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Abstract
Bi-planar failure is one of the most common issues encountered in concealed bedding rock slopes (CBRSs). Fully grouted 
bolts are widely adopted to improve the stability of slopes and prevent failure due to their high efficacy and low cost. In this 
study, a bi-planar mechanical model is first established for the sliding body based on the interactions between active and 
passive blocks. The supporting forces supplied by fully grouted bolts are then introduced and limit equilibrium theory is used 
to analyze the stability of the bolted CBRSs. A parametric analysis is conducted to investigate the effects of varying the bolt 
angle (angle of the bolt with respect to the joint plane), bolt diameter, and bolt location on the stability of the CBRSs. Finally, 
comparisons are made between results obtained using the proposed method of analysis and discrete element modeling. The 
results obtained using the two different approaches are in good agreement. There is an optimal bolt angle that maximizes 
the stability of the bolted CBRSs–its value is approximately equal to the friction angle of the joint. The slope stability (and 
contribution made by the bolts) also increases with the diameter of the bolts used, the variation increasing according to a 
power function. The proposed method of analysis offers a sound basis for better understanding the mechanism by which fully 
grouted bolts reinforce such slopes and can be used as a useful design aid for protecting CBRSs against bi-planar failure.
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Introduction

A bedding rock slope is a layered rock slope in which the 
slope surface has approximately the same trend and dip 
direction as the rock strata. They are commonly encoun-
tered in engineering projects in a wide range of situations, 
e.g., construction of mountain roads and railways, building 

hydroelectric power stations, and open-pit mining (Li et al. 
2018; Lu and Cai 2019; Sun et al. 2019; Zhao et al. 2019; 
Wu et al. 2020; Sun et al. 2022). Such slopes can be further 
subdivided into “overdip” and “concealed” slopes depending 
on the relationship between the slope angle and dip angle of 
the rock strata (Cruden 2000; Huang 2007).

Overdip slopes have slope angles that are steeper than 
the dip of the rock strata. In this case, the failure modes 
encountered are easy to identify and prevent as the potential 
slip surfaces are exposed on the slope. In contrast, concealed 
slopes have slope angles that are less than or equal to the 
dip of the rock strata. This means that their potential slip 
surfaces are not directly exposed on the slope surface. As 
a result, they can readily accumulate energy, and this can 
lead to large-scale landslides. Moreover, there are no obvi-
ous signs that a landslide is imminent and so they can be 
extremely hazardous phenomena (Yin et al. 2011; Havaej 
et al. 2015; Song et al. 2022). Bi-planar failure is the most 
common form of instability in such slopes. In this failure 
mode, the slip surface is composed of both steeply and gen-
tly dipping joints (Fisher 2009; Alejano et al. 2011; Chen 
et al. 2020; Huang et al. 2020).
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The stability of concealed bedding rock slopes (CBRSs) 
with respect to bi-planar failure is primarily governed by the 
strength of the pre-existing joints. Bi-planar failure mecha-
nisms have been extensively investigated and numerous 
methods of analysis used to evaluate the stability of CBRSs. 
Fisher (2009) provided specific guidance for assessing the 
stability state of bedding slopes based on an extensive lit-
erature review, numerical modeling, and parametric evalu-
ation. Ning et al. (2011) and Havaej et al. (2014) analyzed 
bi-planar failure in CBRSs using numerical manifold and 
finite-discrete element methods, respectively. Alejano et al. 
(2011) performed a solid analytical work on the stability of 
CBRSs based on the tilt test, discrete element modeling and 
limit equilibrium theory, and proposed an accurate evalu-
ation method for the stability of CBRSs. In addition, Sun 
et al. (2019, 2020) evaluated the stability of CBRSs against 
bi-planar failure by considering two conditions: one with 
and one without the daylighting joint at the toe of the slope, 
and Sun et al. (2021) assessed the stability of CBRSs with 
talus deposits accumulated at their toes.

Fully grouted bolts are widely employed to improve the 
stability of slopes due to their high efficacy and low cost 
(Liu and Li 2017; Zheng et al. 2019). The bolts contribute to 
the failure resistance of the slope by virtue of the combined 
effect of the shear and axial supporting forces mobilized 
within. Grasselli (2005) investigated the behavior of bolted 
rock joints using experimental tests and numerical modeling 
and hence presented the characteristics of the shear and trac-
tion contributions made by the bolts. Oreste and Cravero 
(2008) used a block reinforcement procedure to represent the 
dowel–rock interaction using a Winkler approach in both the 
normal and axial directions of the dowel, which is a more 
effective way of designing a passive reinforcing system. Cai 
et al. (2015) and Tan (2016) used elastoplastic analysis to 
assess the mechanical behavior of a reinforced mass accord-
ing to the characteristics of the interaction between the 
grouted bolts and rock mass. Liu and Li (2017) proposed a 
mechanical model for a bolt-supported slope based on equa-
tions describing the forces and deformation–compatibility 
relationships. They hence described the contributions made 
by the axial and shear forces acting inside the bolts. These 
studies have enriched our understanding of the tension-shear 
coupling failure mechanism of the bolts in bolt-supported 
rock masses and provided methods for the analysis of the 
contribution made by the bolts to axial and shear resistance, 
but few studies have applied these methods to the stability 
evaluation of bedding rock slopes.

