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Abstract
This study aims to present a theoretical method for the safety factor of a slope encapsulating a laterally loaded pile. The 
factor can be derived by the object function concerning the external work rate and internal energy dissipation based on kin-
ematic limit analysis, after assuming the log-spiral failure mechanism of the slope. To address the core issues (the critical 
point depth and lateral force provided by the pile) in the analysis, the modified strain wedge technique and the soil wedge 
assumption were adopted to evaluate the soil resistance and extra earth pressure around the pile, respectively. Besides, the 
proposed method was verified by published data and numerical methods, and the slope failure mechanism was revealed by 
observing two wedge-shaped failure regions around the pile. Furthermore, the variations of normalized safety factors with 
normalized lateral loads can be empirically fitted by cubic functions, and the normalized safety factor mainly depends on the 
lateral load and pile location but is not sensitive to the shear strength. The safety factor of the slope encapsulating a laterally 
loaded pile (FoS1) can be thus alternatively predicted by scaling the safety factor of the slope without the lateral load (FoS0) 
with the corresponding normalized safety factor η.

Keywords Laterally loaded pile · Slope stability · Kinematic limit analysis · Strain wedge · Factor of safety

Introduction

Piles have been frequently employed to sustain superstruc-
tures of bridges (Zhao et al. 2017, 2019, 2020), transmis-
sion towers, and buildings in mountainous areas (Peng et al. 
2019, 2020a, b) such as western and southern hilly terrain 
(Ng et al. 2001; Ng and Zhang 2001; Zhang et al. 2008) in 

China (Fig. 1a). The pile would inevitably carry lateral loads 
caused by high-speed vehicles, typhoons (Liang et al. 2012), 
and earthquakes (Wang et al. 2021), and the lateral load 
would be transferred from the pile head to the slope, leading 
to a degeneration of slope stability and even a slope failure 
(Fig. 1b). Hence, the mechanical context and behavior of the 
slope encapsulating a laterally loaded pile are more compli-
cated than those of the slope reinforced with anti-slide piles, 
and the corresponding stability analysis has become one of 
the significant technical issues in highway bridge engineer-
ing in mountainous areas.

In the field of slope stability analysis (Liu et al. 2021), 
much more effort has been devoted to the slope without 
a laterally loaded pile and the commonly used methods 
include the limit equilibrium method (Ito et  al. 1979; 
Poulos 1995), numerical simulation (Lee et al. 1991; Ni 
et al. 2018), and limit analysis method (Ausilio et al. 2001; 
Huang et al. 2013; Gao et al. 2014; Qin et al. 2017). The 
main thought of these methods is to sum the lateral reaction 
forces provided by anti-slide piles on the potential sliding 
block and then evaluate the slope safety factor by reduc-
ing the shear strength of soil or comparing the resisting 
moment with the overturning moment on the block. For 
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the limit equilibrium method, the solutions satisfy the 
static equilibrium condition and Mohr–Coulomb crite-
rion; however, certain simplified assumptions are required 
and the stress–strain relationship of soil is neglected (Yu 
et al. 1998). For the numerical simulation, the response 
of the pile-slope system could be preferably investigated; 
however, the method is challenged by intensive computa-
tions and excessive sensitiveness to input soil parameters 
and constitutive relation. As to the limit analysis method, 
the solutions can consider the stress–strain relationship of 
soil based on rigid-perfectly plastic assumptions, and the 
method has been broadly employed due to its simplicity and 
convenience. Hence, it is also an effective theoretical means 
to predict the stability of the slope encapsulating a laterally 
loaded pile based on the limit analysis method but has not 
been systematically reported yet. To the authors’ acknowl-
edge, the lateral load transferred from the pile head to the 
slope would result in different mechanical responses such as 
the soil resistance and extra earth pressure around the pile. 
Two cases of slope failure ascribed to by laterally loaded 
piles were reported by Uto et al. (1987), but there was no 
further development on the failure mechanism. To tackle 
it, an assumption of the wedge-shaped local failure in front 
of the laterally loaded pile was presented (Nakasima et al. 
1985), and the local failure was subsequently observed in 
some model experiments (Muthukkumaran 2014). In addi-
tion, three-dimensional numerical analysis was carried out 
to quantitatively investigate the effect of the laterally loaded 
pile on the slope stability, and the mechanisms of lateral 
load transfer from the pile to the slope were revealed (Ng 
et al. 2001). However, these studies failed to theoretically 
predict the mechanical response (Ng et al. 2001; Uto et al. 
1987; Nakasima et al. 1985; Muthukkumaran 2014) and sat-
isfy the requirement of the recent design code (JTG 2020). 
In conclusion, it is necessary to estimate the soil resistance 

and extra earth pressure in the theoretical analysis of slope 
stability with a laterally loaded pile.

On account of this, the assessments of degraded soil resist-
ance in front of the pile and extra earth pressure behind the pile 
should be considered (Fig. 2). For the former, it is commonly 
estimated by reducing the standard p-y curves in the level ground 
(Reese and Welch 1975) with reduction coefficients (Mezazigh 
and Levacher 1998; Liyanapathirana and Poulos 2010;  
Nimityongskul et al. 2018), idealizing the soil as a series of non-
linear springs along piles (Reese et al. 2006; Jiang et al. 2020). 
However, the estimation would rely on measured p-y curves in 
the field, with a limited range of pile properties (e.g., the pile type, 
pile stiffness, and pile top restrains) and material properties (e.g., 
sand and clay). To make up these limitations, the strain wedge 
technique (Norris 1986; Ashour et al. 1998, 2004; Xu et al. 2013; 
Yang et al. 2017) has been modified to evaluate the degraded 
soil resistance in the mountainside (Peng et al. 2019, 2020b). It 

