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Abstract
Landslide susceptibility mapping is a necessary tool in order to manage the landslides hazard and improve the risk mitigation. 
In this research, we validate and compare the landslide susceptibility maps (LSMs) produced by applying four geographic 
information system (GIS)-based statistical approaches including frequency ratio (FR), statistical index (SI), weights of evi-
dence (WoE), and logistic regression (LR) for the urban area of Azazga. For this purpose, firstly, a landslide inventory map 
was prepared from aerial photographs and high-resolution satellite imagery interpretation, and detailed fieldwork. Seventy 
percent of the mapped landslides were selected for landslide susceptibility modeling, and the remaining (30%) were used 
for model validation. Secondly, ten landslide factors including the slope, aspect, altitude, land use, lithology, precipitation, 
distance to drainage, distance to faults, distance to lineaments, and distance to roads have been derived from high-resolution 
Alsat 2A satellite images, aerial photographs, geological map, DEM, and rainfall database. Thirdly, we established LSMs 
by evaluating the relationships between the detected landslide locations and the ten landslides factors using FR, SI, LR, and 
WoE models in GIS. Finally, the obtained LSMs of the four models have been validated using the receiver operating char-
acteristics curves (ROCs). The validation process indicated that the FR method provided more accurate prediction (78.4%) 
in generating LSMs than the SI (78.1%),WoE (73.5%), and LR (72.1%) models. The results revealed also that all the used 
statistical models provided good accuracy in landslide susceptibility mapping.

Keywords  Landslide susceptibility · Statistical methods · Validation · GIS · Algeria

Introduction

In northern Algeria, landslides represent an alarming geo-
logical disaster because of the economic consequences and 
human lives losses they cause, principally in urban areas. 
Hence, they present a serious threat for both human lives and 
their properties and constitute a major constraint for either 
the economic development or the urban planning of many cit-
ies. During the last decades, several cases of damaging land-
slides have been reported throughout the country (Djerbal 
and Melbouci 2012; Hadji et al. 2013; Bougdal et al. 2013; 
Djerbal et al. 2014; Bourenane et al. 2014; Laribi et al. 2014; 
Guirous et al. 2014; Bourenane et al. 2016; Bourenane 2017; 

Djerbal et al. 2017; Hallal et al. 2017; Hallal et al. 2019; 
Bourenane et al. 2021a; Bourenane and Bouhadad 2021b).

The impact of these land instabilities is significantly wors-
ened by the rapid demographic growth, the rapid and the 
uncontrolled development of the urbanization in landslide-
prone areas, the heavy and prolonged rainfall trend, and lack 
and/or insufficient initiative aiming to understand the landslide 
hazards and risks (Bourenane et al. 2014; Bourenane et al. 
2016; Hadji et al. 2017; Bourenane et al. 2021; Bourenane 
and Bouhadad 2021). Landslides often occur in the rainy sea-
sons particularly during torrential rainstorms recorded between 
October and April. This phenomenon is known throughout 
northern Algeria: Tellean Atlas domain, where the rainfall 
regime is concentrated in a short period with heavy and pro-
longed rainfalls (Bourenane 2017; Bourenane et al. 2019; 
Bourenane et al. 2021b).

The city of Azazga located in the mountainous prov-
ince of Kabylia, in northern Algeria, is one of the most 
heavily affected urban areas by the frequent and progres-
sive landslides that caused serious damage to dwellings, 
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infrastructures, forests, and agricultural fields during the 
last century (Djerbal et al. 2014; Bourenane et al. 2021). 
The most recorded and known mass movements were 
registered in 1952, 1955, 1973, 1974, 1984, 1985, 2003, 
2004, 2012, 2014, and 2018 during the winter season, 
characterized by high-intensity rainstorm events with long 
rainfall periods (Bourenane et al. 2021a). The most recent 
damaging landslides occurred in 2012, 2014, and 2018 
that affected the urban center of Azazga city have caused 
severe damage to buildings, cultivated land, roadways, and 
public infrastructures (Fig. 1). In recent years, the land-
slide vulnerability has been substantially increased due to 
the rapid development of urbanization and infrastructure 
in landslides-prone areas as well as the ongoing change 
in precipitation trends (Bourenane 2017; Bourenane et al. 
2019; Bourenane et al. 2021a) In fact, the extension of 
the city, since the independence in 1962, is continually 
confronted with severe construction and urban planning 
problems.

Nowadays, these landslides constitute a serious threat not 
only to the local populations and the environment but also 
a constant constraint to urban planning and development. 
Indeed, the rapid unplanned urbanization, the bad land-use 
planning, the environmental mismanagement, and a lack of 
risk mitigation strategy exacerbate the impact of hazards and 
increase the risk. Unfortunately, there was insufficient con-
sideration of the landslide phenomena in the local strategy 
of development and land use planning of the city. Indeed, 
very little research is available which aimed to predict and 
prevent these events, despite the continuous progression of 
landslides and their related damage effects (Djerbal et al. 
2014; Bourenane et al. 2021a).

In order to reduce the damage of properties and the losses 
of human lives as well as to contribute to the risk reduction 
for the sustainable urban planning and development of the 
Azazga city, it becomes necessary to generate comprehen-
sive landslide susceptibility maps (LSMs). The landslide 
susceptibility mapping is considered as an imperative task 
that can help authorities to reduce landslides disasters losses 
by serving as a guideline for durable land-use planning such 
as the restriction of urban extension in hazardous zones.

According to Varnes (1984), landslide susceptibility is 
defined as the probability of the spatial occurrence of land-
slides in a given area for a given predisposing terrain fac-
tors. The landslide susceptibility mapping is related to the 
subdivision of a given area into homogeneous zones and 
their ranking according to their degrees of landslide suscep-
tibility. Thus, a LSM indicates areas likely to be affected by 

landslides in the future based on the correlation with histori-
cal distributions of landslides and their associated factors.

Various modeling methods and techniques often based on 
geographic information system (GIS) have been successfully 
developed and applied for landslide susceptibility mapping 
at different scales (regional, medium, large and local). These 
methods can be categorized into three groups: (i) heuristic, 
(ii) deterministic, and (iii) statistical techniques (Guzzetti 
et al. 1999; Aleotti and Chowdhury 1999; Van Westen et al. 
2003; Ayalew and Yamagishi 2005).

The heuristic (or qualitative) method is a direct approach 
that is based on knowledge and experiences of the expert. 
The landslide susceptibility is determined directly using the 
subjective decision rules of the expert to categorize land-
slide-prone areas and producing a qualitative LSM (Van 
Westen et al. 2003; Thiery et al. 2007; Bourenane et al. 
2014, 2016).

The deterministic (or geotechnical) methods focus on the 
analysis of the mechanical equilibrium of a potential slide 
block and calculate the slope safety factor based on math-
ematical modeling of the physical laws controlling slope 
failure (Zhou et al. 2003; Jelínek and Wagner 2007). The 
deterministic models require a large amount of data related 
to the material properties, such as mechanical characteris-
tics and the degree of saturation to produce reliable results. 
Obtaining such data for large areas is not practical, and this 
method is therefore not applicable for the medium and large 
scale (Terlien et al. 1995).

The statistical (or quantitative) method is an indirect 
approach, employed to reduce subjectivity in qualitative 
analysis. It is based on mathematical correlations between 
the landslide-controlling factors and the distribution of land-
slides. The main concept of the indirect quantitative statisti-
cal approaches is that the controlling factors of future land-
slides are the same as those observed in the past (Guzzetti 
et al. 1999).

During the last decade, statistical models such as the 
bivariate statistical analysis (frequency ratio, statistical 
index, weights of evidence) and the multivariate statistical 
analysis (multiple linear regressions, logistic regression, 
and discriminant) have been widely applied throughout the 
world and provides reliable results (Pradhan and Lee 2010; 
Pradhan and Youssef 2010; Tien Bui et al. 2011; Kevin et al. 
2011; Yalcin et al. 2011; Ozdemir and Altural 2012; Shahabi 
et al. 2012; Demir et al. 2015; Bourenane et al. 2016; Thiery 
et al. 2007; Hadji et al. 2017; Demir 2018). In the bivariate 
statistical analysis, each factor map is combined with the 
landslide inventory map, in order to evaluate the weighting 
values for each factor class using GIS technologies. Then, 
the results of the weights are summed up and classified to 
obtain a LSM. The multivariate statistical analysis is based 
on the stepwise variable selection to predict the probability 
of occurrence of a dichotomous event from a set of variables 

Fig. 1   Examples of the most recent landslides occurred in 2012, 
2014, and 2018 that caused ground deformations and severe damage 
to buildings, roadways, and public infrastructures in the urban area of 
Azazga city

◂
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that may be continuous, discrete, or both in combinations. 
The main difference between the logistic regression and 
the other multiple statistical analyses is that the independ-
ent variables didn’t have to be normally distributed, and the 
predicted values are converted into probabilities between 0 
and 1.