Siad (2001) analyzed the stability of bolt-supported 
jointed rock slopes using a kinematic method based on yield 
design theory and revealed the positive effect of using bolts 
as stabilizing reinforcements. Zheng et al. (2019) proposed 
a mechanical model to predict the stability of bolt-supported 
anti-dip bedding slopes and elucidated the optimal positions 

of the rock bolts. These studies have enhanced our under-
standing of the mechanisms by which fully grouted bolts 
reinforce slopes. However, only a few studies have been con-
ducted on the stability of bolt-supported jointed slopes and 
even less research has been carried out on bi-planar failure 
in bolted CBRSs.

In this paper, a new method for evaluating the stability 
of bolt-supported CBRSs with respect to bi-planar failure is 
proposed. A bi-planar mechanical model for the sliding body 
is established based on the interactions occurring between 
active and passive blocks. The supporting force provided 
by the fully grouted bolts is then introduced and limit equi-
librium theory is used to analyze the stability of the bolted 
CBRSs. Subsequently, a parametric analysis is carried out to 
investigate the effects of the bolt angle (i.e., the angle of the 
bolts with respect to the joint plane), bolt diameter, and bolt 
location on the stability of the CBRSs. Finally, the results 
obtained using the new analysis method are compared with 
those obtained via discrete element modeling.

Mechanical model and analytical method

Bi‑planar failure model

Monoclinic sequences are the most important geological 
features of CBRSs and joints that are steeply dipping along 
the slope are very developed in such slopes. Under the influ-
ences of external factors, such as rainfall and earthquakes, 
it is easy for gently dipping joints to penetrate the surface 
at the toe of the slope. As a result, bi-planar sliding failure 
occurs along these joints. This type of sliding body can be 
further divided into active and passive blocks (Huang 2007; 
Alejano et al. 2011; Yin et al. 2011; Sun et al. 2020). The 
active block, driven by the sliding force of its own weight, 
slides along the interlayer structural surface of the slope. The 
passive block at the toe of the slope is passively squeezed 
due to the anti-slip effect–eventually, this squeezing exceeds 
a critical amount, equilibrium is lost, and a landslide occurs.

Fully grouted bolts are widely used in slope reinforce-
ment as they are an effective and low-cost measure capable 
of preventing landslides. A typical bolt-supported CBRS is 
shown in Fig. 1a and the corresponding conceptual diagram 
is illustrated in Fig. 1b.

The boundary between the active and passive blocks 
is the key to establishing a good mechanical model for 
bi-planar failure. Various assumptions are often made 
about the nature of this interblock boundary but the main 
assumption relates to its orientation which is often taken 
to be vertical, horizontal, or perpendicular to the surface 
of the slope (Chen and Peng 1996; Siad and Megueddem 
1998; Alejano et al. 2011).
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In this paper, the interblock boundary is assumed to pass 
through the point where the steeply dipping and gently dip-
ping joints intersect and is oriented perpendicular to the gen-
tly dipping joint. This is because an internal shear surface is 
generated inside the bi-planar sliding body, according to the 
bi-planar failure mechanism (Fisher 2009; Sun et al. 2019). 
In order to better match the internal shear surface and more 
conveniently perform force analysis of the active and pas-
sive blocks, the mechanical model is thus established for 
bi-planar failure, as shown in Fig. 2.

Analysis of the CBRS

To account for the complex behavior of the CBRS when bi-
planar failure occurs, the following assumptions are made 
from a theoretical point of view: (1) the interblock boundary 
passes through the point of intersection of the steeply and 
gently dipping joints and is oriented perpendicular to the 
gently dipping joint, (2) the slip surface of the active block is 
much longer than that of the passive block, and (3) the safety 
factors of the active and passive blocks are equivalent and 
equal to the safety factor of the slope.

According to the force analysis of the active and passive 
blocks (Fig. 2b), the safety factors of these blocks can be 
obtained by dividing the sliding resistance (Rij) by the slid-
ing force (Tij) acting on them. The formulae for the safety 

factors of the active and passive blocks are combined and 
the safety factor for the slope derived by eliminating the 
unknown normal force acting on the interblock boundary.

The shear force acting at the interblock boundary is dif-
ficult to determine accurately. The magnitude of the shear 
force, however, lies between two extreme states wherein: 
(1) the shear force is zero and (2) the shear force reaches 
the Mohr–Coulomb friction strength. It is noteworthy that 
although the Hoek–Brown criterion can be more suitable for 
describing the strength behavior of rock mass (Gharsallaoui 
et al. 2020; Chen et al. 2021, 2022a, b; Xia et al. 2022), the 
simple and commonly used Mohr–Coulomb criterion is used 
for the strength criterion in this work to facilitate practical 
engineering applications.

