRM model, where BPM and SJM are used to represent intact rock and discontinuities, respectively

Fig. 4  Numerical tests used in 
the calibration

Structural plane

Servo-Top pressure

(a) Uniaxial compressive test (b) Direct shear test
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bond cohesion. The particle properties were calibrated until 
comparable macroscopic rock properties are achieved. The 
micro-properties of particles and PBM are listed in Table 3, 

respectively. The intact rock models with different sizes 
were calibrated to UCS of 125.1 to 131.2 MPa, E of 38.2 to 
38.7 GPa, and v of 0.15 (Table 4).

Micro‑parameters of the smooth joint model 
for fractures

In the study area, the properties of joints in different sets vary. 
Joints of set 1 have shallow dip angles and are mainly filled 
by rock debris and mud, whereas most of joints in sets 2 and 
3 have no filling. According to previous work conducted by 
Zhao and Huang (2018), the friction coefficient of joints in set 
1 ranges from 0.35–0.45, and the friction coefficient of joints 
in sets 2 and 3 ranges from 0.45–0.70. Besides, all joints in 
the model are assumed to be cohesionless (Zhang et al. 2015).

The smooth joint model (SJM) was used to simulate the 
behavior of a planar interface. The model has three input 
microparameters: normal stiffness, shear stiffness, and fric-
tion coefficient. As shown in Fig. 4b, the direct shear test 
was conducted to calibrate the microscopic parameters of 
SJM. The velocities of the sidewalls were adjusted using 

Table 3  Micro-parameters of the BPM models

ρ  density, Rmin  minimum particle radius, Rmax  maximum particle radius, μ  friction coefficient of particles,  Ec  parallel bond modu-
lus, kn ∕ kn parallel bond normal-to-shear stiffness ratio, �

c
 parallel bond tensile strength, c parallel bond cohesion, � parallel bond friction angle

Sample size (m) ρ (kg/m3) Rmin (m) Rmax/Rmin Porosity μ Ec (GPa) kn ∕ks   �
c
(MPa) c (MPa) � (°)

0.05 2670 0.00075 1.66 0.35 0.5 34 1.1 70 130 50
0.5 2670 0.0075 1.66 0.35 0.5 34 1.1 70 130 50
1 2670 0.015 1.66 0.35 0.5 34 1.1 70 130 50
3 2670 0.045 1.66 0.35 0.5 34 1.1 70 130 50
5 2670 0.075 1.66 0.35 0.5 34 1.1 70 130 50
7 2670 0.105 1.66 0.35 0.5 34 1.1 70 130 50
9 2670 0.135 1.66 0.35 0.5 34 1.1 70 130 50
11 2670 0.165 1.66 0.35 0.5 34 1.1 70 130 50
13 2670 0.195 1.66 0.35 0.5 34 1.1 70 130 50
15 2670 0.225 1.66 0.35 0.5 34 1.1 70 130 50
17 2670 0.255 1.66 0.35 0.5 34 1.1 70 130 50
19 2670 0.285 1.66 0.35 0.5 34 1.1 70 130 50
21 2670 0.315 1.66 0.35 0.5 34 1.1 70 130 50

Table 4  Mechanical properties calculated from the intact rock models

Sample size (m) UCS (MPa) E (GPa) v

0.05 130.8 38.3 0.15
0.5 125.1 38.2 0.15
1 131.2 38.2 0.15
3 131.8 38.4 0.15
5 127.8 38.2 0.15
7 127.3 38.4 0.15
9 126.0 38.3 0.15
11 125.9 38.7 0.15
13 126.0 38.3 0.15
15 126.5 38.4 0.15
17 126.6 38.3 0.15
19 125.3 38.4 0.15
21 127.9 38.3 0.15

Fig. 5  Shear stress–shear 
displacement graphs at different 
normal stresses

(a) Joints of set 1 (b) Joints of sets 2 and 3
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a servo-control mechanism so that a target pressure was 
applied to the top of the model. The lower sidewalls were 
immobile and the upper sidewalls were moved horizontally 
with a fixed speed to apply the shear stress. The loading 
velocity in the direct shear test is 0.1 m/s.