Fig. 1  Slope encapsulating laterally loaded piles: a pile foundations in mountainous areas; b global instability and local instability

Fig. 2  Laterally loaded pile-soil interaction in the mountainside
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envisioned a relationship of the three-dimensional responses of 
laterally loaded piles to parameters of one-dimensional beam on 
elastic foundation. As to the latter, theoretical methods are more 
economically efficient and time-saving in preliminary designs; 
however, it has been mainly investigated by experiments (Peng 
et al. 2020a; Muthukkumaran 2014; Zhao et al. 2018) and numer-
ical simulations (Ng et al. 2001; Ng and Zhang 2001; Zhang 
et al. 2008). Hence, the soil wedge assumption (Paik and Salgado 
2003; He et al. 2015) has been employed to evaluate the extra 
earth pressure behind the laterally loaded pile (Peng et al. 2020b), 
the magnitude and distribution of which have been mentioned 
in previously published studies (Ng et al. 2001; Ng and Zhang 
2001). In the assumption, the nonlinear distribution of the extra 
earth pressure is proposed based on experiments (Tsagareli 1965; 
Fang and Ishibashi 1986) and theoretical methods (Wang 2000), 
differing from the traditional Coulomb and Rankine theory.

This paper is committed to proposing a theoretical method 
of the safety factor of the slope encapsulating a laterally 
loaded pile. The safety factor is derived by the object function 
concerning the external work rate and internal energy dis-
sipation based on kinematic limit analysis, with a log-spiral 
failure mechanism pre-assumed. The action of the laterally 
loaded pile on the slope is converted into equivalent resultant 
lateral force on the potential sliding block. To address the 
assessment of the critical point depth and lateral force pro-
vided by the pile, the modified strain wedge technique and the 
soil wedge assumption are adopted to evaluate the soil resist-
ance and extra earth pressure around the pile, respectively. 
The proposed method is first substantiated by the cases of the 
slopes reinforced with anti-slide piles rather than laterally 
loaded piles (Poulos 1995; Cao and Zaman 1999; Cai and 
Ugai 2000; Wei and Cheng 2009); it is then further validated 
by comparing with the results of the case with a laterally 
loaded pile (Ng et al. 2001) by finite element limit analysis 
and finite element method. In addition to verification, the 
effects of the lateral load atop the pile, pile location, and soil 
shear strength on slope stability are further investigated by 
authors. On this basis, an alternative approach for the safety 
factor of the slope encapsulating a laterally loaded pile can be 
presented by scaling the safety factor of the slope without the 
lateral load with the corresponding normalized safety factor.

Kinematic limit analysis

In any kinematically admissible velocity field, the load deter-
mined by the object function consisting of the rate of external 
work and internal energy dissipation is no less than the actual 
load at failure (Chen 1975), as described in Eq. (1).

(1)� Ω

𝜎ij�̇�ijdΩ ≥ � S

TividS + � Ω

XividΩ

where σij and �̇�ij denote the stress tensor and strain rate in the 
potential sliding block Ω, respectively; Ti corresponds to the sur-
charge on boundary S; vi refers to the velocity along the velocity 
discontinuous surface; and Xi represents the body force.

Failure mechanism

In the analysis of the pile-slope system, a core step is to find a 
reasonable failure mechanism (kinematically admissible veloc-
ity field). For simplicity, the plane stability of the pile-slope sys-
tem is evaluated without considering the pile geometry and soil 
arching effect in this study, although the pile-slope interaction is 
three-dimensional. As illustrated in Fig. 3, the log-spiral failure 
mechanism is frequently used by published studies (Ausilio et al. 
2001; Yang et al. 2004; Nian et al. 2008). The failure curve is 
rotating about the point O with varied radius r (clockwise is 
denoted as positive), described by Eq. (2), and intersects the pile 
at point P (critical point). Point A and point B are the starting 
point and ending point of the curve, respectively; point C and 
point D are the slope toe and crest respectively. Besides, θ is the 
slope angle; θA is the rotating angle from the horizontal to OA; 
θB is the rotating angle from the horizontal to point OB; θ′ is 
the angle between DB and BC; θ1 (θ2) is the rotating angle from 
the horizontal to the vertical projection pint of point D (point 
C) on the curve; θP is the rotating angle from the horizontal to 
the critical point; rA (rB and rP) symbolizes the corresponding 
radius at point A (B and P); xP refers to the horizontal distance 
between the pile and slope toe; Hp is the horizontal project of 
the slope; H denotes the slope height; h characterizes the total 
height of the pile above the potential sliding surface.

(2)r = rA exp
[

(

� − �A
) tan �

FoS

]

Fig. 3  Pre-assumed log-spiral failure mechanism
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The factor of safety (FoS) is generally defined concerning 
the shear strength of soil (internal friction angle φ and cohe-
sion c), as shown in Eq. (3).

where φ′ and c′ are the mobilized friction angle and cohe-
sion at failure.

Objective function

The objective function of the rate of external work and internal 
energy dissipation is constructed by kinematic limit analysis. 
The specific derivations of components of the objective func-
tion are expressed below.

External work rate

The external work rate produced by the soil self-weight con-
sists of four components, as given in Eq. (4).

where γ denotes the unit weight of soil; w symbolizes 
the angular velocity of the potential sliding block; and 
f1, f2, f3, and f4 are geometry-dependent non-dimensional 
functions of the block concerning sections OAB, OAD, 
OBD, and BCD, respectively. The specific expressions 
of the four components could be given below (Qin et al. 
2017).

where L refers to the distance between point A and point D.

Internal energy dissipation rate

The internal energy dissipation rate is derived as follows.

