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Abstract
Uncertainty in hydrogeological modeling has recently received attention. It has been reported that the geological model is 
one of the primary sources of uncertainty. The present study developed a synthetic geological model (SGM) based on the 
geological characteristics in Taiwan as the baseline. Simulated geological models with various levels of data sufficiency were 
assessed based on multiple borehole numbers, with and without the incorporation of geological knowledge, and a combination 
of geophysical data with borehole data. The models were used in groundwater flow and land subsidence simulations. The 
results from the models were assessed and compared by calculating the root-mean-square error and coefficient of determina-
tion (R2) corresponding to SGM to evaluate the geological model uncertainty. The results show that a model based on data 
from 17 boreholes that incorporates geological knowledge for a 300 m × 300 m site provides an acceptable assessment of 
land subsidence. The geological model that incorporates geological knowledge extensively improves the numerical models, 
demonstrating that geological knowledge is necessary for deriving geological models. The model using geophysical data 
with correction based on data from at least 13 boreholes provided better results compared with those obtained using data 
from various numbers of boreholes or only geophysical data. This study demonstrates that additional data can significantly 
decrease the uncertainty in geological and numerical models. The results can be used by engineers and researchers to decide 
on a suitable strategy for engineering geology projects based on the precision requirements and budget. They can also help 
minimize risk when modelers and stakeholders make decisions.

Keywords  Geological model uncertainty · Data sufficiency · Geological knowledge · Borehole number · Geophysical data 
assimilation · Land subsidence

Introduction

Uncertainty in hydrogeological modeling has recently 
received attention (Lelliott et al. 2009; Benedek and Molnár 
2013; Li et al. 2016; Mahmoudpour et al. 2016; Juang et al. 
2019; Tran et al. 2022). Its analysis has become an integral 
part of hydrogeological simulations (Marinoni 2003; Shi et al. 
2008; Guillaume et al. 2012). Many studies have shown that 
the primary sources of uncertainty in groundwater hydrogeo-
logical simulations are (1) numerical model settings, (2) data 
input, and (3) the geological model (Refsgaard et al. 2006; 
Hassan et al. 2008). Several techniques have been developed 
for estimating the uncertainties in model results, such as the 
quantification of the uncertainty in boundary and initial condi-
tions using data assimilation techniques (Fan et al. 2016; Liu 
et al. 2019; Qi and Liu 2019) and simultaneous data assimila-
tion and parameter estimation (Moradkhani et al. 2005; Vrugt 
et al. 2005; Tao et al. 2020). However, because these studies 
used a single model (changes in model structure were not 
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considered), the effects of structural deficiencies on model 
results were unaccounted for. Additional data may reduce 
some types of uncertainty, such as parametric and boundary 
uncertainty (Gallagher and Doherty 2007; Shi et al. 2008; 
Guillaume et al. 2012). Other types of uncertainty, such as 
geological uncertainty, have not been fully evaluated. Most 
studies on uncertainty analysis have focused on data input 
and model settings (Refsgaard et al. 2006). However, stud-
ies have found that geological models are a leading source 
of uncertainty (Neuman 2003; Bredehoeft 2005; Refsgaard 
et al. 2012; Yeh et al. 2021; Tran et al. 2022). Significant 
effort has been devoted to developing methods for determin-
ing hydrogeological conceptual models, which can be used 
to estimate model uncertainty (Rojas et al. 2008; Boyd et al. 
2019). However, there is no simple method for evaluating the 
effects of geological model uncertainty, which is often ignored 
in groundwater applications (Bredehoeft 2003, 2005; Neuman 
2003; Carrera et al. 2005; Refsgaard et al. 2006; Shi et al. 
2012; Yao et al. 2021).

Several methods are available for simulating geologi-
cal models, each with its own benefits and drawbacks. For 
example, data from many boreholes are required to achieve 
high accuracy in simulations of geological models using 
a stochastic Markov random field (Li et al. 2016; Qi et al. 
2016; Wang et al. 2017a; Zhao et al. 2020). The transi-
tion probability matrix indicates the correlation between 
the spatial distributions of materials in boreholes with the 
horizontal and vertical directions. Thus, the boundaries of 
the strata generated with this approach tend to be linear, 
which degrades the simulation results in complex geologi-
cal settings (Wang et al. 2018). In most cases, geological 
data are sparse and geological profiles are complex due 
to long-term structural deformation. Subsurface profiles 
are commonly simulated based on the spatial interpola-
tion of geological information from borehole data (Chiles 
et al. 2004; Mahmoudpour et al. 2016; Wang et al. 2017b). 
However, these methods generally neglect the geological 
uncertainty in the model and do not consider geological 
knowledge. Højberg and Refsgaard (2005) reported that 

geological uncertainty is extremely important in simula-
tions of groundwater flow. Gong et al. (2020) found that the 
geological model can significantly influence the numerical 
results for a groundwater flow system if an insufficient num-
ber of boreholes are used to construct the geological model. 
In practice, the geological settings are often invisible, and 
the interpretation derived from the models developed based 
on limited information represents only part of the complete 
picture. Therefore, the model results are significantly influ-
enced by the quality of the input data (Lelliott et al. 2009).