Huge progress has been accomplished, which showed 
that the statistical methods provide fully satisfactory results 
and now are considered as very rigorous, more objective, 
and more suitable for landslide susceptibility at medium 
and large scale (1:50,000, 1:25,000, and 1:10,000) because 
of their potential to minimize errors related to the expert 
subjectivity (Van Westen 1997; Lee and Min 2001; Thiery 
et al. 2007; Pradhan and Lee 2010; Bourenane et al. 2014; 
Bourenane et al. 2016). Nowadays, there has been a rapid 
improvement in the preparation of LSMs because of the con-
tinuous progress of computer science and geomatics technol-
ogy. Indeed, the advance in GIS technologies and remote 
sensing techniques has tremendously helped the preparation 
of LSM with greater accuracy in spatial data management, 
manipulation, storing, processing, and easier spatial analy-
sis of large amounts of data that alleged the update of the 
susceptibility assessment procedures.

In Algeria, despite the increase and the widespread of 
landslides occurrences, there are still limited and insuffi-
cient initiatives in landslide susceptibility mapping. Never-
theless, there are examples of successively performed stud-
ies (Hadji et al. 2013; Bourenane et al. 2014; Djerbal et al. 
2014; Bourenane et al. 2016; Hadji et al. 2017; Djerbal et al. 
2017; Bourenane et al. 2019; Karim et al. 2019; Merghadi 
et al. 2020).

In this article, we attempt to consider the challenges of 
landslide hazards in land use planning to initiate durable 
policies and legislation for mitigation and prevention pur-
poses. The LSM may contribute to the risk prevention and 
mitigation and set up of a management policy for sustain-
able urban planning and development in prone areas to land-
slides. Nevertheless, producing a reliable LSM is still prob-
lematic and constitutes a challenging task due both to the 
complex characteristics of landslides and the used modeling 
approach. The optimal appropriate model for a given area 
depends greatly on the applied modeling methods and also 
on the quality of the used data (Yilmaz 2009). To overcome 
this problem, a variety of approaches have been developed 
in order to understand the mechanisms and the conditioning 
factors that control the landslides as well as to predict their 
spatial occurrence. The statistical methods supported by GIS 
have gained popularity in the field of landslide susceptibility 
mapping. The statistical models seem more accurate com-
pared to the physical ones, which need multiple iterations 
and simulations to find detailed geotechnical parameters in 
preparing the susceptibility outputs. However, they have 
certain limits related to their difficulty in explicating the 

outputs results of the black box models and overfitting in 
the presence of limited training data samples.

The main purpose of this work is to prepare, validate, 
and compare the LSMs by applying four statistical methods 
including frequency ratio (FR), statistical index (SI), logistic 
regression (LR), and weights of evidence (WoE) with the 
help of GIS techniques for the city of Azazga in northern 
Algeria. These methods are tested and validated, and the 
results are compared and discussed.

This research work is a part of a thematic approach 
focused on the understanding of the landslide hazard and 
also on a methodology of evaluation and mapping of land-
slides hazard at a large scale. Thus, this investigation com-
pletes the different works undertaken on the prediction of 
landslides in urban areas in order to improve the scientific 
understanding and the spatial variation of landslide hazard 
in the city of Azazga. The final results provide valuable ori-
entations for landslide hazard reduction and may serve as 
guidelines for land use development planning in the city of 
Azazga.

Description of the study area

The city of Azazga is situated in the Tizi Ouzou province in 
northern Algeria (Fig. 2a) at about 135 km east of the capital 
city of Algiers and at about 35 km east of Tizi-Ouzou Wilaya 
(prefecture) (Fig. 2b). The study area concerns the urban 
zone delimited by the master city plan (PDAU) perimeter 
and defined by its geographical coordinates: latitude 36.74° 
N and longitude 4.37° E (Fig. 2c). The Azazga region is 
highly susceptible to gulley erosion and landslide phenom-
ena due to its geomorphological, geological, and climatic 
characteristics as well as anthropogenic activities.

Geomorphologically, the Azazga region belongs to 
the massif of Grande Kabylia which is a part of the north 
mountainous area of the Tellean Atlas, characterized by 
three major landform types namely: (i) mountains of El 
Abed in the east whose altitude can exceeds 700 m, (ii) hills 
where the altitudes are varying between 100 and 400 m, and 
(iii) alluvial plain of Sébaou located at the western part of 
Azazga city with altitude ranging between 50 and 150 m. 
The city of Azazga corresponds to a hilly morphology area 
located on the foothill of the El Abed Mountain backing to 
a plateau with a maximum slope of 10° and delimited from 
both the North and South by two slope breaks exceeding 15°. 
The altitude of the study area ranges between 500 and 800 m 
above sea level and decreases from the northeast to the 
southwest (Fig. 2c).This geomorphology resulted from the 
geological, tectonic, hydrographical, and erosion processes.

From a geological point of view, the Azazga region 
belongs to the North-Kabyle Flysch domain located in 
the internal zones of the Maghrebin chain where three 
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lithological formations outcrops (Fig. 3): (i) the marly 
clays of the Cretaceous flysch; (ii) the clays and sandstones 
of the Oligocene Numidian flysch; (iii) the Mio-Pliocene 
clays and marls; and (iv) the clayey and sandy sandstones 
of Quaternary scree. These geological formations, which 
are affected by cracks and faults, are covering a large sur-
face of the urban area of Azazga. In addition, they are 
very sensitive to the presence of water because of the high 
plasticity of marls and clays, consequently, predisposed to 
erosions, landslides, and flows. Landslides are located in 
the flysch area, an allochthonous domain, characterized 
by thrust slicks that have been displaced during or after 
their sedimentation during the alpine cycle and deposited 
in a tectonized orogenic zone. The main tectonic features 
include (Gelard 1979; ORGM 1996) (Fig. 3): (i) tectonic 
contact oriented N-S separating the “flysch of Azazga” 
unit from the Numidian unit; (ii) a fault system network 

oriented SW-NE and NW–SE; (iii) the overthrust of the 
Numidian sandstones on the Cretaceous clay.

The hydrographic network is represented by the Aboud, 
the Iazoughen, and the Boulina rivers of a semi-perma-
nent flow which are associated with a temporary flow 
affluent (Fig. 1). The hydrogeology of the area is mainly 
commanded by the distribution of the impermeable fly-
sch substratum and the permeable quaternary scree. The 
upper layer is relatively permeable allowing water to 
pass through, whereas the underlying shale layer could 
be impermeable. The groundwater of the slope fills by 
rainfalls through surface infiltration and fluctuates sea-
sonally. Consequently, the groundwater resource is sig-
nificant, particularly, during the winter period (December 
to February) when rainfall is at its highest precipitation. 
Therefore, the groundwater level increases during the 
winter season.

Fig. 2   Geographical location 
of the study area within (a) the 
northeast of the Tizi-Ouzou 
prefecture versus administra-
tive division of north Algeria; 
(b) the north center of Algeria 
and at East of the capital city 
Algiers; (c) limit of the urban 
perimeter on the digital eleva-
tion model (DEM)
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The climate of the study area belongs to the Mediterra-
nean type, characterized by dry seasons from June to Sep-
tember and rainy, sometimes snowy, winters from October 
to April. According to the precipitation database covering 
a time period of 64 years (1950 to 2014) of the National 
Agency of Meteorology and Hydrology (ANRH 2014), the 
intensity and frequency of the precipitations are concen-
trated over a short period during the rainy season extending 
from December to March that represents 50 to 60% of the 
yearly precipitation (ANRH 2014). Highly variable rainfall 
amounts (700 to 1200 mm year−1) occur with intense storms 
during winter and autumn seasons, which represent a major 
landslides hazard factor (ANRH 2014).

The human activities developments that the city has 
experienced since the historical occupation of the Azazga 
slopes, since 1974 until today, following the rapid develop-
ment of urbanization without consideration of the real land 
constraint has led to significant morphological changes and 
modification of the stability conditions (deforestation, exca-
vation, extensive clear-cut logging, and vegetation removal). 
The gradual extension of the urban area with the extensive 
land use activities in the northern and the southern parts of 

the city along inappropriate land use constitute the main fac-
tors of the increase of the frequency of landslides.

Methodology

As stated earlier, the main objective of the present research 
is to investigate and compare the applied FR, SI, LR, and 
WoE models for landslide susceptibility mapping in the 
city of Azazga. For this purpose, the adopted methodology 
requires the following five steps (Fig. 4): (i) data gathering 
(data types and data sources) and construction of a related 
spatial database; (ii) landslide inventory mapping based on 
the interpretation of aerial photographs, satellite images, 
historical records, and geological field surveys; (iii) land-
slide predisposing factors mapping prepared from aerial 
photographs, geological map, DEM, historical seismic-
ity dataset and precipitation database; (iv) model build-
ing, assessment by statistical modeling and mapping of 
landslide susceptibility using the FR, SI, LR, and WoE 
models in GIS; and (v) verification of the quality and the 
performance of the different used models and validation 

Fig. 3   Geological map of the studied area
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of the obtained LSMs using the receiver operating charac-
teristics curves (ROCs) and the statistics rules for spatial 
effective LSMs.