(3)FoS =
c

c�
=

tan �

tan ��

(4)Ẇ𝛾 = 𝛾wr3
A

(

f1 − f2 − f3 − f4
)

(5)

f1 =
tan ��

1 + 9 tan2 �
�

{(

cos �B +
sin �B

3 tan ��

)

exp
[

3
(

�B − �A
)

tan ��
]

−

(

cos �A +
sin �A

3 tan ��

)}

(6)f2 =
1

6

L sin �A

rA

(

2 cos �A −
L

rA

)

(7)
f3 =

exp [(�B−�A) tan ��]
6

[

sin
(

�B − �A
)

−
L

rA
sin �B

]

[

cos �A −
L

rA
+ cos �B exp

[(

�B − �A
)

tan ��
]

]

(8)
f4 =

(

H

rA

)2 sin (�−��)
2 sin � sin ��

[

cos �A −
L

rA
−

1

3

H

rA

(

cot � + cot ��
)

]

Moreover, the slope safety factor would be affected by the 
laterally loaded pile (Ng et al. 2001), and the pile action should 
be incorporated as a resultant lateral force F and moment 
exerted on a possible sliding block at the depth of the critical 
point. The dissipation rate of the resultant lateral force and 
moment can be then given as:

where χ is a ratio of the distance between the critical point 
and action point of resultant force to the overall h.

Some geometric parameters in the formulas mentioned 
above could be obtained from the failure mechanism and the 
relative position of the pile and slope.

where d is the length of line BC.
As a consequence, the total energy dissipation rate is given as:

Based on the kinematic limit analysis, the total external 
work rate equals the overall energy dissipation rate.

Above all, the safety factor of the slope encapsulating a later-
ally loaded pile could be evaluated by Eq. (3), and the significa-
tive parameters (φ′ and c′) in the equation would be determined 
by substituting Eqs. (4–11) and Eq. (15) into Eq. (16).

Solutions for critical point depth 
and resultant force

The core issue in the stability analysis of the slope encapsu-
lating a laterally loaded pile is the assessment of the critical 
point depth and resultant lateral force provided by the pile. 
In this study, the critical point is assumed as the point where 
the lateral deflection of piles is zero. The detailed derivation 
is elaborated below by employing the modified strain wedge 
technique and the soil wedge assumption (Fig. 4).

(9)ẆD1 = ∫
𝜃B

𝜃A

c(V cos 𝜑)
rd𝜃

cos 𝜑
= cwr2

A
f5

(10)f5 =
exp

[

2
(

�B − �A
)

tan ��
]

− 1

2 tan �
�

(11)ẆD2 = FrA sin 𝜃P w exp
[(

𝜃P − 𝜃A
)

tan 𝜑�
]

− F𝜒hw

(12)h = rP sin �P − rB sin �B + xP tan �

(13)xP = rP cos �P − rB cos �B − d

(14)d =
sin

(

� − ��
)

sin � sin ��
H

(15)ẆD = ẆD1 + ẆD2

(16)Ẇ𝛾 = ẆD
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Governing equation

The governing equation for the laterally loaded pile in the 
mountainside is given as:

where EI symbolizes the flexural rigidity of the pile; y is 
the pile deflection; p(z) is the soil resistance below the 
critical point (evaluated by the beam on elastic foundation 
method) or the degraded soil resistance above the critical 
point (quantified by the modified strain wedge technique); 
and q(z) is the extra earth pressure (estimated by the soil 
wedge assumption).

(17)EI

(

d4y

dz4

)

+ p(z) − q(z) = 0

Modified strain wedge technique

The original strain wedge technique (Norris 1986; Ashour 
et al. 1998, 2004) was presented to evaluate the soil resist-
ance in front of the laterally loaded pile in the level ground 
(Fig. 5a). In the technique, the strain wedge was character-
ized as three main parameters (base angle βm, fan angle φm, 
and strain wedge depth h). Thereinto, the base angle and 
fan angle satisfy the assumption, βm = π/4 + φm/2; the fan 
angle depends on the mobilization of soil strength within 
the strain wedge, and the strain wedge depth is equal to the 
critical point depth. All of them are variable with the lateral 
load at the pile head and estimated by iterative procedures. 
Whereafter, the technique has been modified to estimate 
the degraded soil resistance in front of the laterally loaded 
pile in the mountainside (Peng et al. 2019, 2020b), as illus-
trated in Fig. 5b where D denotes the width (diameter) of a 
square (circular) pile; Z0 represents the intersection depth 
of the far surface (plane  B0B1C1C0) and slope surface (plane 
 B0B2C2C0); and the depth of the intersection of the (j-1)th 
and jth sublayer strain wedge is marked as Zj, j = 1, 2, …, n.

Besides, the linearized deflection assumption (Ashour et al. 
1998) was employed in the analysis of the performance of the 
long flexible pile as well as that of the short rigid pile. The pile 
deflection was considered linear above the critical point (Fig. 6), 
and other details about the strain wedge technique were detailed 
in Ref. (Ashour et al. 1998, 2004) where δ denotes the linearized 
deflection angle and y0 is the deflection at the pile head.

Furthermore, the soil above each sublayer strain wedge is 
abstracted as the uniformly distributed load q, and the stress 
status within the strain wedge satisfies the static equilibrium 
equation in the lateral direction, Eq. (18), as depicted in the 
elevation view and plan view (Fig. 7).

Fig. 4  Strain wedge in front of the pile and soil wedge behind the pile

Fig. 5  Three-dimensional strain 
wedge: a in the level ground; b 
in the mountainside
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where Y0 denotes the horizontal distance from the intersec-
tion of the slope surface and far surface to the pile; σvi(z) 
and Δσi symbolize the effective vertical stress and lateral 
stress increment, respectively; τ symbolizes the side friction 
(Ashour et al. 1998); L(z) denotes the width of far surface; 
and S1 and S2 are pile shape coefficients (Briaud et al. 1984).