Numerous studies have analyzed uncertainty in land 
subsidence and groundwater flow modeling (e.g., Wang 
et al. 2015). However, relatively few have considered the 
uncertainty in geological models. The present study thus 
focuses on evaluating geological model uncertainty based 
on the sufficiency of input data during the construction of 
a geological model for groundwater flow and land subsid-
ence modeling. Geological models with (1) various numbers 
of boreholes (to evaluate the influence of borehole density 
on the simulated geological model), (2) with and without 
the incorporation of geological knowledge (to evaluate the 
suitability of incorporating geological knowledge into a geo-
logical model), and (3) with and without geophysical data 
assimilation (to evaluate the effectiveness of combining dif-
ferent and complementary data types to minimize geological 
model uncertainty) were assessed. The results of this study 
can be used to reduce the uncertainty of geological models 
with various levels of data sufficiency. They can also mini-
mize risk when modelers and stakeholders make decisions.

Methodology

This study investigates the effect of the uncertainty in geologi-
cal models with various levels of data sufficiency on ground-
water flow and land subsidence (Table 1). The baseline is a 
synthetic geological model (SGM) developed in this study. 
The numerical results from each geological model were com-
pared with those of SGM. To evaluate the effect of the number 

Table 1   List of simulated 
geological models

Parameter Simulated cases

Borehole number 1 borehole with incorporation of geological knowledge
5 boreholes with incorporation of geological knowledge
9 boreholes with incorporation of geological knowledge
13 boreholes with incorporation of geological knowledge
17 boreholes with incorporation of geological knowledge

Geological knowledge 17 boreholes without incorporation of geological knowledge
Geophysical data Only ERT data

ERT data with correction based on data from 9 boreholes
ERT data with correction based on data from 13 boreholes
ERT data with correction based on data from 17 boreholes
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of boreholes, data from 1 to 17 boreholes were taken from 
SGM to reconstruct a geological model (i.e., simulated geo-
logical model). The horizon ID method was used in the geo-
logical model simulation with correction based on geological 
knowledge. To evaluate the effect of geological knowledge, the 
horizon ID method was used in the geological model simula-
tion without correction based on geological knowledge for the 
case with 17 boreholes. To evaluate the effect of geophysical 
data assimilation, electrical resistivity tomography (ERT) was 
used in SGM to assess the clay thickness. The original esti-
mated clay thickness and that corrected based on data from 
17 boreholes with the cokriging method were input into the 
Subsidence and Aquifer-System Compaction (SUB) package 
in MODFLOW, respectively, to estimate the influence on land 
subsidence simulations. The adopted methods and related con-
cepts are described below.

Synthetic geological model construction

The diamond-square algorithm (DSA) (Fournier et al. 1982) 
was used to generate the random terrain height in SGM. This 
algorithm, also called the random midpoint displacement fractal, 
cloud fractal, or plasma fractal, is used for generating realistic-
looking terrain and procedural textures. The DSA process can 
be divided into two main steps: the diamond step and the square 
step. The calculation procedure of DSA is as follows.

1.	 Create a (2n + 1) × (2n + 1) matrix, where n is the number 
of DSA iterations, with the given initial values (heights) 
for the four corners.

2.	 (Diamond step) Calculate the midpoint of the square 
array in the matrix with the average value from the four 
corners plus a random value.

3.	 (Square step) Calculate the midpoint of the diamond 
array in the matrix with the average value from the four 
corners plus a random value.

4.	 Repeat the diamond and square steps n times.

Although a random geological surface can be obtained with 
this algorithm, many geological structures (e.g., synclines, 
anticlines, discrete patterns, faults) cannot always be success-
fully generated by DSA. The trend of the target geological 
structure should be considered. Therefore, we developed a 
numerical code to generate a realistic-looking SGM that con-
siders the trend of the geological structure and the DSA results. 
The formulation of a random terrain can be expressed by:

where H is a random elevation of a geological surface, T is 
the trend function of the geological surface, and d is the ele-
vation calculated from DSA with the random value in steps 

(1)H(x, y) = T(x, y) + d(x, y)

2 and 3 having zero mean and standard deviation. The trend 
of each geological surface can be determined based on the 
assumed geological scenario. A realistic-looking geological 
model can then be easily generated by Eq. (1).

Methods for simulating geological models

Horizon ID method

The horizon ID method in the groundwater modeling system 
(GMS) assigns an ID for each material in a borehole. This 
method can help construct a geological model with the layer 
system from borehole data. Horizon numbering may have 
gaps. A primary triangulated irregular network (TIN) must 
be created or imported into the GMS for the horizon ID 
method. The primary TIN defines the boundaries of formed 
solids. The density of the triangles in solids is controlled by 
the mass of the triangles in the primary TIN.

First, the user or system assigns horizon IDs to each seg-
ment of a borehole. The horizon IDs represent the aquifer 
or aquitard to which the materials belong in the depositional 
sequence (from bottom to top) in a borehole. Second, the pri-
mary TIN is defined based on a standard triangulation algo-
rithm (Tsai 1993; De Loera et al. 2010). The boundaries of 
solids are based on the TIN’s boundaries. Third, the horizon 
surface is created by interpolating the horizon elevations. 
Fourth, the surfaces of the horizons are intersected. Each 
TIN is intersected with all other TINs. Fifth, the elevation 
of each horizon in the primary TIN is adjusted. Finally, one 
solid is built for each horizon based on the TIN elevations 
from the above steps (Lemon and Jones 2003).