If the shear force ( Sra ) on the interblock boundary is zero, 
the sliding force (T1a) and sliding resistance force ( R

1a ) on 
the active block are given by

respectively, where W1 is the weight of the active block, l
1
 

is the length of the slip surface of the active block, l
1
= l
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Fig. 1   A typical bolt-supported 
CBRS: a photograph and b 
conceptual diagram

(a) (b)

Fig. 2   Mechanical model for 
bi-planar failure: a block model 
and b force diagram
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angles of the steeply and gently dipping joints, respectively, 
Nra is the normal force acting on the interblock boundary, 
and c1 and �

1
 are the cohesion and friction angle of the 

steeply dipping joint, respectively.
Similarly, the sliding force (T2a) and sliding resistance 

force ( R
2a ) on the passive block are given by

respectively, where W2 is the weight of the passive block, 
l
2
 is the length of the slip surface of the passive block, 

l
2
= t csc

(

�
1
− �

2

)

 , and c2 and �
2
 are the cohesion and fric-

tion angle of the gently dipping joint, respectively.
Combining Eqs. (1)–(4), the safety factor of the slope 

(Fs) is obtained by eliminating the normal force acting at 
the interblock boundary ( Nra ), as follows:

If the shear force ( Srb ) on the interblock boundary reaches 
the Mohr–Coulomb friction strength, Srb = Nrb tan�r + crlr 
(where Nrb is the normal force on this boundary, cr and �r 
represent, respectively, the cohesion and friction angle of the 
rock mass, and lr is the length of the interblock boundary, 
lr = t sec

(

�
1
− �

2

)

 , the sliding force (T1b) and sliding resist-
ance force ( R

1b ) on the active block are given by

Similarly, the sliding force (T2b) and sliding resistance force 
( R

2b ) on the passive block are given by

A similar derivation for the safety factor of the slope 
(Fs) can be carried out, giving

These two hypothetical scenarios correspond to two 
extreme states of the slope stability. The actual safety 
factor for the slope must fall between these two scenarios. 
Therefore, for practical purposes, the mean value of these 
two safety factors is used to assess the stability of the 
CBRS with respect to bi-planar failure.
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Analysis of the support provided by a bolt

The fully grouted bolts generate a supporting force when there 
is a small transverse displacement of the bolted rock mass. 
This “dowel effect” of the bolts is activated by a small shear 
displacement which produces a shear supporting force in the 
bolts that contributes to the stability of the slope. In addi-
tion, the “pull-out” effect is activated by axial displacement 
which produces an axial supporting force in the bolts. Thus, 
the shear and axial forces in the bolts contribute to the forces 
acting to prevent sliding along the joint and hence play an 
important role in improving the stability of the slope (Fig. 3).

According to Fig. 3, the supporting force provided by one 
bolt (R) can be expressed as:

where � is the angle of the bolt with respect to the joint, �j 
is the friction angle of the joint, RN and RQ are the support 
forces provided by the axial and shear forces, respectively, 
and N

0
 and Q

0
 are the axial and shear forces acting in the 

bolt, respectively.
By considering the contributions the bolts make to the 

forces acting against bi-planar sliding failure, expressions 
can be obtained for the safety factor of the bolted CBRS by 
combining Eqs. (5), (10), and (11). Two sets of formulae can 
be obtained in the following ways:

1.	 If the shear force on the interblock boundary is assumed to 
be zero, the safety factor of the bolted CBRS is given by

(11)
R = RN + RQ = N

0
(cos � + sin � tan�j) + Q

0
(sin � − cos � tan�j)

Fig. 3   Sketch of a bolt-reinforced joint
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where n1 and n2 are the numbers of bolt rows penetrating 
the steeply dipping and gently dipping joints, respec-
tively, per unit width along the slope strike direction. In 
addition, R* denotes the supporting force provided by 
one bolt at the gently dipping joint when the installa-
tion angle is the same as that of the bolt installed at the 
steeply dipping joint. Since the dip angles of the steeply 
dipping and gently dipping joints are different, α should 
be replaced with α* ( �∗

= �
1
− �

2
+ � ) in Eq. (11) to 

calculate the value of R*.
2.	 If the shear force on the interblock boundary is assumed 

to reach the Mohr–Coulomb friction strength, the safety 
factor of the bolted CBRS is given by

As mentioned earlier, these two cases represent two 
extreme states describing the stability of the bolted CBRS. 
Also, the mean value of the safety factors in these two for-
mulae is used for practical purposes to assess the stability 
of the bolted CBRS.

Effects of the bolt parameters

The fully grouted bolts used to support the CBRS are usu-
ally made of common materials (e.g., HRB400 steel and M30 
grout), so their main design objects are the bolt angles used 
and their diameters. Moreover, the joint strength has a sig-
nificant influence on the stability of the bolted CBRS based 
on the description given in Eqs. (12) and (13). Therefore, this 
section mainly focuses on the effects of bolt angle and diam-
eter for joints of different strengths as well as the bolt location.

A generalized bolt-supported CBRS model is established 
based on the road cutting bedding slopes in the mountains 
(Liu et al. 2012; Zhao et al. 2019), as shown in Fig. 4. The 
model has a width of 190 m, height of 77 m, a slope angle 
(i.e., the dip angle of the steeply dipping joints) of 50°, and a 
gently dipping joint that dips at 30°. The length and depth of 
the sliding body are taken to be 50 m and 5 m, respectively.