Geometry parameters

The base angles βm,j and fan angle φm,j of different sublayer 
strain wedges satisfy the assumption, βm = π/4 + φm/2.

(18)p(z) = Δ�iL(z)S1 + 2�DS2

The depth Z0 and Zj could then be defined by the wedge 
geometry.

Finally, the far surface width L(z) is given as:

Stress state

The effective vertical stress σvi(z) above different sublayer strain 
wedges is derived by Eqs. (24) and (25).

The lateral stress increment and side friction are written 
as Eqs. (26) and (27).

In the strain wedge technique, the stress level (SL), expressed 
as Eq. (28), had been employed to characterize the relationship 

(19)�m,j =
�

4
+

�m,j

2

(20)Z0 +
Z0

tan �
= h

(21)Zj +
Zj

tan �
= Zj−1

(22)L(z) = D + 2(h − z) tan 𝛽m tan 𝜑m

(

z < Z0
)

(23)L(z) = D +
2z tan 𝜑m

tan 𝜃

(

z < Z0
)

(24)�vi(z) = �

(

z −
Z0

2

)

(

z ≥ Z0
)

(25)�vi(z) = �

(

z −
Zj

2

)

(

Zj−1 ≥ z ≥ Zj, j ≥ 1
)

(26)Δ�i = �vi

[

tan2
(

�

4
+

�m

2

)

− 1

]

(27)� = �vi tan �m

Fig. 6  Linearized deflection assumption and correlative strain wedge

Fig. 7  Projection of modified 
strain wedge: a elevation view; 
b plan view
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between the stress state of soil before yielding and the yield 
state. It can also define the fan angle characterizing the geom-
etry of strain wedge, and the fan angle equals the mobilized 
effective friction angle of soil (Fig. 8), varied with the lateral 
stress. The other details of SL were sketched in Appendix 1.

where Δσhf and σv0 represent the lateral stress increment and 
vertical stress in the yield status.

Soil wedge assumption

To estimate the extra earth pressure, the soil wedge assump-
tion (Peng et al. 2020b; Paik and Salgado 2003; He et al. 
2015) is utilized in this study. In the assumption, two points 
should be noted: (i) the soil wedge depth is regarded as the 
critical point depth; (ii) and the soil wedge width can be 
considered equal to the width of the laterally loaded pile.

Soil wedge concept

The slip plane of the soil wedge behind the pile is of an 
angle θ0 to the horizontal (Fig. 9). The expressions of the 
angle θ0 and β0 (the angle between the slip plane and slope 
surface equals to θ0-θ) could be estimated by the stress state 
of the differential element of the pile and corresponding 
Mohr’s circle, detailed in Ref. (He et al. 2015).

(28)SL =
Δ�i

Δ�hf

=
tan2

(

�∕4 + �m∕2
)

− 1

tan2 (�∕4 + �∕2) − 1

(29)Δ�hf = �v0

[

tan2
(

�

4
+

�

2

)

− 1

]

(30)�0 =
1

2

(

� − � + arccos
sin �

sin �

)

Lateral earth pressure

To investigate the lateral earth pressure within the soil 
wedge, it is sliced into many differential elements (Fig. 10). 
The path line (dotted line) of minor principal stress σ3 is 
assumed as an arc with radius R. As to the major principal 
stress σ1, it is perpendicular to the arc (Fig. 10a) where S 
symbolizes the differential element length, S = (H-z)cosθ0/
sinβ; dV′ represents a component of the differential stress 
dV, and V′ symbolizes the resultant of dV′, perpendicular to 
line  E0P; ψ represents the angle between the normal line OD 
and the horizontal; ω is the angle between the normal line 
OP and the vertical, ω = 0; θw is the angle between the nor-
mal line OJ and the horizontal, θw = π/4 + φ/2; and ξ refers 

(31)�0 =
1

2

(

� + � + arccos
sin �

sin �

)

Fig. 8  Mobilized effective friction angle varied with lateral stress: a sand; b c-φ soil

Fig. 9  Elevation view of the soil wedge
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to the angle between the normal line OQ and the vertical, 
derived as Eq. (32).

The lateral earth pressure coefficient Kan and mean verti-
cal stress �v are given by Eqs. (33) and (34), respectively, 
the derivations of which are written in Appendices 2 and 3.

The lateral earth pressure σh is derived by multiplying �v 
by Kan.

Iterative solution

The critical point depth and resultant lateral force provided 
by the laterally loaded pile could be derived by the governing 

(32)� =
�

4
+

�

2
− �0 =

1

2

(

�

2
− � − cos−1

sin �

sin �

)

(33)

Kan =
𝜎h

�̃�v
=

cos
(

𝜃w + 𝜉
)

cos 𝜃

cos (𝜃 + 𝜉) cos 𝜃𝜔
⋅

3
(

N cos2 𝜃w + sin2 𝜃w
)

3N − (N − 1)cos2 𝜃w

(34)

�
v
=

�h cos �

1−(Kan
tan �−K

an
tan �+m

0)
sin �0

cos �0

×

[

(

1 −
z

h

)(Kan
tan �−K

an
tan �+m

0)
sin �0

cos �0 −
(

1 −
z

h

)

]

(35)m0 =
Kan sin � cos �

(

N cos2 �w + sin2 �w
)

cos (� + �)

(36)

�
h
=

Kan�h cos �

1−(Kan tan �−Kan tan �+m0)
sin �0
cos �0

×

[

(

1 −
z

h

)(Kan tan �−Kan tan �+m0)
sin �0
cos �0 −

(

1 −
z

h

)

]

equation, Eq. (17), adopting the modified strain wedge tech-
nique (Peng et al. 2019, 2020b) and soil wedge assumption 
(Ashour et al. 1998). The iterative procedures are illustrated 
in Fig. 11. Thereinto, the governing equation, Eq. (17), would 
be handled by substituting Eqs. (18) and (36). The deflec-
tion at the pile top obtained from Eq. (17) is labeled as y0, 

Fig. 10  Principal stress on a 
differential element: a minor 
and major principal stresses; b 
vertical force

Fig. 11  Iterative procedure
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whereas an alternative pile head deflection, evaluated by the 
deflection pattern δ and soil strain ε, is labeled as (y0)SW. 
Likewise, yj refers to the lateral displacement of piles at depth 
Zj obtained from by Eq. (17), whereas (yj)SW is estimated by 
the strain wedge length Yj and soil strain ε. The nonlinear 
deflection pattern of the laterally loaded pile in the moun-
tainside is depicted in Figs. 12 and 13.