This study developed simulated geological models with 
and without the incorporation of geological knowledge. 
Without geological knowledge, the horizon ID method auto-
matically connects and extends the formation based on the 
assigned IDs of the strata. However, auto-connection is not 
able to recognize the order of the formation and may con-
nect a given material to different layers, and auto-extension 
does not consider the continuity of the formation, extending 
the strata to a default length. Interpolation and extrapolation 
methods can also strongly affect the simulated geological 
model. Therefore, geological knowledge has been used to 
correct the connection and extension of the strata based on 
the order of the formations and the continuity concept of 
a geological material, respectively. A suitable interpola-
tion or extrapolation method was also selected based on the 
simulated results obtained with geological knowledge. Some 
areas around the boundary need model extrapolation due 
to a lack of borehole data, which leads to high uncertainty 
in groundwater flow and land subsidence modeling results. 
Increasing the number of boreholes or combining some 
boreholes outside the region of interest can decrease the 
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extrapolation error and uncertainty in the model. Geologi-
cal knowledge was also used to correct the non-horizontal 
formations around the boundary.

Electrical resistivity tomography method

ERT is a non-invasive geophysical technique for imaging 
subsurface structures based on electrical resistivity measure-
ments. The electrical resistivity method injects an electric 
current into the ground. The current flows through different 
subsurface media results in a variation in electrical resistiv-
ity values, which can be used to determine the type of mate-
rial. The variation in measured electrical resistivity is related 
to lithology, mineral composition, water content, porosity, 
permeability, and pore water composition (Archie 1942). 
The recovery ability of electrical resistivity imaging meth-
ods (electrode configurations) varies with subsurface mate-
rial variation (Doyoro et al. 2021; Nyári and Kanlı 2007). 
Water content can considerably vary the electrical properties 
of clay material (Nyári et al. 2010). In addition, electrical 
resistivity is sensitive to electrolyte and soil-fluid interface 
chemistry, and the grain surface conduction becomes sig-
nificant when clay minerals are present (Kanli and Neducz 
2015; Tildy et al. 2017). Because ERT is highly sensitive to 
the presence of clay content, clay layer/zone information can 
be obtained from electrical resistivity data.

A forward simulation is a good approach for outlining 
the linkage between geological models and geophysical 
methods. Eleven two-dimensional geological cross sections 
were extracted at 30-m intervals from the three-dimensional 
(3D) SGM (Fig. 1). Then, two-dimensional electrical resis-
tivity synthetic models were constructed using the electrical 
resistivity values of lithologic units. This study applied the 
Wenner–Schlumberger configuration because it is moder-
ately sensitive to lateral and vertical variations and has a 
high signal-to-noise ratio. This study applied 76 electrodes 
with a 4-m spacing for surface electrical resistivity probing. 
The apparent electrical resistivity was calculated by solv-
ing partial differential equations (Rubin and Hubbard 2006) 
using finite element modeling with 1 m × 1 m structured 
meshes. The inverted model was recovered using smooth-
ness-constrained least-squared inversion, which attempts to 
minimize the squares of the spatial changes of the model 
resistivity and is adequate for gradually varying resistivity 
environments (Loke et al. 2003).

Governing equations

Governing equation of groundwater flow

MODFLOW, a finite-difference groundwater flow code 
developed by the United States Geological Survey, can be 
used in the GMS 3D Grid module to create a groundwater 

flow model (McDonald and Harbaugh 1988). The core 
mathematical model of MODFLOW is the following partial 
differential equation (Rushton and Redshaw 1979), which 
describes the 3D movement of groundwater flow through 
porous media:

where h is the hydraulic head [L], W is the volumetric source 
per unit volume that represents sources and sinks of water 
[T−1], t  is time [T], Ss is the specific storage of the porous 
material [L−1], and kx, ky, and kz are the hydraulic conductiv-
ity values along the x, y, and z directions, respectively [L/T].

Governing equation of land subsidence

Land subsidence was simulated using the SUB pack-
age based on MODFLOW-2000 (Harbaugh et al. 2000). 
SUB is based on the Interbed Storage Package, version 2 
(IBS2) (Leake 1990). It considers the delay in the release 
of groundwater from a compressible interbed. Both elas-
tic and inelastic sediment compaction is computed. Only 
vertical displacement is considered in the simulation. Hori-
zontal displacement occurs near pumping wells or local 
heterogeneities in aquifer systems in response to pump-
ing. Seasonal recharge/discharge tends to be highly limited 
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Fig. 1   Synthetic geological model in GMS and boundary conditions. 
The two specified heads represent the upstream (north) and down-
stream (south), respectively. To control the groundwater flow from 
the upstream to the downstream, the east and west boundaries of the 
model were set as no-flow boundaries. Because of the low permeabil-
ity bedrock, the bottom boundary of the model was set as a no-flow 
boundary. The top boundary was set to a constant recharge. SS sand 
stone
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(Hoffmann et al. 2003). The local horizontal displacement 
slightly contributes to the overall change in groundwater 
storage for regional groundwater flow and land subsidence 
models. SUB estimates both the expansion and compaction 
of the interbed and aquifers in each model layer and sums 
the vertical displacement values at the ground surface. The 
compaction in response to the hydraulic head decrease in 
unconsolidated aquifer systems, as reported in several stud-
ies (Terzaghi 1925; Meinzer 1928; Jacob 1940). The effec-
tive stress is related to pore water pressure and the total 
stresses caused by overburden as follows:

where �′ is the effective or intergranular stress [ML−1 T−2], 
� is the geostatic stress (a load caused by overlying saturated 
and unsaturated sediments and water) [ML−1 T−2], and u is 
the pore water pressure in the sedimentary matrix [ML−1 T−2].