Spatial database construction and landslide density 
analysis

The assessment and the mapping of landslide susceptibility 
are largely dependent on the inputs of both event landslide 
and event-controlling factor data. The reliability of LSM 
depends on the amount and the quality of the used input 
data. Thus, the data gathering and the geodatabase build-
ing constitute the first and the most fundamental step in 
producing LSM. In the framework of the present research, 
the data was collected from different sources and is used 
to generate the thematic layers (Table 1). The landslide 
inventory map of the study area is prepared using aerial 
photographs analysis, high-resolution satellite (Alsat 2A 
images), and Google Earth image analysis and as well as 
extensive field observations. Based on the landslide inven-
tory data, the following ten important causative factors 
including slope, aspect, altitude, lithology, precipitation, 
land use, distance to drainage, distance to faults, and dis-
tance to roads were identified and considered for landslide 
susceptibility mapping. These factors have been extracted 
from the high-resolution satellite images, the Alsat 2A, the 
aerial photographs, the geological maps, the DEM, and the 
rainfalls database (Table 1). The processing of all thematic 
layers including the georeferencing of maps, the assign-
ment of coordinate systems and data, the visualization, 
the extraction, and geo-processing of the raster datasets 
was done using GIS software (ArcGIS v10.2). All the data 
were geo-referenced in the same local projection system of 
Algeria (WGS 1984 and UTM Zone 31 North).

Landslide inventory map

The landslide inventory is a key element and basic data in 
landslide susceptibility assessment, particularly, when a sta-
tistical probability approach is adopted. A landslide inven-
tory map identifies the spatial locations of the existing land-
slides along with their types and their time of occurrence. 
The first and the fundamental step in landslide susceptibility 
assessments correspond to the acquisition of information 
about historical landslides that constitute a key element for 
future landslide prediction (Guzzetti et al. 1999).

The detailed landslide inventory map of the Azazga area 
was produced at a scale of 1:10,000 through a combina-
tion of the following steps (Table 1): (i) analysis and inter-
pretation of aerial photographs taken in 1973, 1984, 2000, 
and 2008 at the scales of 1/20,000, 1/20,000, 1:10,000, and 
1:4000, respectively, high-resolution Alsat 2A Geo-Eye pan-
chromatic satellite images (2.5 m) taken in 2011 at a scale 
of 1:10,000, as well as time series of Google Earth satellite 
imagery taken between 2003 and 2018; (ii) historical land-
slide records (landslide reports, newspaper records, and data 
collected from the field interviewing of local peoples) veri-
fied and completed by (iii) extensive and detailed geological 
fieldworks performed between 2014 and 2019 (CGS 2010). 
The landslide inventory map shows the spatial distribution 
of landslides and their geomorphological features (typology 
of the landslide, topography, deformation characteristics, 
lithology, area and activity) and their geometrical parameters 
(hill slope gradients, the perimeter, and the maximal length 
of the landslides). The landslide perimeter covers a surface 
area of about 2816 km2 (281, 6 ha) that represents 31% of 
the total perimeter of the Azazga urban area. The mapped 
landslides are classified according to the classification pro-
posed by Varnes (1978) into rotational and translational 
slides (27, 95%), flows (2, 05%), and falls (1%). The depth 

Fig. 4   Methodological flow-
chart for landslide susceptibility 
mapping
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of the landslides varies from shallow (< 2 m) to very deep 
(> 20 m). The size of the largest landslide is about 6841,00 
m2, whereas the smallest one covers an area of 805 m2.

For landslide susceptibility assessment, the landslide 
inventory map was randomly divided into two separate 
subsets: (i) the training landslide data sets (70%) used for 
developing or building landslide models and (ii) the test-
ing dataset (30%) for performance evaluation and landslide 
models validation (Yesilnacar and Topal 2005; Chung and 
Fabbri 2003). Figure 5 shows pictures of newly field mapped 
landslide locations induced by the 2012, 2014, and 2018 
rainfall events in the study area. Figure 6 shows the spatial 
distribution of landslides used in this analysis.

Landslide predisposing factors

The landslide susceptibility assessment and mapping are 
based on the selection of relevant controlling factors by 
considering that future landslides will occur in the same 
conditions than the observed ones in the past. The selected 
statistical method compares parametric maps with the land-
slide inventory map, and results are then extrapolated to the 
entire evaluated area with a final product of the LSM. The 

landslide inventory analysis of the study area has identi-
fied and outlined the main predisposing factors or predictive 
variables to introduce in the statistical model in order to 
assess and map landslide susceptibility.

Ten causative factors (Fig. 7) related to the causes of 
landslide occurrence including slope, aspect, altitude, land 
use, lithology, precipitation, distance to drainage, distance 
to faults, distance to lineaments, and distance to roads have 
been identified and analyzed, and thematic layers have been 
derived and prepared mainly from the following (Table 1): 
(i) the available national databases (geological maps, topo-
graphic map, DEM, precipitation map, and boreholes from 
geotechnical studies); (ii) aerial photographs and satellite 
image interpretation and Google Earth imagery analyses; 
and (iii) field geological/geotechnical investigation. The the-
matic layers generated in GIS software have been re-sampled 
in a 10 m × 10 m grid size in order to facilitate the easy 
raster-based computation. In the analysis, the influence of 
each predisposing factor on the landslide occurrence, the 
landslide density for each class of each factor was calculated 
by dividing the landslide occurrence area by the class’s area 
of each factor. For this purpose, all landslide causative factor 
maps were converted into raster and classified with the same 

Table 1   Spatial database used in the study area

Data layers Map Source of database Scale and resolution

Landslide inventory Landslide inventory map Historical record, aerial photographs at the scales of 
1/20,000, 1/20,000, 1:10,000 and 1:4000 taken during 
1973, 1984, 2000, and 2008, respectively issued from 
the Algerian institute of cartography and remote sensing 
(INCT), panchromatic satellite images (Alsat 2A) of high 
resolution (2.5 m) taken in 2011 from Algerian Space 
Agency (ASAL), Google Earth satellite imagery, histori-
cal record and extensive field surveys

1:10,000, 2.5 m

Digital elevation model (DEM) Slope, map DEM (10-m resolution) generated by digitization and krig-
ing interpolation of elevation lines extracted from topo-
graphic map at 1:25,000 scale from the Algerian institute 
of cartography and remote sensing (INCT)

1:10,000, 10 m
Aspect map
Altitude map

Geology Lithology map Digitization of the published geological map at 1:50,000 by 
the National Office of Geological and Mining Research 
(ORGM, 1997) and field survey (CGS 2010)

1:10,000

Rainfall Rainfall map Precipitation database covering a time period of 64 years 
(1950 à 2014) from the 05 meteorological stations, 
namely, “Azazga Ecole, Yakourene, Tala Gassi, Aghribs, 
and Freha” (Fig. 2) of the National Agency of Meteorol-
ogy and Hydrology (ANRH)

1:10,000

Distance to faults Distance to faults map Digitization of the geological map at 1:50,000, field survey 1:10,000
Distance to lineaments Distance to lineaments map Analysis and interpretation of aerial photographs at the 

scales of 1/20,000, 1/20,000, 1:10,000, and 1:4000 taken 
during 1973, 1984, 2000, and 2008 and high-resolution 
satellite imagery Alsat 2A of 2011 and field observations

1:10,000

Land use Land use map High-resolution satellite imagery Alsat 2A of 2011 at the 
scales of 1/10,000, aerial photographs at the scales of 
1:10,000 and 1:4000, Google Earth satellite imagery, 
topographic map at 1:25,000 scale, field survey

1:10,000
Hydrology Distance to streams map 1:10,000
Anthropy Distance to roads map 1:10,000
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pixel size (10 m × 10 m) in the same projection using Arc 
toolbox tools under GIS as a spatial analysis tool. Then, the 
landslide inventory raster map was overlapped with the land-
slide factor raster class through the combined spatial analy-
sis tool under toolbox to extract landslide pixels for each 
landslide class of each factor. Then, the influence of each 
factor class was determined using equations of frequency 
ratio (Eq. 1), statistical index (Eq. 3), weights of evidence 
(Eq. 7), and logistic regression (Eq. 9) methods. Finally, the 
results are summarized in Tables 2, 3, 4, and 5.