Case studies

To verify the proposed method, some cases of slopes without 
a laterally loaded pile (Poulos 1995; Cao and Zaman 1999; 
Cai and Ugai 2000; Wei and Cheng 2009) and the case of the 
slope encapsulating a laterally loaded pile (Ng et al. 2001) 
have been quoted.

Slopes without a laterally loaded pile

The example slopes are composed of homogeneous materi-
als, and the slope height, slope angle, and material param-
eters are listed in Table 1. A row of stabilizing piles would 
be required in the slopes (the pile location, xp, is detailed in 
the references) since the initial safety factors of the slope 
are inadequate. Employing the proposed method, the safety 
factors of these slopes are evaluated and listed in Table 2. It 
indicates that the proposed method is capable of predicting 
the safety factor of the slope considering the pile effect.

Slope encapsulating a laterally loaded pile

The slope is 15 m high with a slope angle of 32°, and the 
mechanical properties of the pile-soil system are illustrated in 
Fig. 14. The diameter and length of the laterally loaded pile 
are 2 m and 30 m, respectively, ignoring the effect of ground-
water. The ultimate shear capacity of the pile is specified as 
Vu = 0.8fc0.5A (fc denotes the concrete compressive strength, 
fc = 45 MPa; A refers to the pile cross-section area) (British 
Standards Institution 1985). To investigate the slope stability 
and failure mechanism, the lateral loads V = 0.03, 0.06, 0.12, 
and 0.36Vu are applied to the pile head in the analysis (the 
design load is 0.12Vu). The predicted safety factors are com-
pared with those from published literature, shown in Table 3.

Table 3 indicates that the safety factors of the slope under 
different lateral loads evaluated by the proposed method are 
reasonably consistent with those obtained from the published 
study (Ng et al. 2001) and the finite element limit analysis 
program, OptumG2 (Optum Computational Engineering 2017) 
whose procedure is detailed in Appendix 4. It proves that the 
proposed method can well predict the stability of the slope 

Fig. 12  Nonlinearized deflection pattern of the pile

Fig. 13  Comparisons between 
predicted deflections: a (yj)SW > 
yj; b (yj)SW < yj
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encapsulating a laterally loaded pile as well as the finite ele-
ment limit analysis. As expected, the safety factor of the slope 
reinforced with anti-slide piles (lateral load is zero) is greater 
than that of the unreinforced condition (the factor of safety 

increases from 1.90 to 2.0). It can be ascribed to an extra resist-
ing moment provided by the pile when the lateral load equals 
zero, and the slope stability would be improved by the pile. It 
should be noted that the slope is unsafe when the lateral load 

Table 1  Parameters of these 
example slopes

References Parameters of the slope

θ (°) H (m) φ (°) c (kPa) γ (kN/m3) Young’s 
modulus 
(MPa)

Poisson’s ratio

Poulos (1995) 38 8 25 10 18 5 0.25
Cao and Zaman (1999) 45 8 15 20 18.5 10 0.25
Cai and Ugai (2000) 34 10 20 10 20 200 0.25
Wei and Cheng (2009) 34 10 20 10 20 200 0.25

Table 2  Comparisons 
between results evaluated by 
the proposed approach and 
references

References Factors of safety (FoS)

Unreinforced slope Slope reinforced by 
piles

Reference results Proposed 
method

Reference 
results

Proposed 
method

Poulos (1995) 1.15 1.32 1.50 1.69
Cao and Zaman (1999) 1.40 (Huang and Yamasaki 1993) 1.29 – –

1.45 (Cao and Zaman 1999)
1.32 (Bishop’s method)
1.34 (Ausilio et al. 2001)
1.36 (Nian et al. 2008)

Cai and Ugai (2000) 1.14 (finite element method) 1.14 1.47 1.58
1.13 (Bishop’s simplified method) 1.54

Wei and Cheng (2009) 1.20 (strength reduction method) 1.14 1.78 1.58
1.18 (Spencer’s method)

Fig. 14  Slope encapsulating a 
laterally loaded pile
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reaches 0.36Vu, and the exact safety factor of the slope had not 
been evaluated, but simply considered a value less than 1.0 
(Ng et al. 2001). Furthermore, the evolution of the safety factor 
of the slope encapsulating a laterally loaded pile revealed in 
Table 3 indicates that the slope would develop into instability 
with lateral loads atop the pile; the safety factor of the slope 
encapsulating the pile would significantly decrease with lateral 
loads, and it is approximately reduced by 40%, while the lateral 
load at the pile head increases from 0 to 0.12Vu.