Bahaaddini et al. (2013, 2015, and 2016) found the par-
ticle interlocking during the 2D modeling of the joint direct 
shear test. When the shear displacement of the joint exceeds 

the minimum particle diameter, the shear stress suddenly 
increases and leads to an unrealistic dilation of rock joints. 
However, Mehranpour and Kulatilake (2017) found that this 
behavior was not obvious in the 3D modeling of the joint 
direct shear test. Lower normal stiffness, higher joint normal 
stiffness, higher ratio of the particle size to the shear displace-
ment, and higher ratio of the particle size to the joint length 
can bring down the number of interlocking incidents to as low 
as zero (Mehranpour and and Kulatilake 2017). This work 
used the method proposed by Mehranpour and and Kulatilake 
(2017) to solve the interlocking problem in the simulations. 
As shown in Fig. 5, no obvious abrupt increase in the shear 
stress was observed in the direct shear test for different kinds 
of joints. However, there are shear stress drops during the 
shearing process, especially for joints in sets 2 and 3 (Fig. 5b). 
This is because the shear stress was calculated according to 
the shear forces acting on the smooth-joint contacts, and the 
shear force acting on the non-smooth joint was ignored.

Table 5  Calibrated micro-parameters for SJM

SJM parameters Set 1 Sets 2 and 3

Normal stiffness per unit area (Gpa/m) 15 15
Shear stiffness per unit area (Gpa/m) 9 9
Friction coefficient 0.4 0.65
Tensile strength (MPa) 0 0
Cohesion (MPa) 0 0

Fig. 6  Rock mass samples with 
different sizes extracted from 
the 3D DFN model

(a) 0.5m (b) 1m (c) 3m (d) 5m

(e) 7m (f) 9m (g) 11m (h) 13m

(i) 15m (j) 17m (k) 19m (l) 21m
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The value of SJ normal stiffness and SJ shear stiffness 
was determined by previous studies (Bahaaddini et al. 2013, 
2015 and 2016; Mehranpour and and Kulatilake 2017), and 
trial–error direct shear tests were used to acquire the target 

friction coefficient. The micro-mechanical properties of SJM 
are listed in Table 5. The values of the calibrated friction 
coefficient of joints in set 1, and joints in sets 2 and 3 are 0.40 
and 0.61, respectively, which are close to the target values. 

Fig. 7  Synthetic rock mass 
(SRM) samples with different 
sizes

(a) 0.5m (b) 1m (c) 3m (d) 5m

(e) 7m (f) 9m (g) 11m (h) 13m

(i) 15m (j) 17m (k) 19m (l) 21m

Fig. 8  Variation of a UCS and b 
E with rock sample sizes under 
vertical loading
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These optimal values of input micro-parameters could give 
proper macro-properties of the fracture.

Results and discussions

Scale dependency of mechanical properties 
of the rock mass under vertical loading

Following traditional guidelines (Esmaieli et  al. 2010; 
Laghaei et al. 2018; Wu et al. 2019; Huang et al. 2020), the 
loading direction in uniaxial compressive tests is firstly set 

as vertical, which is parallel to the z-direction. Thirteen cubic 
BPM models with a constant height-width ratio of 2 and with 
width ranging from 0.05 m to 21 m (i.e., 0.05, 0.5, 1, 3, 5, …, 
21 m) were established. Five DFN models with the centroids 
of D1 (30 m, 30 m, 30 m), D2 (40 m, 30 m, 30 m), D3 (50 m, 
30 m, 30 m), D4 (60 m, 30 m, 30 m), and D5 (70 m, 30 m, 
30 m) were extracted from the “master” DFN model with 
the size of 100 m × 60 m × 60 m, respectively, and the size 
of each selected DFN model is 27 m × 27 m × 54 m. In all, 
65 SRM models were established by integrating each DFN 
model within each BPM model assembly. The distributions 
of fractures in the rock mass models with different sizes are 
shown in Fig. 6. Note that the sample with a width of 0.05 m 
is not shown in Fig. 6 since it has no crack. The SRM samples 
generated by PFC3D are shown in Fig. 7.

A series of uniaxial compressive tests under vertical load-
ing were conducted to investigate the variation of mechani-
cal properties with sample sizes. The loading velocity is 
0.15 m/s. Figure 8a shows that the values of UCS for sam-
ples in different regions fluctuate dramatically when the 
sample size varies from 0.05 to 7 m, but decreases gradu-
ally to a stable value with increasing scales. In this study, 
the average modulus was selected as the elastic modulus. 
Figure 8b shows that the values of E change remarkably 
when the sample size is less than 12 m. When the model size 
increases to 13 m, the value of E tends to stabilize.