The statistical analysis of density based on the observed 
relationship between each factor and the spatial distribution 
of landslides is very useful to reveal the correlation between 
landslide locations and factors. In this study, the landslide 
density was applied and combined with a GIS to evaluate 
the relationship between the susceptibility and the trigger-
ing factors with landslide occurrences. Figure 8 shows the 
density of each landslide type in percentage in each land-
slide-conditioning factor. The results indicated that rainfall 

Fig. 5   Examples of observed 
different types of recently 
occurred landslides in the study 
area. a Rotational landslides in 
the district of Ighil Bouzel. b 
Rotational landslides in front 
of the cultural center in Ighil 
Bouzel. c Translational slides 
in Aghni Guizem in south 
eastern of the City of Azazga. 
d Rotational landslides along 
the national road RN12 in the 
north of the City. e, f Flows in 
the sector of Tadart in the north 
of Azazga

 a 

c 

e 

d

f

b

Fig. 6   Landslide inventory map of the study area
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Fig. 7   Landslide-conditioning 
factors of the study area. a 
Precipitation map. b Lithologi-
cal map. c Slope angle map. d 
Aspect map. e Altitude map. 
f Land use type. g Distance to 
rivers map. h Distance to faults. 
i Distance to lineaments. j 
Distance to roads map
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Table 2   Frequency ratio values of the selected landslide conditioning factors

Factors Classes % of total area (a) % of landslide 
area (b)

Frequency 
ratio Fr (b/a)

Lithology Clays of the Cretaceous flysch 13.889 10.108 0.728
Marly of the Cretaceous flysch 21.352 17.872 0.837
Clays of the under Numidian 15.036 7.814 0.520
Sandstones of Oligocene Numidian 17.902 8.098 0.452
Clayey and sandy of Quaternary scree 31.821 56.109 1.763

Slope (°) 0–10 77.329 73.828 0.955
10–20 20.311 23.878 1.176
20–30 2.096 2.028 0.968
30–40 0.263 0.266 1.011

Aspect Plat 2.512 1.520 0.605
North 5.348 9.561 1.788
Northeast 2.547 3.711 1.457
East 1.045 0.661 0.632
Southeast 2.198 1.879 0.855
South 4.556 6.191 1.359
Southwest 17.233 16.544 0.960
west 29.620 25.717 0.868
Northwest 26.623 24.478 0.919
North 8.317 9.739 1.171

Land use Urban area 46.566 31.983 0.687
Forest 19.040 14.228 0.747
Pasture and agriculture area 34.393 53.790 1.564

Precipitation (mm) 900–950 3.988 4.376 1.097
950–1000 42.809 41.512 0.970
1000–1050 35.954 41.570 1.156
1050–1100 15.726 11.845 0.753
1100–1150 1.523 0.697 0.458

Distance to streams (m) 0–50 36.251 48.199 1.330
50–100 24.596 25.916 1.054
100–150 17.683 13.848 0.783
150–200 11.965 7.231 0.604
200–250 6.317 3.527 0.558
250–300 2.308 0.987 0.428
300–350 0.880 0.291 0.331

Distance to roads (m) 0–50 37.399 34.820 0.931
50–100 24.310 22.553 0.928
100–150 14.568 14.427 0.990
150–200 8.830 9.437 1.069
200–250 14.892 18.763 1.260

Distance to faults (m) 0–50 12.120 8.318 0.686
50–100 11.248 8.300 0.738
100–150 10.259 9.600 0.936
150–200 9.147 10.229 1.118
200–250 8.174 10.335 1.264
250–300 7.391 9.721 1.315
300–350 41.662 43.497 1.044
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affected highly the occurrence of landslides, and constitutes 
the principal triggering factor in the area of Azazga. The 
average seasonal precipitation during the period of 1950 
and 2014 ranges between 700 and 1400 mm (Fig. 7a). The 
frequency values of landslides increase with the increasing 
amount of rainfall. The highest concentration of landslides 
has occurred in the two highest rainfall classes (Fig. 8a) 
ranging from 1000 to 1050 mm (26%) and 900 to 950 mm 
(24%). This indicates a strong correlation of landslide events 
with a great amount of rainfall that considerably impacts the 
landslide occurrence.

Regarding the geology, the occurrence of landslides in the 
region of Azazga is closely related to the lithology and the 
material property variations. In this study, the lithology is 
classified into seven classes as shown in Fig. 7b. Landslide 
density percentage is highest in two lithological classes, 
namely the sandy clayey of Quaternary scree and the marly 
clays of the Cretaceous flysch (Fig. 8b). The quaternary 
scree deposit consists of sandstone blocks embedded in a 
clayey to sandy-clay deposits of low shear strength and the 
presence of shallow aquifers (CGS 2018). They are highly 
weathered at the surface and are crossed by a network of 
widely open fissures and, therefore, sensitive to concentrated 
runoff and erosion. The presence of water generates pore 
water pressure that reduces the shear strength of the slope 
materials. In addition, the hydrographic network has crossed 
through the slope toe of this loose soil deposit, which caused 
its removal, by the stream undercutting. Therefore, the slope 
material resisting forces are reduced. The Cretaceous fly-
sch is mostly constituted by a gray to greenish clays finely 
bedded, folded, and friable can be cut into thin platelets. 
They are strongly folded sediments with schistosity texture 
because of the tectonic action, which, in many places, led to 

the formation of a thick weathered shallow layer. The inter-
nal structure of the flysch is characterized by the dip of the 
lithological layers, the schistosity plans, and other tectonic 
fractures in the slope direction.

In terms of the geomorphology, the slope gradient 
(Fig. 7c), the aspect (Fig. 7d), and the elevation (Fig. 7e) 
are considered as important controlling factors in slope 
stability. Landslide density is highest in the 10°–20° (29%) 
category, followed by the 30°–40° (23%), 20°–30° (24%), 
and 0°–10° (23%) categories (Fig. 8f). The landslide density 
percentage is relatively low and increases with the orien-
tation angle (aspect) reaching the maximum at the north 
aspect (Fig. 8d). The north oriented slopes are more vio-
lently affected by rainfalls. The elevation is associated with 
landslides as a result of other factors. The density is highest 
in the 200–300 m and then decreases (Fig. 8e).

The land use is ranked with the causal factors of the 
landslides in relation especially with the presence/absence 
of vegetation. In the area under investigation (Fig. 7f), 
the landslide density is concentrated on the vegetated and 
agricultural layer followed by the forest and the urban area 
(Fig. 8c). The variations of the vegetation in any area con-
stitute an important parameter affecting the slope failures as 
the slope stability is very sensitive to the changes in vegeta-
tion state. The high density of landslides in these areas can 
be explained by a very high human activity development 
in inappropriate new highland settlements due to the rapid 
growth of the population. The soil cohesion is modified by 
the extension of the urbanization depending on the type of 
vegetation, and thus, cultivated or sparsely vegetated areas 
are more prone to landslide processes. The barren land and 
mountainous cultivated areas also have a significant num-
ber of landslide events. Additionally, crops can increase the 

Table 2   (continued)

Factors Classes % of total area (a) % of landslide 
area (b)

Frequency 
ratio Fr (b/a)

Distance to lineaments (m) 0–50 21.879 24.457 1.118

50–100 18.522 20.507 1.107

100–150 13.948 16.998 1.219

150–200 10.579 10.644 1.006

200–250 7.471 5.228 0.700

250–300 6.187 3.679 0.595

300–350 21.412 18.486 0.863
Altitude (m) 200–300 7.191 9.288 1.291

300–400 47.202 52.316 1.108
400–500 27.903 25.504 0.914
500–600 16.770 11.905 0.710
600–700 0.901 0.984 1.092
700–800 0.033 0.004 0.108
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Table 3   Statistical index (SI) calculated, for each class of the selected landslide causal factors

Factors Classes Class pixels Landslide pixels % of class area % landslide area Statistical 
index (SI)

Lithology Clays of the Cretaceous flysch 12,656 2846 13.889 10.108  − 0.317
Marly of the Cretaceous flysch 19,456 5032 21.352 17.872  − 0.178
Clays of the under Numidian 13,701 2200 15.036 7.814  − 0.654
Sandstones of Oligocene Numidian 16,313 2280 17.902 8.098  − 0.794
Clayey and sandy of Quaternary 

scree
28,996 15,798 31.821 56.109 0.567

Slope (°) 0–10 70,464 20,787 77.329 73.828  − 0.046
10–20 18,508 6723 20.311 23.878 0.162
20–30 1910 571 2.096 2.028  − 0.033
30–40 240 75 0.263 0.266 0.011

Aspect Plat 2289 428 2.512 1.520 0.665
North 4873 2692 5.348 9.561  − 1.015
Northeast 2321 1045 2.547 3.711  − 0.605
East 952 186 1.045 0.661 0.611
Southeast 2003 529 2.198 1.879 0.220
South 4151 1743 4.556 6.191  − 0.481
Southwest 15,701 4658 17.233 16.544 0.059
West 26,987 7241 29.620 25.717 0.199
Northwest 24,257 6892 26.623 24.478 0.119
North 7578 2742 8.317 9.739  − 0.237