Discussion

The effect of the lateral load at the pile head on the slope failure 
mechanism and safety factor is investigated below. The clas-
sical failure mechanism of the slope encapsulating a laterally 
loaded pile is visualized by finite element limit analysis (Figs. 15 

and 16). The different magnitudes of the plastic multiplier are 
characterized by different colors, and the variation of the color 
from blue to red indicates the increase of the plastic multiplier. 
The global potential sliding surface starts from the slope toe 
and extends to the slope crest, and two local failures of wedge-
shaped regions occur around the laterally loaded pile; thereinto, 
the wedge-shaped region in front of the pile would increase with 
lateral loads and the distance from the slope toe, and the failure 
mechanism under small lateral load conditions is similar to that 
of the slope reinforced with anti-slide piles. These observations 
prove the rationality of the log-spiral failure mechanism (Fig. 3), 
the strain wedge technique, and soil wedge assumption (Fig. 4).

To better interpret the effect of the lateral load atop the 
pile and the pile location on the factor of safety, the normal-
ized safety factor η and normalized lateral load α have been 
proposed. The former represents the ratio of the safety factor 
with the lateral load (FoS1) to the one without the lateral load 

Table 3  Comparisons of safety 
factors

Research object V (kN) Factors of safety (FoS)

Ng et al. (2001) Finite element 
limit analysis

Proposed 
method

Unreinforced slope – 1.90 (finite difference method) 1.84 1.85
1.84 (Bishop’s simplified method)
1.83 (Morgenstern-Price method)

Slope encapsulating a 
laterally loaded pile

0 2.00 2.07 2.05
0.03Vu – 1.86 1.65
0.06Vu – 1.36 1.30
0.12Vu 1.20 1.22 1.15
0.36Vu < 1.00 0.76 –

Fig. 15  Slope failure mecha-
nism under different lateral 
loads: a V/Vu = 0.015Vu; and b 
V/Vu = 0.03

Fig. 16  Slope failure mecha-
nism for different pile locations: 
a xp/Hp = 1/4; b xp/Hp = 3/4
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(a) (b)

(c) (d)

(e) (f)

Fig. 17  Relationship between the normalized safety factor and normalized lateral load under different shear strengths: a xp/Hp = 1/6; b xp/Hp = 
1/4; c xp/Hp = 1/3; d xp/Hp = 1/2; e xp/Hp = 3/4; and f xp/Hp = 1
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(FoS0), η = FoS1/FoS0; the latter denotes the ratio of the lateral 
load (V) applied on the pile head to the ultimate shear capacity 
(Vu), α = V/Vu. Then, the normalized safety factor η decreases 
from 0.59 to 0.37 while the normalized lateral load α increases 
from 0.12 to 0.36 in the case (Ng et al. 2001). Furthermore, 
plenty of cases (α = 0, 0.03, 0.06, 0.09, and 0.12; xp/Hp = 1/6, 
1/4, 1/3, 1/2, ¾, and 1; φ = 15°, 20°, 25°, 30°, and 35°; c/γD = 
0.25, 0.5, 0.75, and 1) are supplemented for a parametric study 
based on the original case (Ng et al. 2001), and the predic-
tions of normalized safety factors η are illustrated in Fig. 17. 
The normalized safety factor, together with the safety factor of 
the slope, is observed to nonlinearly decrease with normalized 
lateral loads. It is therefore necessary to consider the effect 
of lateral loads on slope stability in the design of engineer-
ing practice. Furthermore, the variations of normalized safety 
factors with normalized lateral loads can be fitted by cubic 
functions (Fig. 17). The differences between the predictions 
of normalized safety factors and those on fitting curves are 
mostly less than 0.1, except for the cases of extremely small 
shear strength (c/γD = 0.25), and the reason for the exceptions 
is that the slope is already unstable even without the lateral 
load. In addition, the normalized safety factor is positively 
correlated with xp/Hp, revealing that the effect of lateral loads 
on the slope stability would be weakened while the pile loca-
tion moves from the slope toe to the slope crest. It can be also 
observed that the normalized safety factor mainly depends on 
the lateral load and pile location but is not sensitive to the shear 
strength; hence, the results and corresponding fitting curves 
can be generalized to cases of other shear strengths.

Based on these aforementioned analyses, an alternative 
approach to assess the safety factor of the slope encapsulating 
a laterally loaded pile has been provided. It can be predicted by 
scaling the relatively easily obtained safety factor of the slope 
without the lateral load (i.e., the slope reinforced with anti-
slide piles) with the corresponding normalized safety factor. 
By this means, the evaluation of the safety factor of the slope 
encapsulating a laterally loaded pile can be simplified by avoid-
ing the derivation of the critical point depth and the resultant 
force provided by the pile. It is noteworthy that the prediction 
method of normalized safety factor has been not reported yet 
and could be estimated by the proposed method in this work. 
Cases of normalized safety factors under different conditions 
(e.g., pile diameter, pile location, and slope inclination) provid-
ing more useful information for the preliminary engineering 
design would be further investigated in subsequent research.

Conclusions

A theoretical method of the safety factor of the slope encap-
sulating a laterally loaded pile has been proposed by intro-
ducing the modified strain wedge technique and soil wedge 

assumptions to evaluate the soil resistance and extra earth 
pressure around the pile, respectively. After verifying the 
proposed method, the effect of the lateral load atop the pile, 
pile location, and soil shear strength on the safety factor of 
the slope encapsulating a laterally loaded pile is extensively 
investigated under different conditions. Several conclusions 
are listed as follows:

 (i) The safety factors of some cases evaluated by the pro-
posed theoretical method are in good agreement with 
those obtained from published studies and numerical 
simulations. It proves that the proposed method can 
well evaluate the safety factor of the slope encapsu-
lating a laterally loaded pile.

 (ii) The failure mechanism under the minute lateral load 
is similar to that of the slope reinforced with anti-slide 
piles, but for cases of greater lateral load, the lateral 
load transferred from the pile to the slope would fur-
ther result in the local failure. Local failures of two 
wedge-shaped regions observed around the laterally 
loaded pile in the numerical simulations suggest 
the applicability of the strain wedge technique and 
soil wedge assumption; thereinto, the wedge-shaped 
region in front of the pile would increase with lateral 
loads.