The coefficient of variance (CV), defined as the ratio of the 
standard deviation to the mean value, was used to determine 
the REV size of the rock mass. CV represents the variations 
when the average of data remains constant and is widely used 
to determine the REV size of rock masses by previous stud-
ies (Baghbanan 2008; Esmaieli et al. 2010; Laghaei et al. 
2018; Huang et al. 2020). According to Baghbanan (2008), 
Laghaei et al. (2018), and Huang et al. (2020), a sample size 
could be regarded as REV when the value of CV is less than 
0.2. The results (Table 6) show that the CV values of UCS are 
less than 0.2 when the sample size reaches 19 m. However, 
the CV values of E are less than 0.2 when the sample size 
reaches 13 m. Therefore, the UCS-based and E-based REV 
sizes in the vertical direction are 19 m and 13 m, respectively. 
It is determined that the mechanical REV size in the verti-
cal direction is 19 m by integrating UCS and E. The values 
of UCS and E in the REV size are 8.8 MPa and 5.0 GPa, 
respectively. Compared with the values of UCS (127 MPa) 
and E (38.7 GP) of intact rock, the values of UCS and E of 
the rock mass in the vertical direction are relatively decreased 
by 93.1% and 87.1%, respectively.

Scale dependency and anisotropy of mechanical 
properties of the rock mass under horizontal loading

The abutment, designed to support the arch dam, is 
located in this area. The rock mass mainly suffers from the 

Table 6  CV results for estimating REV size based on uniaxial com-
pression tests under vertical loading

Sample ID Sample size (m) CV of UCS CV of E

a 0.5 0.20 0.45
b 1 0.44 0.42
c 3 0.55 0.45
d 5 0.90 0.73
e 7 0.48 0.49
f 9 0.29 0.13
g 11 0.13 0.22
h 13 0.32 0.14
i 15 0.19 0.10
j 17 0.36 0.17
k 19 0.19 0.10
l 21 0.07 0.10

Fig. 9  Schematic diagram of six loading directions used in uniaxial 
compression tests to study the anisotropy of the rock mass. Note that 
the rotational angle θ (θ = 0°, 30°, …, 150°) in the counter-clockwise 
direction is the included angle between the loading direction and the 
x-direction
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horizontal load from the concrete arch (Lyu et al. 2021). 
Therefore, the mechanical properties of the rock mass in the 
horizontal direction will strongly influence the safety of the 
dam. In this section, uniaxial compressive tests under differ-
ent loading directions within the horizontal plane (x–y plane) 
were carried out to study the anisotropy of mechanical prop-
erties of the rock mass. For each model, six rotational angles 
θ (θ = 0°, 30°, …, 150°) in the counter-clockwise direction 
(Fig. 9), where θ is the included angle between the loading 
direction and the x-direction, were selected. For each load-
ing direction, 65 models with a height-width ratio of 2 and 
width ranging from 0.05 to 21 m (0.05, 0.5, 1, 3, 5, …, 21 m) 
were sampled from the five regions. In all, 390 models were 
sampled from the 100 m × 60 m × 60 m model.

The results (Figs.  10 and 11) show that the varia-
tion trends of UCS and E are similar in different loading 

directions. For each rotational angle, the values of UCS and 
E for samples in different regions fluctuate dramatically 
when the sample size is small, but tend to be stable with 
increasing sizes.

The CV values of UCS and E when the rotational angle 
varies from 0 to 150° with an interval of 30° are listed in 
Table 7. The results show that the UCS-based indicator pro-
vides similar results with the E-based indicator. For rational 
angles of 0°, 30°, 60°, 90°, and 120°, the results provided by 
the UCS-based indicator agree well with the E-based indica-
tor. Both indicators indicate that the mechanical REV sizes 
for θ = 0°, 30°, 60°, and 90° are 11 m, 9 m, 7 m, and 11 m, 
respectively. For θ = 120°, the CV values of UCS are almost 
all lower than 0.20 when the sample size is larger than 13 m, 
and the CV values of E are less than 0.20 when the sam-
ple size is larger than 11 m. For θ = 150°, the CV values of 

Fig. 10  Variation of the values 
of UCS with rock sample sizes 
in different loading directions
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UCS are almost all lower than 0.20 when the sample size is 
larger than 15 m, and the CV values of E are less than 0.20 
when the sample size is larger than 13 m. Therefore, it is 
comprehensively determined that the mechanical REV size 
for θ = 120° and θ = 150° are 13 m and 15 m, respectively. 
The results show that the mechanical REV sizes in different 
directions differ, exhibiting strong anisotropy (Fig. 12). The 
REV size for θ = 60° is the minimum, whereas the REV size 
for θ = 150° is the maximum.