Land use Urban area 42,432 9005 46.566 31.983  − 0.375
Forest 17,350 4006 19.040 14.228  − 0.292
Pasture and agriculture area 31,340 15,145 34.393 53.790 0.447

Precipitation (mm) 900–950 3634 1199 3.988 4.376 0.066
950–1000 39,008 11,663 42.809 41.512  − 0.033
1000–1050 32,762 11,750 35.954 41.570 0.149
1050–1100 14,330 3347 15.726 11.845  − 0.280
1100–1150 1388 197 1.523 0.697  − 0.779

Distance to streams (m) 0–50 0.102 13,571 36.251 48.199 0.285
50–100 0.107 7297 24.596 25.916 0.053
100–150 0.014 3899 17.683 13.848  − 0.245
150–200  − 0.098 2036 11.965 7.231  − 0.504
200–250  − 0.354 993 6.317 3.527  − 0.583
250–300 0.102 278 2.308 0.987  − 0.849
300–350 0.107 82 0.880 0.291  − 1.106

Distance to roads (m) 0–50 34,079 9804 37.399 34.820  − 0.071
50–100 22,152 6350 24.310 22.553  − 0.075
100–150 13,275 4062 14.568 14.427  − 0.010
150–200 8046 2657 8.830 9.437 0.067
200–250 13,570 5283 14.892 18.763 0.231

Distance to faults (m) 0–50 11,044 2342 12.120 8.318  − 0.377
50–100 10,249 2337 11.248 8.300  − 0.304
100–150 9348 2703 10.259 9.600  − 0.066
150–200 8335 2880 9.147 10.229 0.112
200–250 7448 2910 8.174 10.335 0.234
250–300 6735 2737 7.391 9.721 0.274
300–350 37,963 12,247 41.662 43.497 0.043
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moisture of soil and alter the groundwater conditions mainly 
by earthworks and urbanization. In the study area, cover 
crops represent 50% of the total area. The extensive culti-
vated land combined with the altered groundwater condi-
tions is capable of causing landslide problems.

The fluvial erosion of slope toe is one of the most com-
mon causal factors of the landslide occurrence that may 
induce failure of the banks due to slope undercutting/basal 
erosion, especially in areas of the dense drainage network, 
hilly landscape, and deep valleys. Such cases are mainly 
observed along the Iazoughen and Boulina rivers in the city 
of Azazga. The distance from these main rivers is considered 
as an important factor in characterizing the landslide suscep-
tible areas (Fig. 7g). The landslide occurrences increased 
close to rivers (Fig. 8j). The frequency values show that 
buffer zones with distances smaller than/or equal to 50 m 
from rivers are strongly associated with landslide appear-
ance. The frequency of the landslides decreases with the 
increase of the distance to the drainage network. This is 
related to the dynamics of rivers that influence the trigger-
ing of landslides by the concentrated runoff of water. This 
generates saturation of the soil and the basal erosion on the 
banks that activate the dynamics of the slope (slope under-
cutting and removal of abutment).

The tectonic structures, such as fractures or faults, are 
also considered as related to favorable conditions for land-
slide occurrence. Thus, major structural discontinuities pro-
duced by fractures and faults were included as a parameter in 
this study (Fig. 7h). In our study, there is no trend showing 
that locations close to faults have decreased landslide den-
sity (Fig. 8g). Tectonic lineaments are zones of weakness, 
characterized by heavily fractured rocks which are prone 
to instability. The proximity to these structures increases 

the probability of occurrence of landslides as a selective 
erosion and drainage of water along fault planes that cause 
landslides. The predominant tectonic lineaments in the study 
area are in the NE–SW and N–S directions (Fig. 7i). There 
is a trend showing that locations close to lineaments have 
increased the landslide density (Fig. 8h).

The distance to roads is considered also among the 
anthropogenic factors influencing the occurrence of land-
slides due to the fact that opening of roads frequently modi-
fies the slope stability; the most current action, the large 
excavations, the removing of vegetation, and the external 
loads by earth filling. In this study, a distance to roads map 
(Fig. 7j) was constructed using the defined five buffer cat-
egories. The result of the landslide density for each distance 
class showed that there was no influence of roads with 80% 
of the landslides occurred within the interval less than 100 m 
from the landslide frequency (Fig. 8i).

Modeling approaches

The landslide susceptibility assessment in the study area 
was implemented using four simple statistical models which 
are FR, SI, WoE, and LR with the help of GIS techniques 
to generate LSMs. The assessment process is based on a 
cross-analysis of determining factors and spatial frequency 
of landslides through statistical models using the GIS matrix 
method. By using the equations of the used models (FR, SI, 
LR, and WoE), the weighting factor values of the training 
sets of each layer for each landslide factor have been evalu-
ated in order to generate the final LSMs. The resulted maps 
have been classified by dividing the total number of ele-
ments (weight value) into the following five distinct classes 

Table 3   (continued)

Factors Classes Class pixels Landslide pixels % of class area % landslide area Statistical 
index (SI)

Distance to lineaments (m) 0–50 19,937 6886 21.879 24.457 0.112

50–100 16,878 5774 18.522 20.507 0.102

100–150 12,710 4786 13.948 16.998 0.198

150–200 9640 2997 10.579 10.644 0.006

200–250 6808 1472 7.471 5.228  − 0.357

250–300 5638 1036 6.187 3.679  − 0.519

300–350 19,511 5205 21.412 18.486  − 0.147
Altitude (m) 200–300 6553 2615 7.191 9.288 0.255

300–400 43,011 14,730 47.202 52.316 0.103
400–500 25,426 7181 27.903 25.504  − 0.090
500–600 15,281 3352 16.770 11.905  − 0.342
600–700 821 277 0.901 0.984 0.088
700–800 30 1 0.033 0.004  − 2.226
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Table 4   Weighting values (WC) calculated, for each class of the selected landslide causal factors

Factors Classes Class pixels Landslide pixels Weights (W+) Weights (W−) Weight 
contrast 
(WC)

Lithology Clays of the Cretaceous flysch 12,656 2846  − 0.433 0.063  − 0.495
Marly of the Cretaceous flysch 19,456 5032  − 0.248 0.063  − 0.312
Clays of the under Numidian 13,701 2200  − 0.849 0.120  − 0.969
Sandstones of Oligocene Numidian 16,313 2280  − 1.012 0.168  − 1.180
Clayey and sandy of Quaternary scree 28,996 15,798 0.985  − 0.588 1.573

Slope (°) 0–10 70,464 20,787  − 0.066 0.215  − 0.282
10–20 18,508 6723 0.244  − 0.066 0.309
20–30 1910 571  − 0.047 0.001  − 0.048
30–40 240 75 11.050 0.000 11.050

Aspect Plat 2289 428  − 0.665 0.015  − 0.680
North 4873 2692 1.015  − 0.065 1.081
Northeast 2321 1045 0.605  − 0.017 0.622
East 952 186  − 0.611 0.006  − 0.616
Southeast 2003 529  − 0.220 0.005  − 0.225
South 4151 1743 0.482  − 0.025 0.507
Southwest 15,701 4658  − 0.058 0.012  − 0.070
West 26,987 7241  − 0.198 0.079  − 0.277
Northwest 24,257 6892  − 0.119 0.042  − 0.161
North 7578 2742 0.237  − 0.023 0.260

Land use Urban area 42,432 9005  − 0.507 0.371  − 0.878
Forest 17,350 4006  − 0.398 0.977  − 1.376
Pasture and agriculture area 31,340 15,145 0.738 0.827  − 0.089

Precipitation (mm) 900–950 3634 1199 0.096  − 0.004 0.100
950–1000 39,008 11,663  − 0.047 0.035  − 0.082
1000–1050 32,762 11,750 0.224  − 0.134 0.358
1050–1100 14,330 3347  − 0.383 0.065  − 0.449
1100–1150 1388 197  − 0.995 0.012  − 1.007

Distance to streams (m) 0–50 0.102 13,571 0.444  − 0.288 0.732
50–100 0.107 7297 0.077  − 0.025 0.102
100–150 0.014 3899  − 0.337 0.067  − 0.404
150–200  − 0.098 2036  − 0.667 0.077  − 0.743
200–250  − 0.354 993  − 0.763 0.043  − 0.806
250–300 0.102 278  − 1.077 0.019  − 1.096
300–350 0.107 82  − 1.368 0.009  − 1.376

Distance to roads (m) 0–50 34,079 9804  − 0.102 0.059  − 0.161
50–100 22,152 6350  − 0.107 0.033  − 0.140
100–150 13,275 4062  − 0.014 0.002  − 0.017
150–200 8046 2657 0.098  − 0.010 0.107
200–250 13,570 5283 0.355  − 0.067 0.421

Distance to faults (m) 0–50 11,044 2342  − 0.508 0.062  − 0.570
50–100 10,249 2337  − 0.415 0.048  − 0.462
100–150 9348 2703  − 0.095 0.011  − 0.105
150–200 8335 2880 0.166  − 0.017 0.183
200–250 7448 2910 0.361  − 0.034 0.395
250–300 6735 2737 0.426  − 0.037 0.463
300–350 37,963 12,247 0.063  − 0.046 0.109
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using the standard deviation method: low, moderate, high, 
and very high susceptibility.