 (iii) The normalized safety factor, together with the safety 
factor of the slope, is observed to nonlinearly decrease 
with normalized lateral loads; the variations of nor-
malized safety factors with normalized lateral loads 
can be fitted by cubic functions. In addition, the 
normalized safety factor, not sensitive to the shear 
strength, mainly depends on the lateral load and pile 
location, and it is positively correlated with xp/Hp, 
revealing that the effect of lateral loads on the slope 
stability would be weakened while the pile location 
moves from the slope toe to the slope crest.

 (iv) The safety factor of the slope encapsulating a laterally 
loaded pile can be alternatively obtained by scaling the 
safety factor of the slope without the lateral load with 
the corresponding normalized safety factor. By this 
means, the evaluation of the safety factor of the slope 
encapsulating a laterally loaded pile can be simplified 
by avoiding the derivation of the critical point depth and 
the resultant force provided by the pile, which is useful 
for the preliminary engineering design.

Appendix 1 Stress level

The relationship between the stress level SL and soil strain 
ε was observed from isotropically consolidated drained and 
undrained triaxial tests (Ashour et al. 1998). It can be sketched 
in Fig. 18 and given as Eqs. (37) to (39).
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where ε50 denotes the soil strain at 50% stress level; λi varies 
linearly from 3.19 (SL = 0.5) to 2.14 (SL = 0.8); and m = 
59.0 and qi = 95.4ε50.

Appendix 2 Lateral earth pressure 
coefficient

On the one hand, the lateral stress at point E0 (Fig. 10), σh, 
was obtained based on the stress equilibrium equation.

Likewise, the lateral stress at point D (Fig. 10), σah, was 
also obtained as follows:

Substituting σ3/σ1 = 1/N into Eq. (41), the lateral stress 
σah could be rearranged as:

where N =  tan2(π/4 + φ/2).
On the other hand, the vertical stress applied to the differen-

tial element  E0JPQ was evaluated, including two components 

(37)SLi =
3.19�

(�50)i
exp

(

−3.707SLi
) (

Stage I � ≤ �50
)

(38)

SLi =
𝜆i𝜀

(𝜀50)i
exp

(

−3.707SLi
) (

Stage II 𝜀50 < 𝜀 ≤ 𝜀80
)

(39)SLi = exp
[

ln 0.2 +
100𝜀

m𝜀+qi

]

(

Stage III 𝜀 > 𝜀80
)

(40)�h = �1 cos
2 �0 + �3 sin

2 �0

(41)�ah = �1 cos
2 � + �3 sin

2 �

(42)�ah =
(

cos2 � +
1

N
sin2 �

)

�1

(Fig. 19): (i) vertical stress applied to the quadrangle differen-
tial element  E0JG0Q; (ii) the minor and major principal stresses 
on the triangular differential element  G0PQ where σv is the 
vertical stress applied on the differential element, consisting 
of σf and σ′v; the former is parallel to line  E0G0, and the latter 
is perpendicular to line  E0G0, derived as:

Substituting that σv + σah = σ1 + σ3, Eq. (43) could be given 
as Eq. (44):

For simplification, σ′v can be replaced by mean stress �′  
(Fig. 20) where h0 = cosθ·dz; σ3 and σ3v are the minor principal 
stress on the line  G0Q and its vertical component.

where

Then, Eq. (45) could be rewritten as follows:

The average vertical stress �v on the differential element 
could be given as Eq. (49).

(43)
��

v

�v
= cos �

(44)
��

v

�1
= cos �

(

sin2 � +
1

N
cos2 �

)

(45)��
v =

V �

S

(46)

V
�

= ∫
�∕2−�

��

dV � = ∫
�∕2−�

��

�1R sin �

(

sin2� +
1

N
cos2 �

)

d�

(47)S =
cos

(

�w + �
)

cos (� + �)
R

(48)��
v =

cos (� + �)

cos
(

�w + �
) cos ��

(

1 −
N − 1

3N
cos2 ��

)

�1

Fig. 18  Relationship between stress level and soil strain Fig. 19  Stress status on the quadrangle differential element  E0JG0Q
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Substituting Eq. (48) into Eq. (49), it could be finally 
obtained as:

Above all, the lateral earth pressure coefficient Kan is given 
by Eqs. (42) and (50).

(49)�̃�v =
𝜎�

v

cos 𝜃

(50)

�v =
cos (� + �)

cos
(

�w + �
)

cos �
cos ��

(

1 −
N − 1

3N
cos2 ��

)

�1

(51)

Kan =
𝜎h

�̃�v
=

cos
(

𝜃w + 𝜉
)

cos 𝜃

cos (𝜃 + 𝜉) cos 𝜃w
⋅

3
(

N cos2 𝜃w + sin2 𝜃w
)

3N − (N − 1) cos2 𝜃w

Appendix 3 Vertical stress

To further investigate the vertical stress within the soil wedge, 
the triangular element  G0PQ assumed to be in the equilibrium 
status can be neglected in the analysis of the differential ele-
ment  E0JPQ. The minor principal stress on the line  G0Q σ3 and 
its vertical component σ3v are derived as:

The shear stress on the differential element  E0JG0Q 
(Fig. 10) can be regarded as:

The equilibrium equation of the differential element  E0JMQ 
in the vertical can be derived as Eq. (55), ignoring the vertical 
stress on the line  MG0.