The theory assumes that deformation is vertical and the 
total stress is constant. In SUB, the vertical subsidence is 
based on the change in effective stress, which is assumed 
to change with the hydraulic head. Land subsidence is cal-
culated as:

where Δb is the layer compaction [L], Ssk is the skeletal spe-
cific storage [L−1], b is the original thickness of the layer [L], 
and Δh is the change in the hydraulic head [L]. Two separate 

(3)�
�

= � − u

(4)Δb = SskbΔh

values are used to account for the marked change of the 
skeletal specific storage when the effective stress changes:

where Sske is the elastic skeletal specific storage [L−1], Sskv 
is the inelastic skeletal specific storage [L−1], and ��

zz(max) is 
the preconsolidation stress [ML−1 T−2].

Numerical model settings

Initial and boundary conditions and stress period settings

The domain of the constructed SGM is 300 m × 300 m 
(Fig. 1). The specified head boundary condition (Dirichlet 
boundary condition) was set at the upstream (north) and 
downstream (south). To control the groundwater flow from 
the upstream to the downstream in the aquifer, the east and 
west boundaries of the model were set as no-flow boundaries 
(Neumann boundary condition). Because of the low perme-
ability of the bedrock, the bottom boundary of the model 
was also set as a no-flow boundary. The top boundary was 
set according to the recharge condition.

The transient state condition was considered in the 
groundwater flow model. Fifty stress periods, each with a 
duration of 90 days (total of 4500 days), were used. The 
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Table 2   Material properties in SGM

*  Modified from Johnson (1967)

Condition Layer number Lithology Electrical resistance 
(Ω·m)

Horizontal hydraulic con-
ductivity (m/d)

Specific yield*

Unconsolidated layers 1 Silt 300 0.05 0.08
2 Clay 20 0.0001 0.03
3 Sand I 150 35 0.21
4 Gravel 500 100 0.35
5 Sand II 150 10 0.21

Consolidated layers 6 Sandstone I 2000 0.1 0.27
7 Sandstone/shale 1500 0.001 0.25
8 Sandstone II 3000 0.01 0.27
9 Shale 300 0.0001 0.26

Table 3   Parameters of clay interbed

Modified from Hong (2011)

Parameter Vertical hydraulic 
conductivity (Kv)

Elastic specific storage 
(Sske)

Inelastic specific storage 
(Sskv)

Elastic skeletal storage 
coefficient (Ske)

Inelastic skeletal 
storage coefficient 
(Skv)

Unit m/d 1/m 1/m – –
Value 1 × 10–4 1 × 10–3 1 × 10–2 3.38 × 10−5 9.79 × 10−3
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stress periods of the land subsidence model were the same 
as those for the groundwater flow model. Pumping began 
after 90 days. The initial groundwater level for each grid was 
equal to the top layer elevation. The initial land subsidence 
of all grids was set to zero in the land subsidence model.

Sources and sinks

The sources and sinks in this study include groundwater 
extraction and recharge. A well in MODLFOW can be a source 
or sink. Wells are defined by assigning a pumping rate to a 
selected cell. Wells can be injection wells (positive flow rate) 
or extraction wells (negative flow rate). The WEL package was 
used to set up pumping wells in the model. To avoid bias in 
pumping and focus on discussing the effect of the geological 
model on the estimation of land subsidence, the pumping wells 
were set up in each cell of the sand I layer in the model with 
a total extraction quantity of 4500 m3/day, which represents 
uniform pumping for the whole area. This pumping quantity 
was set to obtain a maximum land subsidence of around 5 cm.

The recharge (RCH) package was used to simulate 
recharge to an aquifer due to rainfall and infiltration. 
Recharge is typically defined for each stress period for each 
vertical column in the grid by specifying a recharge value. 
The recharge value represents the quantity of water from the 
surface that goes into the groundwater system. The recharge 
in this study was set up at all of the highest active cells in 
the model with a recharge rate of 0.0009 m/day for all stress 
periods (Wang et al. 2021).

Parameter settings

Because this study focuses on assessing the uncertainties 
in the geological model, the parameters for each material 
adopted in this study were assumed to be constants (see 
Table 2). The vertical hydraulic conductivity (VK) was 

assumed to equal 1/10 the horizontal hydraulic conductiv-
ity (HK) (i.e., HK/VK = 10). In this study, clay was assumed 
to be the only compressible material. The parameters of the 
clay interbed are listed in Table 3.