FR method

The FR model (Lee and Min 2001) allows one to derive the 
spatial relationship between the distribution of landslides 
and their landslide conditioning factors. The main advan-
tage of the FR method is that it is easy to apply and pro-
vides easily comprehensible results. The FR is defined as 
the ratio of the area where landslides occurred in the total 
area. It expresses the relationship between the landslides in 
the class of landslide factor and the area in the class. When 
the ratio value is less than 1, it means a lower correlation 
between landslide occurrence and landslide factors, and a 
value greater than one means a high correlation. It can be 
calculated using Eq. 1:

where FR is the frequency ratio, Ls pix is a landslide pixel 
in a factor class, and A pix is the total pixel area of the class 
in the study area. In the study area, the frequency ratio for 
each causative factor class was calculated using Eq. 1 and 
the results are indicated in Table 1.

After the calculating of FR for each landslide-condition-
ing factor using Microsoft Excel under GIS, the FR value 
for each factor class was attributed by the joint in the Arc-
GIS tool. Afterward, the weighting landslide factors were 
rasterized using the spatial analysis search tool. Afterward, 
the landslide susceptibility index (LSI) is estimated by 

(1)

FR =

(

Lspix

Apix

)

= (
Landslidepixelclass

Areapixelclass
) = (

%Landslidepixelclass

%Areapixelclass
)

summation the frequency ratio of each factor type or class 
by the Map Algebra raster calculator of the spatial analysis 
tool and using Eq. (2):

where LSI is the landslide susceptibility index, FR is the 
frequency ratio of each landslide factor class.

After the calculation of LSI, the index values were ranked 
and classified into a different landslide susceptibility levels 
in order to establish the final LSM using the standard devia-
tion method in the ArcGIS tool.

SI method

The SI namely also information value (IV) method is one of 
the bivariate statistical methods (Van Westen 1997) based 
on a statistical correlation between the predisposing factors 
and the distribution of landslide areas. The SI value for each 
class of each factor is given as the natural logarithm of the 
landslide density in the categorical class divided by the land-
slide density in the entire map of the factor:

(2)

LSIFR =FR ∗ slope + FR ∗ slopeaspect + FR ∗ precipitation

+ FR ∗ lithology + FR ∗ landuse + FR ∗ distancetostreams

+ FR ∗ distancetoroads + FR ∗ distancetofaults

+ FR ∗ distancetolineaments + FR ∗ altitude

(3)
SI = In(

ConditionalprobabilityCP

PriorprobabilityP
) = In

Densclass

Densmap
)

= In(
Npix(S)∕Npix(N)

SNpix(S)∕SNpix(N)
)

Table 4   (continued)

Factors Classes Class pixels Landslide pixels Weights (W+) Weights (W−) Weight 
contrast 
(WC)

Distance to lineaments (m) 0–50 19,937 6886 0.165  − 0.048 0.214

50–100 16,878 5774 0.151  − 0.035 0.186

100–150 12,710 4786 0.301  − 0.052 0.352

150–200 9640 2997 0.009  − 0.001 0.010

200–250 6808 1472  − 0.483 0.035  − 0.518

250–300 5638 1036  − 0.686 0.038  − 0.725

300–350 19,511 5205  − 0.206 2.289  − 2.495
Altitude (m) 200–300 6553 2615 0.395  − 0.033 0.428

300–400 43,011 14,730 0.153  − 0.144 0.297
400–500 25,426 7181  − 0.128 0.048  − 0.175
500–600 15,281 3352  − 0.465 0.083  − 0.548
600–700 821 277 0.130  − 0.001 0.131
700–800 30 1  − 2.562 0.000  − 2.563
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Table 5   Logistic regression (LR) coefficients for each class of the selected landslide causal factors

Factors Classes % of total area (a) % of landslide 
area (b)

Factor 
weight (W)

Logistic 
regression 
coefficients

Lithology Clays of the Cretaceous flysch 13.889 10.108 1.763 9.044
Marly of the Cretaceous flysch 21.352 17.872 0.728
Clays of the under Numidian 15.036 7.814 0.837
Sandstones of Oligocene Numidian 17.902 8.098 0.452
Clayey and sandy of Quaternary scree 31.821 56.109 0.520

Slope (°) 0–10 77.329 73.828 0.955 10.550
10–20 20.311 23.878 1.176
20–30 2.096 2.028 0.968
30–40 0.263 0.266 1.011

Aspect Plat 2.512 1.520 0.868 7.963
North 5.348 9.561 0.919
Northeast 2.547 3.711 0.960
East 1.045 0.661 1.171
Southeast 2.198 1.879 0.855
South 4.556 6.191 0.605
Southwest 17.233 16.544 0.632
West 29.620 25.717 1.788
Northwest 26.623 24.478 1.359
North 8.317 9.739 0.605

Land use Urban area 46.566 31.983 0.687 1.509
Forest 19.040 14.228 1.564
Pasture and agriculture area 34.393 53.790 0.747

Precipitation (mm) 900–950 3.988 4.376 1.156 0.848
950–1000 42.809 41.512 0.970
1000–1050 35.954 41.570 0.753
1050–1100 15.726 11.845 1.097
1100–1150 1.523 0.697 0.458

Distance to streams (m) 0–50 36.251 48.199 1.330 6.139
50–100 24.596 25.916 1.054
100–150 17.683 13.848 0.783
150–200 11.965 7.231 0.604
200–250 6.317 3.527 0.558
250–300 2.308 0.987 0.428
300–350 0.880 0.291 0.331

Distance to roads (m) 0–50 37.399 34.820 0.931  − 8.103
50–100 24.310 22.553 0.928
100–150 14.568 14.427 0.990
150–200 8.830 9.437 1.260
200–250 14.892 18.763 1.069

Distance to faults (m) 0–50 12.120 8.318 1.118 5.247
50–100 11.248 8.300 1.264
100–150 10.259 9.600 1.315
150–200 9.147 10.229 1.044
200–250 8.174 10.335 0.686
250–300 7.391 9.721 0.738
300–350 41.662 43.497 0.936
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where SI is the weight given to the class of a given fac-
tor. The conditional probability is the ratio of the number 
of landslide pixels in the class of factors to the number of 
pixels in a class, and the prior probability is the ratio of the 
total number of pixels of landslides to the total number of 
pixels of the study area. Densclass represents the landslide 
density within the class of landslide factor, and Densmap 
is the landslide density in the total area of landslide factor. 
Npix (S) is the number of landslide pixels in a landslide fac-
tor class. Npix (N) is the total number of pixels in the same 
landslide factor area. SNpix (S) is the number of pixels of 
all landslides. SNpix (N) is the total number of all pixels. 
The natural logarithm is used to take into account the large 
variation in weights. When the SI is > 0.1, the correlation 
between the landslide occurrences and the landslide factor 
is high, which implies that it will have a high probability of 
landslide occurrence, though, when the SI is < 0.1. There is 
a low correlation between factors and landslide indicating 
a low probability of landslide occurrence. After calculation 
of the SI for each class of landslide factor using Microsoft 
Excel and GIS, the SI for each factor class is given through 
the link in the ArcGIS tool. Then, the LSI of the study area 
is calculated as in Eq. 4 and after rasterization the weighted 
landslide factors using the lookup tool in spatial analysis.

(4)

LSISI =SI ∗ slope + SI ∗ slopeaspect + SI ∗ lithology

+ SI ∗ landuse + SI ∗ distancetostreams

+ SI ∗ precipitation + SI ∗ distancetoroads

+ SI ∗ distancetofaults + SI ∗ distancetolineaments

+ SI ∗ altitude

where LSI is the landslide susceptibility index and SI is the 
statistical index of each landslide factor class. The higher 
value of LSI indicates the higher probability of landslide 
occurrence. After the calculation of LSI, the index values 
were classified into different landslide susceptibility degrees 
in order to establish the final LSM using the standard devia-
tion method in the ArcGIS tool.