Affected by discontinuities, the mechanical parameters of 
rock mass samples in a REV size exhibit strong anisotropy 
in the six loading directions (Fig. 13). Figure 13 shows that 
the maximum value of UCS (10.3 MPa) and E (8.0 GPa) 
occurred when θ is 60°, and the minimum value of UCS 
(5.6 MPa) and E (3.9 GPa) was obtained when θ is 150°. 
It seems that the mechanical properties of the rock mass 

for θ = 150° is the weakest, whereas θ = 60° is the strongest 
direction for the mechanical properties. According to Figs. 12 
and 13, the mechanical properties of rock mass samples for 
θ = 60° is the maximum, whereas the REV size in this direc-
tion is the minimum. Besides, the mechanical properties of 
rock mass samples for θ = 150° is the minimum, but the REV 
size in this direction is the maximum. Therefore, it could be 
concluded that the REV size has a negative relationship with 
the mechanical properties of the rock mass.

Comparison between mechanical REV 
and geometrical REV

In this work, the volumetric fracture intensity, represented by 
the number of fractures per unit volume (P30) and the fracture 

Fig. 11  Relationships between 
elastic modulus (E) and rock 
sample sizes in different loading 
directions
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area per unit volume (P32) (Dershowitz 1984; Einstein and 
Locsin 2012), was used to determine the geometrical REV. 
As shown in Fig. 14a, the values of P30 for rock samples in 
different regions change dramatically when the sample size 
varies from 0.05 to 3 m, but converge to a value of 0.26  m−3 
when the sample size is larger than 5 m. Figure 14b shows 
that the values of P32 converge to a value of 1.60  m−1 when 
the sample size is close to 21 m. As listed in Table 8, the CV 
values of P30 and are P32 less than 0.2 when the sample size 
reaches 5 m and 7 m, respectively. Therefore, the P30-based 
and P32-based REV sizes are 5 m and 7 m, respectively. Com-
pared with P30, P32 yields a larger REV size. This could be 
attributed to that P32 reflects the influence of fracture length 
and density, whereas P30 only reflects the influence of frac-
ture density. Based on P30 and P32, the geometrical REV size 
is estimated to be 7 m.

An interesting phenomenon was observed that the geo-
metrical REV size is equal to the UCS-based and E-based 
REV size with θ = 60° which is the minimum in the six 
loading directions. It seems that the geometrical REV 
defines the lower bound of the REV size of the rock mass. 
However, geometrical parameters cannot reflect the anisot-
ropy of the mechanical properties of rock masses. Besides, 
the mechanical properties of rock masses are affected by 
many properties of fractures such as fracture size, orien-
tation, connectivity, infilling, and density. The REV size 
obtained by geometrical parameters may lead to an incor-
rect characterization and property upscaling.
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Fig. 12  Anisotropy of the REV size (unit: m)
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Discussion

Note that uncertainty exists in the simulations due to the 
random distribution of joints in the model. To reduce the 
uncertainty, five DFN models were selected from differ-
ent regions of the “master” DFN model. In the simulations 
using PFC3D, even if some fractures go beyond the size 
of the model, the model can be loaded normally. The part 
of a fracture within the model will be considered in the 
calculation, whereas the part outside the model will not be 
considered.

However, when extracting the DFN model from the 
“master” DFN model, if the centroid of a joint is not within 
the model, the joint will be deleted, which will inevitably 
cause uncertainty in the simulations. To solve this problem, 
when establishing the SRM models using the DFN models, 
the largest BPM model is set as 21 m × 21 m × 42 m, but 
the size of the DFN models is fixed at 27 m × 27 m × 54 m. 
Therefore, a joint cannot be deleted unless its radius 
is larger than 6 m and its centroid is out of the range of 
27 m × 27 m × 54 m. We checked the “master” DFN model 
with the size of 100 m × 60 m × 60 m, and the percentage of 
fractures with a radius larger than 6 m is less than 0.09% of 
all fractures. Thus, the influence of the censoring effect on 
the results could be eliminated by this method.