According to the basic quality (BQ) value analyzed from 
the geological characteristics of the slope, the BQ index of the 
rock mass is about III, so the values of the rock mass param-
eters can be taken based on the BQ index of the rock mass 
(National Standards Compilation Group of People’s Republic 
of China, GB/T 50218-2014 2014). In addition, the capacity 
of the fully grouted bolt mainly relies on the strength of the 
steel bar (Liu and Li 2017; Ranjbarnia et al. 2022), so the 
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1
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/
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2
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)

/

T
2a

}

(13)
Fs = (R

1b + n
1
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/

T
1b
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2b + n

2
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)

/

T
2b

}

parameters of the bolt are obtained based on the properties of 
the HRB400 steel (National Standards Compilation Group of 
People’s Republic of China, GB 50010-2010 2015).

The specific values of the parameters used for the rock 
mass (unit weight γr, cohesion cr, and friction angle φr) and 
bolts (elasticity modulus E, shear modulus G, and yield 
strength fy) in the current work are listed in Table 1. Refer-
ring to the range of the dilation angle of the joint suggested 
by Bahrani and Tannant (2011) and Liu and Li (2017), it is 
taken to be 5° in the present work. The friction angle of the 
joint is the parameter with the most important influence, so 
three representative values of this parameter (20°, 30°, and 
40°) are considered in this research.

The bolts are assumed to be made of HRB400 steel and 
M30 grout, and they are applied to reinforce the main slip 
surface of the slope (i.e., the slip surface of the active block) 
and pass through the main slip surface over at least 1 m 
along their length. It is assumed that there are six rows of 
bolts per unit width along the slope strike direction, i.e., n1 
is taken to be 6 and n2 is 0. The bolt angle (α) and diameter 
(d) also play major roles in determining the stability of the 
bolted CBRS; thus, nine different values of α (10°, 20°, 30°, 
40°, 50°, 60°, 70°, 80°, and 90°) and seven values of d (10, 
16, 20, 22, 25, 28, and 32 mm) are considered.

As mentioned above, the contribution the bolts make to 
the force suppressing bi-planar sliding failure is provided by 
the shear and axial forces acting between the bolts and joints. 
These forces have been studied by many scholars (Grasselli 
2005; Oreste and Cravero 2008; Liu and Li 2017). Recent 
research (Liu and Li 2017) indicates that the relationship 
between the shear force ( Q

0
 ) and normal force ( N

0
 ) can be 

determined based on a structural mechanical model of the 
deflecting section of the bolt, with the form:

Fig. 4   Geometry of the model slope considered

Table 1   Main parameters used for the bolted slope

Rock mass parameters Bolt parameters

γr (kN/m3) cr (MPa) φr (°) E (GPa) G (GPa) fy (MPa)

25 0.8 45 200 78 360
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where � is the dilation angle of the joint and K is a con-
stant related to the deflecting length, the geometric and 
mechanical parameters of the bolts. To be more specific, 
K =

(

3Al2
/

80I + kE∕3G
)−1 , where A is the cross-sectional 

area of the bolt, I is the section moment of inertia, l is the 
length of the shear deformation section ( l = 3d ), and k is a 
coefficient related to the cross-section shape (e.g., k = 10∕9 
for a bolt of circular cross-section).

In this work, the Mises yield criterion is adopted to 
describe the yield criterion of the bolts at the shearing point:

This criterion is more suitable for metal materials and 
improves on the criterion used in the original literature (Liu 
and Li 2017).

Combining Eqs. (14) and (15), we have

Using Eq. (11), the axial, shear, and resultant forces describ-
ing the contribution the bolts make to deformation resistance 
are given by:

Effect of bolt angle

Figure 5 presents plots showing how the bolt angle (α) affects 
the resultant supporting force provided by one bolt ( R ) and 
the increase in the safety factor of the bolted slope ( ΔFs ). The 
plots correspond to three different joint strengths ( �j ) and 
the bolt diameter ( d ) is fixed at 25 mm. Each of the curves 
increase at first, peak, and then decrease as α increases. Thus, 
there is an optimal bolt angle that maximizes the stability 
of the bolted CBRS. Moreover, this optimal value of α is 
approximately equal to the friction angle of the joint.

The optimal α value yields increase in the values of R and 
ΔFs of about 37.2% and 39.5%, respectively, compared to the 
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0

/

N
0
= K tan (� − �)
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N
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Afy
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√

3K2 tan2 (� − �) + 1

(18)

RQ = Q
0
(sin � − cos � tan�j) =

K tan (� − �)(sin � − cos � tan�j)Afy
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3K2 tan2 (� − �) + 1
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[cos � + K tan (� − �) sin �] + [sin � − K tan (� − �) cos �] tan�j
√

3K2 tan2 (� − �) + 1

Afy

worst bolt angle (α = 90°). Obviously, it is necessary to give 
priority to maximizing the reinforcement effect by choosing 
the optimal bolt angle when designing support for a bolted 
CBRS. However, the optimal bolt angle may not necessarily 
be a convenient angle to use when it comes to drilling and 
grouting construction. Hence, it is also necessary to take into 
account convenience when choosing the bolt angle.

Figure 5 also indicates that R and ΔFs both increase as 
�j increases. This is because the rough joint enhances its 
frictional strength under the Coulomb criterion (Zheng et al. 
2021). Therefore, for a given axial force from the bolt, the 
greater the joint friction angle, the larger the support force 
from the bolt, and the greater the increase in the safety factor 
of the bolted CBRS.