Results and discussion

Synthetic geological model

The developed SGM is shown in Fig. 1 and its information 
is listed in Table 2. It consists of various topographies, e.g., 
anticline strata (layer nos. 8 and 9), an anticline stratum with 
erosion (layer no. 7), an anticline stratum with a discrete 
phase (layer no. 6), a horizontal stratum (layer no. 3), and 
horizontal strata with a discrete phase (layer nos. 1, 2, 4, and 
5). The lithologies of the strata are listed as unconsolidated 
formations, namely silt (no. 1), clay (no. 2), sand I (no. 3), 
gravel (no. 4), and sand II (no. 5), and consolidated rock 
formations, namely sandstone I (no. 6), sandstone and shale 
interbedded (no. 7), sandstone II (no. 8), and shale (no. 9). 
The geological structure of SGM was set to be a moderately 
complex configuration with the mesoscale condition, which 
is similar to the foothills or hilly areas in western Taiwan. 
The elevation of SGM was assumed to decrease from north 
(upstream) to south (downstream). The geological structure 
of this model includes:

1.	 Strata that contain unconsolidated formations and con-
solidated rock formations

2.	 Strata that contain various significant permeabilities
3.	 A rock bed inclination that is dominated by a geological 

structure that is assumed to be an anticline

Fig. 2   Distribution of clay thickness in SGM model

Fig. 3   Boreholes extracted from SGM to construct simulated geologi-
cal models. Simulated geological models that adopted data from 1, 5, 
9, 13, and 17 boreholes used boreholes no. 1, nos. 1–5, nos. 1–9, nos. 
1–13, and nos. 1–17, respectively
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Fig. 4   Distribution of clay thickness in simulated geological models 
(left) and geological cross sections (right) obtained using horizon ID 
method with data from various numbers of boreholes with incorpora-

tion of geological knowledge. Results for a 1, b 5, c 9, d 13, and e 17 
boreholes
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4.	 A realistic-looking elevation of the ground surface

A 3D geological model with a multilayer system was built 
by extracting the elevation data from the SGM subsurface 
and inputting them into the GMS (Fig. 1). The model con-
sisted of all layers except the silt layer at the top layer of the 
model in the numerical simulation. The silt layer was taken 
out of the model because it was too thin and discontinuous, 
making the boundary condition setting difficult. Clay mate-
rial in the model was considered an inelastic medium, which 
typically results in high land subsidence. Clay thickness in 
SGM is shown in Fig. 2.

Simulated geological models

Simulated geological models were constructed based on 
various levels of data sufficiency. The results of ground-
water flow and land subsidence obtained with these models 
are compared to those of SGM using an error assessment.

Effect of number of boreholes

Data from 1, 5, 9, 13, and 17 boreholes were extracted from 
SGM, respectively (Fig. 3). The borehole placement rule 
adopted in this study was based on the concept used in an 

Fig. 4   (continued)
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engineering site, with the assumption that the main target 
was at the center. For a study site, if only one borehole is 
required, it is commonly set at the center (no. 1). If the main 
target is at the center, additional boreholes (nos. 2 to 5) are 
placed around the target, i.e., near borehole no. 1. If more 
boreholes can be used, two sets of boreholes (nos. 6 to 9 
and nos. 10 to 13, respectively) are placed from the center 
to an adjacent area. Then, because the boreholes uniformly 
occupy the study area (except at the boundary), boreholes 
nos. 14 to 17 are placed randomly.

The horizon ID method was used to simulate geological 
models based on data from various numbers of boreholes. 
The cross sections, minimum thickness of each layer (mate-
rials), strata around the boundary, and spatial distribution 

of the materials were assessed and calibrated based on geo-
logical knowledge to reflect a realistic situation. Some of 
the cross sections were modified based on geological con-
cepts in SGM, such as anticline strata (layer nos. 8 and 9), 
an anticline stratum with erosion (layer no. 7), an anticline 
stratum with a discrete phase (layer no. 6), a horizontal stra-
tum (layer no. 3), and horizontal strata with a discrete phase 
(layer no. 1).

Five simulated geological models were constructed, as 
shown in Fig. 4. Data from 1 or 5 boreholes were insufficient 
for capturing the distribution of clay (compared with Fig. 2). 
Data from 9 to 17 boreholes were sufficient for constructing 
an approximate clay distribution. The distribution of clay 
thickness became closer to that of SGM with increasing 

Fig. 5   Distribution of clay 
thickness in simulated geologi-
cal model based on data from 
17 boreholes without incorpora-
tion of geological knowledge

Fig. 6   Comparison of con-
structed solids (a) with and (b) 
without geological knowledge 
in profile of boreholes nos. 10 to 
11. Without geological knowl-
edge, the extension of clay 
material connects to another 
formation with an unusual 
tilt stratum, which may cause 
uncertainty when the clay mate-
rial is extrapolated to the whole 
domain (as done in Fig. 5)
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borehole number. As shown, clay thickness based on data 
from 17 boreholes has a similar pattern to that of SGM. 
However, in a real engineering geology project, this number 
of boreholes may be impractical for a 300 m × 300 m site. 
The geological model uncertainty for a real site is thus high.