Substituting Eq. (52) into Eq. (55), �v is obtained as:

(52)�3 =
Kan

N cos2 �w + sin2 �w
�v

(53)�3v = �3 sin �
cos �

cos (� + �)

(54)� = �h tan � = �v Kan tan �

(55)
DSd�v + DKan�v tan �dz − DKan�v tan �dz

+ D�3
sin � cos �

cos (� + �)
dz = DSh0�

(56)

�v =
�h cos �

1−(Kantan �−Kantan �+m0)
sin �0

cos �0

×

[

(

1 −
z

h

)(Kantan �−Kantan �+m0)
sin �0

cos �0 −
(

1 −
z

h

)

]

Fig. 20  Stress status on the main part of the differential element

Fig. 21  Finite element limit analysis: (a) boundary condition and load condition; (b) adaptive remeshing technique
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Appendix 4 Procedure of the finite element 
limit analysis

The common procedures of finite element limit analysis are 
elaborated below (Fig. 21):

i) Establish the numerical model according to the geomet-
ric configuration of the pile-slope system, considering 
the boundary effect, while the slope and the pile (free-
head and fixed-end) are modeled as the Mohr–Coulomb 
material (associated flow rule) and the linear elastic 
material, respectively.

ii) The boundary condition is selected as the standard bound-
ary condition, that is, the lateral displacement is con-
strained at the left and right boundaries of the model, and 
the bottom of the model is fixed; the lateral load atop the 
pile could be applied as the distributed load (Fig. 21a).

iii) The total element number and initial element number are 
10,000 and 1000, respectively; and the adaptive remesh-
ing technique is adopted in the analysis (Fig. 21b).

Notations σij: Stress tensor; ε: Soil strain; �̇�ij : Strain rate; Ω: Vol-
ume of the potential sliding block; Ti: Surcharge on the boundary S; 
vi: Velocity along the velocity discontinuous surface; Xi: Body force; 
r: Varied radius of the log-spiral curve; rA, rB, rP: Corresponding radius 
at points A, B, and P; θ: Slope angle; θ′: Angle between DB and BC; 
θA, θB: Rotating angle from the horizontal to OA and OB; θP: Rotat-
ing angle from the horizontal to the critical point P; θ0: Angle between 
the slip plane and the horizontal; θ1, θ2: Rotating angle from the hori-
zontal to the vertical projection point of points D and C on the curve; 
β0: Angle between the slip plane and slope surface; xP: Horizontal 
distance between the pile and slope toe; Hp: Horizontal project of the 
slope; H: Slope height; h: Strain wedge depth (total height of the pile 
above the potential sliding surface); Δh: Thickness of differential soil 
sublayers; h0: Vertical height of the differential element; FoS: Factor 
of safety; FoS1: Factor of safety for the slope with the lateral load; 
FoS0: Factor of safety for the slope without the lateral load; φ: Inter-
nal friction angle; c: Cohesion; φ′: Mobilized friction angle at failure; 
c′: Mobilized cohesion at failure; Ẇ𝛾 : External work rate; ẆD : Total 
energy dissipation rate; ẆD1 : Internal energy dissipation rate gener-
ated by internal forces; ẆD2 : Dissipation rate of the force and moment 
provided by the laterally loaded pile; f1, f2, f3, f4: Geometry-dependent 
non-dimensional function of the block; f5: Non-dimensional function 
of internal energy dissipation rate ẆD1; γ: Unit weight; w: Angular 
velocity; L: Distance between point A and point D; F: Resultant force 
generated by piles; χ: A ratio defined as the distance between the 
action point of the resultant force and the critical point to the overall 
h; d: Length of line BC; EI: Flexural rigidity of the pile; p(z): Soil 
resistance in front of the pile; q(z): Extra earth pressure behind the pile; 
τ: Side friction; βm: Base angle; φm: Fan angle; βm,j: Base angles of 
different sublayer strain wedges; φm,j: Fan angle of different sublayer 
strain wedges; D: Width or diameter; δ: Linearized deflection angle; 
y: Pile deflection; Y0: Horizontal distance from the pile to the intersec-
tion of the far surface and slope surface; y0: Deflection atop the pile; 
yj: Pile deflection atop each sublayer strain wedge; (y0)SW: Pile head 
displacement estimated by the strain wedge technique; (yj)SW: Pile 
deflection atop each sublayer strain wedges estimated by the strain 
wedge technique; Z0: Intersection depth of the far surface and slope 
surface; Zj: Depth of the intersection of the (j-1)th and jth sublayer 

strain wedge (j = 1,2,…,n); q: Uniformly distributed load; σvi: Effec-
tive vertical stress; Δσi: Lateral stress increment; Δσhf: Lateral stress 
increment in the yield state; L(z): Far surface width; SL: Stress level; 
ε50: Soil strain at 50% stress level; S1, S2: Pile shape coefficient; λi, m, 
qi: Coefficients of stress level; σ1: Major principal stress; σ3: Minor 
principal stress; σ3v: Vertical component of minor principal stress; σ′v, 
σf: Two components of vertical stress on the differential element; ��

v 
: Mean value of the vertical component of stress σ′v; N: A function of 
friction angle; R: Radius of the trajectory of minor principal stress; 
S: Length of the differential element; dV′: A component of the dif-
ferential stress at the arbitrary point  F0; V′: Resultant force of dV′; 
ψ: Angle between the horizontal and normal OD; ω: Angle between 
the vertical and normal OP; θw: Angle between the horizontal and 
normal OJ; ξ: Angle between the vertical and normal OQ; Kan: Lateral 
earth pressure coefficient; �v : Mean vertical stress; m0: A coefficient 
of �v; σh: Lateral earth pressure; σah: Lateral stress at an arbitrary point 
D; s: A relatively small amount; Vu: Ultimate shear strength of piles; 
V: Lateral load atop the pile; fc: Concrete compressive strength; A: Pile 
cross-section area; α: The ratio of the lateral load atop the pile to the 
ultimate shear strength; η: Normalized safety factor
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