Figure 6 further depicts the effect that α has on the sup-
port forces ( R , RN , and RQ ) and force ratios RN

/

R and RQ

/

R 
when the joint friction angle is 30° and the bolt diameter 
is 25 mm. The figure shows that RN first increases as α 
increases, reaches a peak at 30° (i.e., the joint friction angle), 
and then decreases. On the other hand, RQ increases very 
slowly to begin with (essentially remaining very close to 
zero) and then increases more rapidly. It can also be seen 
that the value α = 30° acts, in some ways, as a boundary. 
That is, RN

/

R essentially remains unchanged at first and 
then starts to decrease when the boundary is reached. Simi-
larly, RQ

/

R essentially remains unchanged at first and then 
increases when the boundary is reached. This means that 
if a small bolt angle is selected, it is the axial force in the 
bolt that make the major contribution to the deformation 
resistance (and so the bond strength of the bolt is particu-
larly important at this time). However, as the bolt angle is 
gradually increased, the shear force acting in the bolt gradu-
ally begins to contribute more to the resistance. That is, the 
larger the bolt angle, the greater the contribution made by 

Fig. 5   Effects of bolt angle α on R and ΔFs for different �j values ( d =

25 mm)
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the shear resistance of the bolt and the more obvious the 
dowel effect.

Effect of bolt diameter

Figure 7 presents plots showing how the bolt diameter (d) 
affects the resultant supporting force provided by one bolt (R) 
and the increase in the safety factor of the bolted slope ( ΔFs ). 
The plots correspond to three different joint strengths ( �j ) 
and the bolt angle (α) is fixed at 30°. The curves all increase 
according to power functions as d increases. In addition, it can 
also be seen that R and ΔFs increase much more rapidly with d 
when the diameter exceeds 16 mm. Clearly, it is important that 
this power function reinforcement effect is considered when 
selecting the bolts to use to support the CBRS so that the bolt 
design is both reasonable and economical.

Effect of bolt location

Figure 8 shows how the bolt location (n1 and n2) affects the 
safety factor of the slope (Fs). The plots correspond to the 
bolt angle (α) and the joint strength (φj) which are both fixed 
at 30°. The total number of n1 and n2 is taken as six rows; 
Fs increases as n2 increases when the total number of n1 and 
n2 is constant. It means that it will be more effective to have 
several bolts penetrating the gently dipping joint; however, 
it should be noted that on such slopes, the slip surface of the 
active block is generally much longer than that of the passive 
block, and only a few bolts can be installed to penetrate the 
gently dipping joint.

Numerical simulations

The widely used discrete element package Universal Distinct 
Element Code (UDEC) has a mature simulation element for 
local reinforcement structures such as bolts which makes it 
ideal for studying the deformation and failure of bolted bed-
ding rock slopes (Zheng et al. 2019). Therefore, UDEC is 
used to model the bolt-supported CBRS in this work.

Numerical model and parameters

A numerical model is established using UDEC for the bolt-
supported CBRS shown in Fig. 4. The geometric character-
istics of the numerical model shown in Fig. 9 are identical 
to those of the model in Fig. 4. The horizontal displacement 
of the numerical model is constrained along its two lateral 
boundaries, and both the vertical and horizontal displace-
ments are fixed at the bottom boundary. The displacement 
monitoring point (M) is installed at the shoulder of the slope.

Fig. 6   Effects of α on the support forces R, RN , and RQ , and force ratios 
RN

/

R and RQ

/

R ( �j = 30
◦ and d = 25 mm)

Fig. 7   Effects of bolt diameter d on R and ΔFs for different �j values 
( � = 30

◦)
Fig. 8   Effects of the bolt location (n1 and n2) on Fs for different �

2
 

values ( � = 30
◦)
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The Mohr–Coulomb plasticity and Coulomb slip models 
are used to characterize the mechanical behavior of the rock 
mass and joints in the UDEC model, respectively. Further-
more, the local reinforcement model “REINFORCE” is used 
to simulate the local effect of reinforcement where it passes 
through existing joints. Two springs are used in this model 
to simulate the shear deformation characteristics of the bolt, 
and the two springs are located at the joint interface and ori-
ented perpendicular and parallel to the axis of bolt (Fig. 10).

Following shear displacement, the shear spring maintains 
the same direction and the axial spring produces a small dis-
placement along the direction of shearing, causing a change 
in the bolt angle, resulting in shear deformation of the bolt 
along both sides of the joint (Fig. 11). The length of the shear 
deformation section is called the active length. It is found that 
this length is generally about several times the bolt diameter 
(Liu and Li 2017; Ranjbarnia et al. 2022). The UDEC manual 
also indicates that the active length extends approximately 
the distance of one to two reinforcing element diameters on 
each side of the joint (Itasca Consulting Group Inc. 2004).

The force-displacement models with continuous and non-
linear algorithms are used for the axial and shear behaviors 
of the bolts (Itasca Consulting Group Inc. 2004). They are 
employed to determine forces arising in the springs from incre-
mental displacements at the end points of the active length. 