The simulation results suggest that jointed rock mass dis-
plays significant anisotropy in uniaxial compression tests, 
and the REV size varies with rotational angle and displays 
obvious anisotropy and directionality. According to Fig. 12, 
the REV size for θ = 60° is the minimum, whereas the REV 
size for θ = 150° is the maximum. The stress–strain curves 
for the two loading directions were selected to make a com-
parative study, as shown in Fig. 15. The mechanical proper-
ties of rock mass samples for θ = 150° are lower than those 
for θ = 60° when the model size is smaller than the REV 
size. However, when the model size is larger than the REV 
size (i.e., 15 m), the difference in mechanical properties for 
the two loading directions is relatively small.

(a) UCS (unit: MPa)

(b) E (unit: GPa)

Fig. 13  Anisotropy of a UCS and b E for rock samples in a REV size

Fig. 14  Variation of the values 
of a P30 and b P32 with rock 
sample sizes
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Conclusions

This paper presents an investigation on the scale dependency 
and anisotropy of mechanical properties of a jointed rock 
mass. A three-dimensional (3D) discrete fracture network 
(DFN) model was built based on joint data collected from 
an exploration tunnel at a dam site in southwest China. The 
model was validated and subsequently sampled to procure 
455 rectangular samples with a constant height-to-width 
ratio of 2 and width varying from 0.05 to 21 m. The sam-
ples were introduced into a 3D particle flow code (PFC3D) 
model to create synthetic rock mass (SRM) samples. Numer-
ical uniaxial compressive tests with different loading direc-
tions were conducted to obtain the variations of the values 
of UCS and elastic modulus with sample sizes.

Table 8  CV results for estimating REV size based on fracture intensity

Sample ID Sample size (m) CV of P30 CV of P32

a 0.5 0 0.44
b 1 0.39 0.46
c 3 0.21 0.21
d 5 0.05 0.23
e 7 0.08 0.10
f 9 0.02 0.05
g 11 0.02 0.02
h 13 0.03 0.01
i 15 0.03 0.02
j 17 0.02 0.03
k 19 0.02 0.02
l 21 0.01 0.02

Fig. 15  Comparison of stress–
strain graphs at different scales 
and orientations
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It is determined that the mechanical REV size in the 
vertical direction is 19 m based on the UCS-based and 
E-based indicators. The values of UCS and E in the REV 
size are 8.8 MPa and 5.0 GPa, respectively. Compared 
with the values of UCS and E of intact rock, the values of 
UCS and E of the rock mass in the vertical direction are 
relatively decreased by 93.1% and 87.1%, respectively. In 
the horizontal plane, the mechanical REV sizes in different 
directions vary from 7 to 15 m. The mechanical proper-
ties of rock mass samples in a REV size exhibit strong 
anisotropy, with the values of UCS and E changing from 
5.9 to 10.3 MPa and 3.9 to 8.0 GPa, respectively. The 
mechanical properties of rock mass samples for θ = 60° 
is the maximum, but the REV size in this direction is the 
minimum. Besides, the mechanical properties of rock mass 
samples for θ = 150° is the minimum, whereas the REV 
size in this direction is the maximum. Therefore, it could 
be concluded that the REV size has a negative relation-
ship with the mechanical properties of the rock mass. The 
volumetric fracture intensity was used to determine the 
geometrical REV for comparison. The geometrical REV 
size was estimated to be 7 m, equal to the minimum of the 
mechanical REV size, indicating that the geometrical REV 
defines the lower bound of the REV size of the rock mass.

However, the parallel bond model suffers from an over-
estimation of tensile strength and an underestimation of 
the failure envelope. To solve this problem, a flat-joint 
model was proposed by Potyondy (2012), which can repro-
duce the mechanical behavior of a material under differ-
ent loading conditions (Potyondy 2015; Bahaaddini et al. 
2021). It is recommended that the flat-joint model could 
be used to study the mechanical behaviors of jointed rock 
masses in future studies.
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