Effect of incorporation of geological knowledge

To demonstrate the effect of the incorporation of geologi-
cal knowledge on a geological model, geological models 
constructed using data from 17 boreholes with and without 

Fig. 7   a Example profiles of inverted electrical resistivity model at Y = 0, 150, and 300 m. b Estimated clay thickness from ERT data of SGM. 
Location of the profiles in (a) is marked in (b) with corresponding color arrow
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correction based on geological knowledge were built and 
compared. The geological cross sections were created by auto-
matically connecting a given material between the boreholes 
using the horizon ID method, i.e., without the incorporation 
of geological knowledge. The cross sections were then inter-
polated into the layer system. Figure 5 shows the distribution 
of clay thickness for the simulated geological model. This 
distribution is very different from that of SGM (Fig. 2). Only 
a small part of the clay thickness has a similar pattern, which 
is quantitatively different. Compared to the clay thickness 
estimated using data from 17 boreholes with and without the 
incorporation of geological knowledge (Figs. 4e and 5, respec-
tively), the simulated geological model with the incorporation 
of geological knowledge had much better performance.

A profile from borehole nos. 10 to 11 (across no. 7) is shown 
in Fig. 6 to demonstrate the difference in performance. Note 
that there are two sets of results, namely a fence diagram (the 

construction of solids) (Figs. 4e (right) and 6) and a geologi-
cal interpolation (Figs. 4e (left) and 5). The construction of 
solids only shows a slight difference in the extension of clay 
material (Fig. 6), whereas the interpolation results show a large 
difference due to the uncertainty of clay extrapolation (Figs. 4e 
(left) and 5). The results demonstrate that including geological 
knowledge improves the performance of geological models.

Effect of geophysical data assimilation

ERT was performed to identify the clay layers. The obtained 
clay layers from 11 profiles of the inverted electrical resistiv-
ity models were used as an input parameter in the geological 
model simulation to calculate land subsidence. Two cases, 
namely one with only ERT data and one with ERT data with 
correction based on data from 9, 13, and 17 boreholes, are 
discussed. Data from fewer than 9 boreholes did not yield 

(a) (b)

(c) (d)

Fig. 8   Distribution of clay thickness for interpolations conducted using a ERT data only and ERT data with correction based on data from b 9, c 
13, and d 17 boreholes
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reasonable cokriging results. Because the clay thickness 
estimated from ERT has considerable uncertainty (Doyoro 
et al. 2021), results obtained with and without the correc-
tion were compared to demonstrate the improvement in the 
geological and numerical models. To assess the effect of 
adding ERT data in the construction of a geological model, 
the clay thickness obtained from the simulated geological 
models was input into SUB to calculate land subsidence.

Use of only ERT data  Figure 7 shows the information obtained 
from ERT models. The electrical resistivity of clay commonly 
ranges from 0 to 100 Ω m; therefore, this study assumed that 
in the first aquifer, a grid with electrical resistivity values 
that range from 0 to 100 Ω m represents clay. Low-electrical-

resistivity zones at a shallow depth in the electrical resistiv-
ity image thus indicate clay layers. Three example profiles 
are shown in Fig. 7a. The extracted clay layer information is 
shown in Fig. 7b. The interpolated ERT clay thickness, shown 
in Fig. 8a, is larger than that of SGM (Fig. 2). The obtained 
land subsidence is thus overestimated, leading to unreliable 
results. Therefore, we used the available borehole information 
as prior knowledge to constrain the ERT model results.

Use of ERT data with correction based on borehole data  To 
correct the overestimation obtained with the use of ERT 
data, the cokriging method was used to assimilate geophysi-
cal data with data from the geological boreholes. Two clay 
thickness datasets, namely clay thickness from borehole data 
and that from ERT data, were used. The two datasets have 
the same properties, so cokriging is suitable for process-
ing and fitting them. Because the borehole data are sparse 
and the ERT data are abundant, the former are considered 
as the target variable and the latter are considered as the 
supplementary variable in the interpolation. The cokriging 
results for ERT data and data from 17 geological boreholes 
are shown in Fig. 9 as an example. The estimated clay thick-
ness obtained from ERT data has a high correlation with 
that obtained from borehole data. This method reduces the 
error of estimation based on ERT data.

As mentioned in the previous section, this approach can 
only be used for models that use data from 9, 13, and 17 
boreholes; data from fewer boreholes are insufficient for rea-
sonable results. The calculation results obtained with the cor-
rected clay thickness are shown in Fig. 8b–d. The distribution 
of clay thickness shows a significant improvement compared 
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Fig. 9   Cokriging results for ERT data and data from 17 boreholes

Fig. 10   Groundwater flow results of SGM at a 90 days (first period) and b 4500 days (last period) in sand I layer
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to that for the model without correction (Fig. 8a), except for 
the distribution obtained with the model that used 9 bore-
holes. The clay thickness for the simulated geological model 
constructed using only ERT data is much larger than that of 
SGM at almost every location. The model constructed using 
cokriging interpolation does not exhibit this overestimation. 
Specifically, the clay thickness for ERT data with correction 
based on sufficient borehole data is similar to that of SGM. 
The numerical results confirm that the use of ERT data with 
correction based on borehole data yields much better results 
and thus decreases geological model uncertainty.