The reinforcement model generates two resistance forces, 
axial and shear, to describe that the contribution of the bolt 
subjected to the combined load. Furthermore, the axial and 
shear forces will increase with their deformation until they 
reach their ultimate capacities, respectively. When both axial 
and shear forces reach their ultimate capacities, it means that 
the bolt is damaged under the combined load. In addition, the 
resultant axial and shear forces are resolved into components 
perpendicular and parallel to the joint. Forces are then applied 
to the neighboring blocks to provide local reinforcement.

The ultimate axial capacity (Pult) of the bolt depends on the 
tensile capacity of the steel bar (P1), the pull force between 
the grout and the steel bar (P2), and the pull force between the 
grout and the rock (P3), which is equal to the minimum value 
among these three forces; the ultimate axial (Pult) and shear 
( Fmax

s,b
 ) capacities can be obtained as follows (Itasca Consulting 

Group Inc. 2004; National Standards Compilation Group of 
the People’s Republic of China, GB 50330-2013 2013):

(20)P
1
= fy�(0.5d1)

2

(21)P
2
= fgb�d1L

(22)P
3
= fgr�d2L

(23)Fmax

s,b
= 0.67d2

1
(fy�c)

0.5

Fig. 9   Numerical (UDEC) model for the bolt-supported CBRS

Fig. 10   The shear and axial springs in the local reinforcement model 
and their orientations representing reinforcements a before and b after 
shear displacement

Fig. 11   Assumed reinforcement geometry after shear displacement, ∆us

Table 2   Numerical parameters used for the rock mass in the UDEC model

γr (kN/m3) Er (GPa) μ cr (MPa) φr (°) σt (MPa)

25 15 0.23 0.8 45 0.9
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where d1 and d2 refer to the diameters of the bolt and hole, 
respectively; fgb is the bond strength between the grout and 
the steel bar; fgr is the bond strength between the grout and 
the surrounding rock; L is the band length; and σc denotes 
the uniaxial compressive strength of massive rocks.

The values of the parameters required to describe the 
rock mass, joint, and bolts in the UDEC model are chosen 
to be consistent with those used in the theoretical analysis. 
Furthermore, the additional bolt parameters required are 
available from Eqs. (20)–(23) and the UDEC Manual. The 
specific values of the parameters used are shown in Tables 2, 
3, and 4, respectively.

The parameters required to describe the rock mass 
include unit weight γr, elasticity modulus Er, Poisson’s ratio 
μ, cohesion cr, friction angle φr, and tensile strength σt; 
those required for the joint are cohesion cj, friction angle φj, 
tensile strength σjt, and dilation angle β; and those for the 
bolts are axial stiffness Ka, shear stiffness Ks, ultimate axial 
capacity Pult, ultimate shear capacity Fmax

s,b
 , 1/2 active length 

la, and spacing in the out-of-plane direction, Spacing.

Stability of the bolted CBRS

To analyze the stability of the bolted CBRS, calculations are 
first run to allow the slope model to equilibrate in order to 
generate the initial stress field present under its own weight 
and boundary conditions. Rock masses in the designated cut 
area are then deleted to simulate the evolution of the CBRS 
excavation process. Bolts are installed after the excavation of 
the rock masses in the area awaiting reinforcement. Finally, 
a strength reduction technique is used to determine the slope 
safety factor by simultaneously reducing the strength param-
eters of rock mass and joint.

Figure 12 shows the joint failure occurring in the slope 
when the slope is not reinforced and when bolts are used with 
different bolt angles. In Fig. 12a (no bolts), the failure surfaces 
of the steeply dipping and gently dipping joints are connected 
to each other, forming a through slip surface. That is, bi-planar 
failure occurs in this CBRS if it is not reinforced with bolts.

It can also be seen from Fig. 12a that the slip surface mainly 
results from tensile failure–some shear failure is involved, 

Table 3   Numerical parameters used for the joints in the UDEC model

cj (MPa) φj (°) σjt (MPa) β (°)

0 30 0 5

Table 4   Numerical parameters used for the bolts in the UDEC model

Ka (N/m) Ks (N/m) Pult (N) F
max

s,b
(N) la (m) Spacing (m)

1.76e9 1.75e8 1.77e5 4.42e4 0.05 1

Fig. 12   Joint failure in slopes 
reinforced by a no bolts, b 
bolts with bolt angles of 30°, 
c bolts with bolt angles of 50°, 
and d bolts with bolt angles of 
70°. (Red cracks denote shear 
failure; cyan cracks represent 
tensile failure)

(a) (b)

(c) (d)
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however, which occurs locally at the intersection of the steeply 
and gently dipping joints as well as the top of the steeply dip-
ping joint. This indicates that the sliding body deforms and 
further rotates around the intersection of the joints after the 
slip surface penetrates, which is consistent with the bi-planar 
sliding failure mechanism (Wang et al. 2004; Yin et al. 2011).

Figure 12b–d show that the failure surface of the steeply 
dipping joint is not complete when bolts are used (as shown 
by the arrows). In addition, the amount of tensile failure 
occurring along the gently dipping joint is much less than 
that occurring in Fig. 12a. This indicates that after the 
slope is reinforced, the dowel effect of the bolts limits the 
displacement of the slope which prevents the deformation 
and rotation of the potential sliding body. This restricts the 
opening of the gently dipping joint and restrains the pen-
etration of the sliding surface, thus improving the stability 
of the slope.