WoE method

The WoE method is a statistical method (Bonham-Carter 
et al. 1989) that uses the log-linear form of the Bayesian 
probability model to estimate the probability based on the 
concept of posterior and prior probability (P). The WoE 
approach is based on information obtained from the spa-
tial correlation between landslide distribution and land-
slide causative factors. The WoE approach calculates the 
spatial relationship between the distribution of landslides 
(L) and the landslide causative factors (B) within the area, 
in the form of negative weights (W−) and positive (W+). 
These negative and positive weights are calculated from 
the ratios of the natural logarithms as follows (Bonham-
Carter 1994):

(5)W+ = In
P(B∕L)

P(B∕L)

(6)W− = In
P(B∕L)

P(B∕L)

Table 5   (continued)

Factors Classes % of total area (a) % of landslide 
area (b)

Factor 
weight (W)

Logistic 
regression 
coefficients

Distance to lineaments (m) 0–50 21.879 24.457 1.118  − 9.266

50–100 18.522 20.507 1.107

100–150 13.948 16.998 1.219

150–200 10.579 10.644 1.006

200–250 7.471 5.228 0.700

250–300 6.187 3.679 0.595

300–350 21.412 18.486 0.863
Altitude (m) 200–300 7.191 9.288 1.291 1.951

300–400 47.202 52.316 1.108
400–500 27.903 25.504 0.914
500–600 16.770 11.905 0.710
600–700 0.901 0.984 1.092
700–800 0.033 0.004 1.2
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where P is the probability of the ratio, B is the predictive 
factor, and L is the landslide. The overbar sign “¯” represents 
the absence of the class and/or landslide or predictive fac-
tor. A positive W+ and negative W− weights are an indica-
tion of the positive and negative correlation between the 
landslides occurrence and the presence of the predictable 
variable, respectively. ln is the natural logarithm (logit) used 
in order to estimate the conditional probability of landslide 
occurrence.

The difference between the negative and positive 
weights, as computed for each class of each analyzed fac-
tor, is known as the weight contrast WC:

The contrast WC represents the complete spatial rela-
tionship between the predictive variable and landslides. 
The value of WC is naturally between zero and two; when 
the value of C tends to 0, the presence of the considered 
factor did not affect the distribution of landslides in the 
area, while when C is approximately equal to or greater 
than 2, the correlation is significant (Barbieri and Cambuli 
2009).

In this work, after calculation of the WC for each class 
of landslide factor using Microsoft Excel under GIS, the 
WC for each factor class is given through the link in the 
ArcGIS tool. Subsequently, the LSI is calculated after ras-
terization of the contrast WC using the lookup tool in the 
spatial analysis as in Eq. 8:

where WC slope, WC exposure, WC fault, WC river, WC 
precip, WC land use, WC road, and WC lithology are the 
distribution-derived weight of slope, exposure, fault, dis-
tance to rivers, precipitation, land use, distance to roads, and 
lithology maps, respectively.

After LSI calculation, the index values were catego-
rized hierarchically and into different landslide suscepti-
bility classes to establish the final LSM using the standard 
deviation method in the ArcGIS tool.

LR method

The LR is a multivariate analysis method that allows to 
evaluate a multivariate regression relationship between 
an independent (landslide causative factors) and depend-
ent (landslides) variable (Lee and Pradhan 2007). The 

(7)WC = W + −W−

(8)

LSIWC =WC ∗ slope + WC ∗ slopeaspect + WC ∗ lithology

+ WC ∗ landuse + WC ∗ distancetostreams

+ WC ∗ precipitation + WC ∗ distancetoroads

+ WC ∗ distancetofaults + WC ∗ distancetolineaments

+ WC ∗ altitude

important advantage of LR over multiple linear regression 
is that through the addition of an appropriate relation func-
tion to the normal linear regression model, the variables 
may be discrete or continuous, or any combination of both 
types, and they do not essentially have normal distribu-
tions (Lee and Pradhan 2007). In the LR, the dependent 
variable is a binary variable representing the presence (1) 
or the absence (0) of a landslide, whereas the independent 
variables can be continuous, discrete, dichotomous, or a 
mix of any of them. In order to predict the possibility of 
landslide occurrence in each grid, the probability (P) was 
calculated using the LR model, which is expressed as in 
Eq. 9 (Lee and Pradhan 2007):

where P is the probability of landslide occurrence, which 
varies from 0 to 1 on an S-shaped curve; z is the linear 
combination defined as in Eq. 10 whose its value varies 
from − ∞ to + ∞:

where X1, X2, X3, and Xn are the independent variables and 
b1, b2, b3, and bn are the slope coefficient of the logistic 
regression model.

Validation model

The evaluation of the accuracy degree or the validation of 
the landslide susceptibility model is the most important task 
and step in landslide susceptibility modeling. Without vali-
dation, the prepared LSM has no scientific relevance (Chung 
and Fabbri 2003). Among the most available valuable meth-
ods to determine the accuracy of the different landslide sus-
ceptibility models, we use in this study the ROC and the 
statistics rules for spatial effective LSMs. The accuracy and 
the performance of the produced LSMs as well as the vali-
dation process of the models were performed by comparing 
the known landslide location data with the obtained LSMs.

The ROC curve is one of the useful statistical methods 
used to represent the performance or the quality of the land-
slide susceptibility model. The area under curve (AUC) 
value is used to evaluate the efficiency of a forecast sys-
tem by describing the system’s ability to predict accurately 
the non-occurrence or the occurrence of a landslide event 
(Chung and Fabbri 2003; Yesilnacar and Topal 2005). The 
AUC value and the correspondent performance can be rated 
as follows (Yesilnacar and Topal 2005): 0.5–0.6 (poor per-
formance model), 0.6–0.7 (average performance model), 
0.7–0.8 (good performance model), 0.8–0.9 (very good per-
formance model), and 0.9–1 (excellent performance model).

(9)(P =
1

1 + e−z
)

(10)
Z = intercept + b1X1 + b2X2 + b3X3 + … + bnXn

Application of GIS‑based statistical modeling for landslide susceptibility mapping in the… 7351



1 3

H. Bourenane et al.7352



1 3

In order to validate the used models in this study, the 
landslide area was partitioned randomly into two categories: 
30% of landslides for model validation and 70% of landslides 
for training, considering their spatial allocation and using the 
random division technique. Then, the models were validated 
by using the ROC curves.

The resulted LSMs were also verified and validated using 
two statistical rules for spatial effective LSMs (Bai et al. 
2010; Pradhan and Lee 2010): (i) the percentages of land-
slides increased with the degree of susceptibility where the 
smaller amount of landslide was distributed in low and very 
low susceptibility classes, and the higher amount of land-
slide was scattered in the high susceptibility class of the 
LSMs; (ii) the high susceptibility class should cover only 
small areas.

Results analysis

Results of the FR model

By using the training data, the frequency ratios of each fac-
tor’s class were calculated from their correlation with land-
slide events by applying the FR model (Eq. 2) as indicated 
in Table 2. Then, the FR of each layer class is summed up to 
yield the LSI using Eq. 2.

According to Table 2, the lithological features of the 
study area represent an important factor in landslide occur-
rence. The Quaternary scree class exhibited higher FR val-
ues (1.76) which is > 1, indicating high landslide suscepti-
bility. However, the Numidian sandstone class has a low FR 
value (0.452 which is < 1), indicating a low susceptibility of 
landslide occurrence. The slope classes 10°–20°, 20°–30°, 
and 30°–40° have the highest value of FR (1.176, 0.96, and 
1.01, respectively) and low FR value (0.95) for slope class 
0°–10°. This relationship indicated that the landslide suscep-
tibility increases as the slope gradient increases. In the case 
of the slope exposure factor class, the FR value is higher 
for the south-aspect (1.35), the northeast-aspect (1.45), and 
the north-aspect (1.78) indicating high landslide suscepti-
bility. The remaining slope aspect classes indicated a low 
landslide susceptibility because their FR values were < 1. 
As shown in Table 2, the value of the FR is > 1 for the land 
use class of pasture and agriculture area (1.564), indicating 
a high landslide susceptibility. This is due to the cultivated 
land with degrading vegetation, which has increased the soil 
moisture, and the pore water pressure, which leads to the 

reduction of shear strength and slope failure. The urban area 
showed a low FR value, indicating a low susceptibility to 
landslide occurrence. This can be explained by the fact that 
land settlement coincides with low and gentle slope gradi-
ent parts of the study area. For the distances to the streams, 
the obtained FR values indicated that as the distance to the 
rivers increases, the probability of landslide occurrence 
decreases (Table 2). The high value is observed for the dis-
tances between 0 and 50 m indicating a high probability 
of landslide occurrence in this distance. However, for the 
distances > 150 m, the value of the FR is < 1, indicating a 
low landslide susceptibility. This is due to the riverbank 
erosion, the river undercutting, the regressive erosion, and 
the gully effects. The proximity to roads gives high values 
(1.26) for distances between 200 and 250 m and low values 
for distances between 0 and 50 m, indicating that there is no 
influence of the effect of roads on landslide occurrence. In 
addition, the results show that the distance from faults and 
lineaments increases as the landslide frequency decreases 
(Table 2). On the other hand, the FR analysis showed that 
higher FR values were distributed in higher rainfall zones 
(Table 2). That means that the landslide probability increases 
with the amount of precipitations. Lastly and regarding the 
altitude factor, the FR values indicated that as the altitude 
increases the probability of landslide occurrence decreases.