Numerical simulation of groundwater flow and land 
subsidence

Results for SGM

The numerical results of groundwater level in SGM at 
90 days and 4500 days are shown in Fig. 10. Groundwater 
moves from upstream to downstream with relatively stable 
equipotential lines in the study area. The groundwater level 
varies from 86 to 73 m based on the boundary condition 
setting. The groundwater level gradually decreases during 
the simulation period because of uniform pumping, which 
causes compaction and thus induces land subsidence.

The numerical results clearly show the effect of clay in 
the land subsidence calculation, as shown in Fig. 11. The 

maximum land subsidence is 0.044 m after 4500 days of 
pumping. At locations with larger clay thickness, land sub-
sidence is more extensive. The results also show the effect of 
specified head boundary conditions in the numerical model. 
The land subsidence at the two specified head boundaries is 
0 due to a lack of change in groundwater level. This dramati-
cally affects the numerical results of land subsidence as well 
as the uncertainty of the geological model. Thus, specified 
head boundary conditions of the groundwater head should 
be carefully used in land subsidence simulations (Wang 
and Hsu 2009). Tran et al. (2022) reported that setting the 
boundary far from the region of interest mitigates the influ-
ence of specified head boundary conditions.

Results for models based on data from various numbers 
of boreholes

The numerical results of groundwater level for simulated 
geological models based on data from various numbers of 
boreholes are shown in Fig. 12. All results show a pattern 
similar to that of SGM (Fig. 10) because the boundary con-
ditions for all simulations were the same and the aquifer 
system did not significantly change. The changes in ground-
water level are similar, which further decreases the influence 
of groundwater on the calculation of land subsidence.

The results of land subsidence for models based on data 
from various numbers of boreholes are shown in Fig. 13. The 
subsidence pattern of these models becomes increasingly 

Fig. 11   Vertical displacement 
results of SGM at 4500 days
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similar to that of SGM with increasing number of boreholes. 
The simulated geological models based on data from vari-
ous numbers of boreholes do not significantly influence the 
groundwater flow model. However, the simulated geological 
models strongly affect the land subsidence assessment. These 
comparisons indicate that land subsidence results are strongly 
affected by the thickness of clay, which is considered to be 

the interbed in the aquifer. Land subsidence is calculated 
from the skeletal specific storage, layer thickness, and change 
in hydraulic head (Eq. (4)). The hydraulic head change is 
similar for the considered cases and clay has high skeletal 
specific storage; thus, land subsidence mainly depends on 
clay thickness. Note that all results are greatly influenced by 
the specified head boundary conditions of the groundwater 

Fig. 12   Groundwater flow 
results at 4500 days based on 
simulated geological models 
based on data from a 1, b 5, 
c 9, d 13, and e 17 boreholes 
obtained with horizon ID 
method and incorporation of 
geological knowledge
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head, which decrease the land subsidence values and make 
the results unreasonable near the boundaries.

Results for models with and without geological knowledge 
incorporation

Because the numerical results of groundwater level are similar 
between SGM and the simulated geological models, they are 

not discussed in this or the following section. Figure 14 shows 
the numerical results of land subsidence obtained using the 
simulated geological model based on data from 17 boreholes 
without the incorporation of geological knowledge (Fig. 5). 
The geological model has poor performance in terms of clay 
thickness, and thus the results of land subsidence are signifi-
cantly different from those of SGM. This confirms that geolog-
ical knowledge should be incorporated into geological models.

Fig. 13   Land subsidence results 
at 4500 days based on simulated 
geological models based on data 
from a 1, b 5, c 9, d 13, and 
e 17 boreholes obtained with 
horizon ID method and incorpo-
ration of geological knowledge
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Results for models with and without geophysical data 
assimilation

Use of only ERT data  Clay thickness in the simulated geo-
logical model that uses only ERT data is much higher than 
that of SGM and thus land subsidence is overestimated 
(Fig. 15a). The subsidence quantity in the red area is much 
higher than that of SGM. The results show that adopting 
the estimated clay thickness from ERT data for land subsid-
ence calculations gives poor results because the results of 
geophysical surveys commonly embed a significant amount 
of uncertainty. The calculation results should thus be care-
fully used.

Use of ERT data with correction based on borehole data  The 
land subsidence results for the simulated geological model 
that uses ERT data with correction based on data from 13 
and 17 boreholes are shown in Fig. 15b, c. The subsidence 
quantities are lower than those obtained without correction 

and are thus closer to those of SGM (Fig. 11). The interpo-
lation method was used in the simulated geological model; 
thus, the distributions of clay thickness and land subsidence 
are slightly different from those of SGM even though the 
model gives improved land subsidence results.

Quantification of geological model uncertainty

To quantify the results, the root-mean-square error (RMSE) 
and coefficient of determination (R2) are used to assess the 
difference between the geological models and SGM. The 
random.sample() function in Python was used to generate 
150 random points with a nearly uniform distribution in the 
study area. The numerical results at these points were used 
to calculate the RMSE and R2 values.