In the UDEC simulations, the slope calculation does not 
converge when bolt reinforcement is not used. However, the 
calculations do converge when bolts are used (for each bolt 
angle used here). To obtain all calculation results for slopes 
with and without bolt reinforcement, a larger fixed number 
of steps (100,000 steps) could be used as the calculation 
end condition for the unreinforced slope model without 
convergence. This fixed number of steps is approximately 
five times the number of steps to convergence used in the 

analysis of the bolted slope. Figure 13 displays contour maps 
of the slope displacements with and without bolt reinforce-
ment and Fig. 14 shows a plot of the displacements of the 
monitoring point M located at the shoulder of the slope.

Figures 13 and 14 clearly show the improved stability of 
the slope resulting from the dowel effect of the bolts. The dis-
placement of the bi-planar sliding body in the CBRS is clearly 
effectively controlled after the slope is reinforced with bolts. 
More specifically, the unreinforced sliding body undergoes 
a displacement of 171 mm but bolt reinforcement reduces 
this to about 0.24 mm thus ensuring the stability of the slope.

Figure 14 also demonstrates that the displacements of 
the bolted slopes with different bolt angles are all approxi-
mately the same. However, the smallest shoulder displace-
ment occurs when the bolt angle is equal to the friction angle 
of the joint (30°). This finding shows that there is an optimal 
bolt angle which is consistent with the results of the previous 
theoretical analysis.

Verification and comparison

To further verify the rationality and accuracy of the theoreti-
cal method, the support force provided by the bolts and the 
safety factor of the bolted slope are calculated using the two 
methods (theoretical and numerical) and compared.

(a) (b)

(c) (d)

Fig. 13   Displacement contour maps of slopes reinforced by a no bolts, b bolts with bolt angles of 30°, c bolts with bolt angles of 50°, and d 
bolts with bolt angles of 70°
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Since the supporting force of each row of the bolts is 
approximately the same in UDEC, the average value of 
support force from six rows of bolts can be used for the 
analysis of the support force contribution of the bolts. Fig-
ure 15 shows a comparison of the values of the support 
force calculated for one bolt (R) for a variety of bolt angles. 
This force is calculated in UDEC by extracting the axial 
( N

0
 ) and shear ( Q

0
 ) forces on the reinforcement element at 

the intersection between the slip surface and bolt when the 
slope is in the limit equilibrium state. The support forces 
calculated using the two methods are almost the same (the 
mean percentage difference is just 0.5% over the range of 
bolt angles considered). Moreover, they both predict the 
same optimal bolt angle for maximizing the resistance con-
tribution of the bolts, and this angle is consistent with that 
found by Pellet and Egger (1996) and Liu and Li (2017). 
Therefore, the two methods are mutually verified: on the 

one hand, the results verify the rationality of using the pro-
posed method to evaluate the stability of bolted CBRSs; on 
the other, it demonstrates the feasibility of using UDEC to 
study bolted CBRSs.

Figure 16 shows a comparison of the safety factors of 
the bolted slope ( Fs ) calculated using the theoretical and 
numerical methods. The theoretical results include three 
aspects: (1) the safety factor (Fsav) obtained when the shear 
force acting at the interblock boundary is zero (Sr = Sra), (2) 
the safety factor (Fsbv) obtained when that force reaches the 
Mohr–Coulomb friction strength (Sr = Srb), and (3) the mean 
value (Fsmv) of the safety factors obtained from the first 
two. The average percentage difference between Fsmv and 
the safety factor (Fsn) calculated by numerical simulation 
is 7.6%, while the average percentage difference between 
Fsav and Fsn is 33.9%, and the average percentage difference 
between Fsbv and Fsn is 18.8%. Therefore, the mean values 
of the theoretical results are the closest to the numerical 
results. This also proves the rationality of the mean value 
results suggested in engineering practice in the present work.

In addition, the reinforcement effect provided by the 
bolts effectively improves the safety factor of the slope. The 
bolts increase the theoretical slope safety factor by 0.185, 

Fig. 14   Displacement of the slope shoulder as a function of bolt angle

Fig. 15   Comparison of the bolt contributions calculated using the the-
oretical and numerical methods for a variety of different bolt angles

Fig. 16   Comparison of slope safety factors calculated using the theo-
retical and numerical methods for a variety of different bolt angles

Fig. 17   Calculation model of the underdip slope considered
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on average, which is an increase of 20.5% compared to the 
unreinforced slope. The increase in safety factor calculated 
using UDEC is 0.275, on average, compared to the unrein-
forced slope which is an increase of 30.6%. The average per-
centage difference between the safety factors of the bolted 
CBRS calculated using the two methods is approximately 
10%. This means the results are relatively consistent and the 
agreement is generally acceptable from both rock mechani-
cal and practical points of view (Alejano et al. 2011; Sun 
et al. 2020). The differences between the two sets of results 
may be mainly attributed to that the theoretical method 
ignores the effect of the distributed support force provided 
by multiple rows of bolts. This results in smaller safety fac-
tors being calculated for the bolted CBRS. Fortunately, this 
means the calculated results are more conservative which 
is good for practical engineering applications (Sun et al. 
2019; 2020).

Discussion

The CBRSs have slope angles that are less than or equal to 
the dip of the rock strata. When the slope angle is equal to 
the dip of the rock strata, the slope can be called a dip slope, 
and the slope can be called an underdip slope when its slope 
angle is less than the dip of the rock strata (Cruden 2000). 
Both types of slopes are subject to bi-planar sliding failure 
along the steeply dipping and gently dipping joints (Huang 
2007), and their analytical models are the same. The dif-
ference between these two is that the active and the passive 
blocks have different areas.

To elucidate the bi-planar failure mechanism of the 
underdip slopes, a typical slope model is established (see 
Fig. 17). The slope angle (θs) is 35°, and the dip angles of 
the steeply dipping (θ1) and gently dipping (θ2) joints are 
taken to be 50° and 20°, respectively. The orientations of 
the steeply dipping and gently dipping joints of a real slope 
can be determined by the statistical analysis of a pole plot 
of the joints. Here, the steeply and gently dipping joints are 
assumed to be persistent.

Figure 18 shows the comparison of the stability of the 
underdip slopes calculated by numerical and theoretical 
methods. Figure 18a illustrates the bi-planar failure mecha-
nism caused by the penetration damage of steeply dipping 
and gently dipping joints in the underdip slopes. This is 
consistent with the sliding mechanism of active and passive 
blocks of the dip slope developed in this work.

The safety factor of the slope calculated by UDEC is 
1.225, and the rear edge of the slip surface located at the sec-
ond steeply dipping joint behind the shoulder of the slope, as 
shown in Fig. 18a. In addition, using the method proposed 
in this work to calculate the safety factor of the slope for 
different rear edge locations (i.e., the location of the steeply 
dipping slip surface marked by numbers in Fig. 18b), there 
exists a minimum safety factor of the slope, which corre-
sponds to the most dangerous potential slip surface. Fig-
ure 18b shows that the minimum safety factor of the slope is 
1.342, which differs from the numerical calculation result by 
8.7%; the steeply dipping slip surface corresponding to the 
minimum safety factor is located at the 5th steeply dipping 
joint (i.e., the first steeply dipping joint position behind the 
slope shoulder), as shown by the pink slip surface, which 
differs from the numerical simulation result by only one rock 
layer thickness. These differences are mainly caused by the 
different nature of the two methods. The proposed method 
is based on the limit equilibrium principle of rigid bodies, 
while UDEC simulation adopts the stress–strain analysis of 
deformable bodies.

Figure 19 presents plots showing how the various slope 
angles (θs) influence the safety factor (Fs) of CBRSs. The 
plots correspond to the dip angle (θ1) of the steeply dipping 
joint that is 50°, and the joint strength (φj) and the bolt angle 
(α) which are both 30°. The bi-planar slip surface of CBRSs 
is shown as the pink line in the figure. The variation in the 
safety factor of the slope is approximately the same as that of 
the dip angle of gently dipping joints at 20° and 30°.

The safety factors of the underdip slopes are greater than 
that of the dip slope, and the smaller the slope angle, the 
greater the safety factor of underdip slope. This is because 
the smaller the slope angle of underdip slope, the greater the 

(a) (b)

Fig. 18   Comparison of the stability of the underdip slopes calculated by a numerical simulation and b proposed theoretical method
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area of the passive block at the toe of slope, thus the better 
the anti-slip stability of the slope (Huang 2007; Sun et al. 
2019, 2021).

With the support provided by the bolts, the safety factors 
of the bolted CBRSs are all improved. Moreover, the safety 
factors of the bolt-supported underdip slopes are all greater 
than that of bolted dip slope. However, the changes in the 
safety factors of the bolted underdip slopes are not signifi-
cant with changes in slope angle. The main reason for this 
may be that the area ratio of the active and passive blocks 
of the underdip slope is different for different slopes, result-
ing in different reinforcement effects arising from the bolts.

Conclusions

In this work, a new method for evaluating the stability of 
bolt-supported CBRSs with respect to bi-planar failure is 
proposed. A parametric analysis is then performed to inves-
tigate the effects of varying the bolt angle (angle of the bolt 
with respect to the joint plane) and bolt diameter on the 
stability of the CBRS. The key conclusions drawn are:

1.	 Fully grouted bolts are an effective and economical 
means of reinforcing CBRSs. The shear and axial forces 
acting in the bolts create dowel and pull-out effects that 
restrain the sliding of the rock strata and increase their 
shear strength.

2.	 There exists an optimal bolt angle that maximizes the 
stability of the bolted CBRS; its value is approximately 
equal to the friction angle of the joint. Using this bolt 
angle provides the largest support force and hence maxi-
mizes the safety factor of the bolted CBRS.

3.	 The support force provided by the bolts and safety factor 
of the bolted CBRS both increase according to power 
functions as the diameter of the bolts is increased. Thus, 
it is necessary to consider this power function reinforce-
ment effect when selecting the bolt diameter in order to 
achieve an effective and economical design.

4.	 The support forces provided by the bolts and safety fac-
tors of the bolted CBRSs calculated using the proposed 
method are relatively consistent which those calculated 
numerically. This finding verifies the rationality of using 
the proposed method to evaluate the stability of bolted 
CBRSs; it also demonstrates the feasibility of using 
UDEC to study bolted CBRSs.
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