A comparison of clay thickness accuracy between the 
simulated geological models based on data from various 
numbers of boreholes and SGM is shown in Fig. 16. There 
is no correlation (R2 = 0) between the model based on data 

Fig. 14   Land subsidence results at 4500 days based on simulated geological models based on data from 17 boreholes without incorporation of 
geological knowledge
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from one borehole and SGM. The R2 values increase with 
increasing number of boreholes (R2 = 0.733 for 17 bore-
holes). RMSE decreases from 2.252 m for one borehole to 
0.770 m for 17 boreholes. The quantification results show 
that increasing the number of boreholes in the study area 
for the geological model construction can decrease uncer-
tainty. The trend is nonlinear and affected by the location of 
selected boreholes and the distribution of clay.

Figure 17a shows a comparison of the numerical results 
of groundwater level between the simulated geological mod-
els based on data from various numbers of boreholes and 
SGM. The differences between these results are very small. 
In all cases, the R2 value is larger than 0.987 and RMSE is 
smaller than 0.336 m. This implies that the thickness of the 
inelastic interbeds in the aquifer system does not significantly 
affect the numerical results of groundwater level. With an 

Fig. 15   Land subsidence results at 4500 days based on simulated geological models based on a only ERT data and ERT data with correction 
based on data from b 13 and c 17 boreholes
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increase in the number of boreholes, the R2 value increases 
and RMSE decreases; their trends are nonlinear. The subsid-
ence results show a similar pattern (Fig. 17b). The numerical 
results for the model based on data from 17 boreholes have 

an acceptable RMSE of 4 mm and an R2 value of 0.787 in the 
land subsidence simulations (Deng et al. 2017; Mahmoudpour  
et al. 2016; Zhang et al. 2010). These results can be a refer-
ence for engineers and researchers to determine the required 
borehole number for engineering geology projects at a simi-
lar site scale based on the precision requirement.

Figure 18 shows a comparison of the numerical results 
of land subsidence between the simulated geological model 
based on data from various levels of data sufficiency and 
SGM. For the model based on data from 17 boreholes with-
out the incorporation of geological knowledge, the R2 value 
slightly increases to 0.316 and RMSE decreases to 7 mm. 
The results show that the accuracy of this method is very 
low. The use of data from 17 boreholes and the incorpora-
tion of geological knowledge improve the results. The results 
demonstrate that geological knowledge is necessary for sim-
ulating a geological model and land subsidence based on 
borehole data; its incorporation dramatically increases the 
accuracy of numerical results and reduces model uncertainty.

The results obtained from the model that used only ERT 
data show an improvement compared to those for data from 
boreholes without the incorporation of geological knowl-
edge. The R2 value is 0.640 and RMSE is 7 mm (Fig. 18). 
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These values are worse than those for the model based on 
data from 17 boreholes with the incorporation of geologi-
cal knowledge. Using only ERT data for land subsidence 
simulation embeds high uncertainty. The results of the 
simulated geological model that used ERT data with cor-
rected data from 13 and 17 boreholes show a remarkable 
improvement in the land subsidence simulation. Specifi-
cally, the R2 values are 0.812 and 0.894 and the RMSE val-
ues are 3 and 3 mm, respectively (Fig. 18). The results also 
show higher accuracy than that obtained using 17 boreholes 
with the incorporation of geological knowledge. The R2 
value increases from 0.787 to 0.894 and RMSE decreases 
from 4 to 3 mm. The results demonstrate that using data 
from a limited number of boreholes or only ERT data can-
not provide reliable numerical results of land subsidence. 
A combination of borehole data and ERT data effectively 
reduces the required well number and uncertainty of geo-
logical models and increases numerical model accuracy.

Conclusions

This study performed numerical simulations of ground-
water flow and land subsidence for SGM as the baseline. 
Geological models with various levels of data sufficiency 
were built. The results from these models were compared 
with those of SGM to assess the geological model uncer-
tainty. The quantification results show that the clay thick-
ness, groundwater level, and land subsidence results for 
the model based on borehole data approach those of SGM 
with increasing borehole number. The model based on data 
from 17 boreholes that incorporates geological knowledge 
provided acceptable groundwater flow and land subsidence 
results for a 300 m × 300 m site. Applying the horizon ID 
method without the incorporation of geological knowl-
edge yielded assessment results that were far from those of 
SGM. To increase accuracy and decrease the uncertainty 
of the geological model, borehole data can be combined 
with ERT data via the cokriging interpolation method. 
This combination decreases the required borehole num-
ber and yields a dramatic improvement compared with the 
results obtained using only ERT data or borehole data. 
The study results can be used by engineers or researchers 
to determine a suitable strategy for engineering geology 
projects based on the precision requirements and budget.

From a practical point of view, using 17 boreholes in a 
300 m × 300 m site might not be realistic due to cost. There-
fore, the influence of geological model uncertainty on numeri-
cal simulations will be large. A combination of fewer bore-
holes (e.g., 13 boreholes) and ERT data can be acceptable for 
a 300 m × 300 m site, but not in a faulted area, if the relation-
ship between borehole logs and ERT data can be derived. The 
specified head boundary for groundwater modeling strongly 

affects the assessment of land subsidence and should be care-
fully used. Setting the boundary far from the region of interest 
may mitigate the influence of specified head boundary condi-
tions. In this study, the numerical models were built under the 
assumption of a layered homogeneous material, making the 
calculation and simulation process faster and easier. However, 
materials are commonly not uniformly distributed in a layer 
but quite heterogeneous. A heterogeneous geological model 
could be considered in future investigations.
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