Results of the SI model

In the study area, the SI value of each landslide factor class 
calculated by the overlay of the landslide factor raster with 
the landslide raster layer using Eq. 3 is reported in Table 3.

As presented in Table 3, the SI value is > 0.1 for the 
lithology class of Quaternary scree (0.567), which indicates 
high landslide susceptibility. Nevertheless, for the remaining 
classes, the SI values are < 0.1 indicating a low susceptibil-
ity of landslide occurrence. For slope classes 10°–20° and 
30°–40°, the SI values are > 0.1 (respectively, SI = 0.162 
and 0.011), indicating high landslide probability, and the 
SI values are < 0.1 for slope classes of 0°–10° and 20°–30° 
(SI =  − 0.04 and − 0.033, respectively), indicating low land-
slide probability (Table 3). In the case of slope aspect factor, 
the SI values are > 0.1 for northwest facing (SI = 0.11), west 
facing (SI = 0.19), southwest facing (SI = 0.05), southeast 
facing (SI = 0.22), and east facing (SI = 0.61), indicating 
high landslide probability. However, SI values are < 0.1 for 
the remaining slope aspect classes that indicated a low prob-
ability of landslide occurrence. As indicated in Table 3, the 
value of SI for the pasture/agriculture land use class (0.44) 
is > 0.1, noticing high landslide susceptibility. The SI values 
for the remaining factor classes (forest and urban area land) 
are < 0.1, indicating a low susceptibility to landslide occur-
rence. The SI values are > 0.1 for the precipitations class 
of 900–950 mm (SI = 0.06) and 1000–1050 (SI = 0.149), 

Fig. 8   Area and landslide density for each class of the ten factors 
used in this analysis. Values are reported for each landslide type and 
for all types together. a Precipitation map. b Lithology. c Slope angle. 
d Aspect. e Altitude. f Land use. g Distance to rivers. h Distance to 
faults. i Distance to lineaments. j Distance to roads map

◂
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indicating high landslide probability. However, the SI val-
ues are < 0.1 for the remaining classes indicated low sus-
ceptibility to landslide occurrence. Regarding the distance 
to the streams, for the 0–50 m and the 50–100 m, the value 
of the SI are > 0.1, which is, respectively, 0.28 and 0.05, 
indicating high landslide susceptibility. However, for the 
distances > 100 m, the SI values are < 0.1, specified the 
low landslide susceptibility. The proximity to roads gives 
high values (SI values are > 0.1) for distance classes of 
150–200 m and 200–250 m indicating high landslide sus-
ceptibility, while the remaining distances classes indicated 
a low influence on the landslide occurrence. Moreover, the 
results showed that the distance from faults and lineaments 
increases as the landslide frequency decreases (Table 2). 
For the distance to faults class, the 0–50 m, 50–100 m, 
100–150 m, and 150–200 m classes show values of SI > 0.1, 
indicating high landslide susceptibility, while for the remain-
ing distances classes, the SI values are < 0.1, which specify-
ing low landslide susceptibility.

The distance to the lineament classes of 0–50  m, 
50–100 m, 100–150 m, and 150–200 m showed that SI val-
ues are > 0.1, indicating high landslide susceptibility, while 
for the remaining distance classes, the SI values are < 0.1 
defining low landslide susceptibility. In terms of altitude, the 
classes of 200–300 m, 300–400 m, and 600–700 m showed 
that SI values are > 0.1, indicating high landslide susceptibil-
ity, while the remaining altitude classes gave SI values < 0.1, 
indicating low landslide susceptibility.

Results of the WoE model

In this study, firstly, the various thematic maps of land-
slides affecting factors were overlapped on the landslide 
map. Then, the weights and WC values were calculated for 
each of the landslide-related factors, using Eqs. 5, 6, and 
7 (Table 4). Afterward, the conditional independence was 
tested and verified before the integration of the predictor 
patterns to map the landslide susceptibility. The chi-square 
values, serving to test the conditional independence between 
all pairs of binary patterns for each predictive factor, were 
evaluated at a 95% significance level and 1 degree of free-
dom. The calculated chi-square values are greater than the 
values shown in Table 4, suggesting that the pairs are not 
significantly different.

The resulting contrast, according to Table 4, showed the 
importance of the conditioning factors in the occurrence of 
landslides. The contrast is negative for the unfavorable fac-
tor of occurrence of landslides and positive for the favorable 
factor in the occurrence of landslides. The contrast value 
(Table 4) analysis revealed that the highest landslide suscep-
tibility factors corresponded to the Quaternary scree depos-
its, the slope class (30°–40°), and the north slope aspect 
classes. On the contrary, the distance to a river, the distance 

to lineaments, the land use, the precipitation, the distance to 
streams (m), the distance to roads, the distance to faults, and 
the altitude indicated a low probability of landslide occur-
rence as evidenced by the weights close or inferior to zero 
(Table 4).

Results of the LR model

In order to assess the spatial relationship between depend-
ent and independent variables using the logistic regres-
sion model. The spatial databases of the ten conditioning 
factors and landslides were converted into a grid format, 
and then, into Excel data format files for use in the statis-
tical package Real Statistics by using the logistic regres-
sion analysis. The input factors represent the independent 
variables and the occurrence of the landslide corresponds 
to the dependent variable. Firstly, the weighting of the fac-
tors classes was based on the percentage area of landslides 
in the homogenous units. The percentage area of landslides 
which depended on each factor has been identified by calcu-
lating the ratio of the observed landslide area to the area of 
homogeneous units. Then, the correlation between landslide 
events and landslide affecting factors was estimated, and 
the logistic regression model was run to obtain the logistic 
regression coefficients.

The weight factor and the logistic regression coefficient 
for each thematic layer are shown in Table 5. The Hosmer 
and Lame show test indicated that the goodness of fit of the 
equation can be accepted, because the significance of chi-
square is larger than 0.05 (16.635). A higher R-square value 
of Cox (0.75) and Snell R2 (1) and Nagelkerke R2 (1) indi-
cates a better model. The ROC value of 0.852 indicates a 
good correlation between the independent and dependent var-
iables. Finally, the binary logistic regression model and their 
respective coefficients are given as in the following Eq. 12:

According to Eq. 12 and Table 5, the slope, the lithology, 
the aspect, the distance to streams, the distance to faults, the 
precipitation, the land use, and the altitude are susceptible to 
landslide occurrence because of their positive coefficients. 
However, the distance to roads and the distance to linea-
ments indicate a negative relation with the landslide occur-
rence in the study area. In addition, the slope, the lithology, 
and the aspect coefficients show that among the effective 
factors in landslide occurrence the “slope” parameter has a 
more crucial effect than any other parameter.

(11)

z = − 18,668 + 0.848 ∗ precipitation + 9044 ∗ lithology

+ 1509 ∗ landuse + 7963 ∗ aspect + 1951 ∗ altitude

+ 10,550 ∗ slope + 5,247 ∗ distancetofaults

− 9266 ∗ distancetolineaments − 8103 ∗ distancetoroads

+ 6139 ∗ distancetostreams
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Landslide susceptibility mapping

After the evaluation of the LSI of each landslide factor using 
the FR, the SI, the LR, and the WoE, the LSI is ranked into 
distinct susceptibility classes according to the LSI value. 
In this research, the LSI has been divided into five classes 
based on the standard deviation method since the obtained 
values in the LSI using the FR, SI, LR, and WoE models 
showed a normal distribution (Ayalew and Yamagishi 2005; 
Yalcin et al. 2011). In the literature, many methods are serv-
ing to divide weight values into classes, such as the standard 
deviation, the equal interval, and the natural break meth-
ods (Ayalew and Yamagishi 2005;  Yalcin et al. 2011). The 
standard deviation method is appropriate and used due to 
the normal distribution of LSI values. This method uses the 

Fig. 9   Landslide susceptibility map obtained using a FR method, b SI method, c WoE method, and d LR method
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Fig. 10   The relative distribution of various susceptibility classes of 
different LSMs
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mean value to generate class breaks, and it allowed us to 
divide the result of this study into five categories by add-
ing or subtracting 1 standard deviation at a time. Using the 
standard deviation method in ArcGIS 10.1, the LSM of the 
study area of the FR, SI, LR, and WoE method was classi-
fied into five susceptibility classes. The result of LSMs is 
shown in Fig. 9.

The obtained LSM by using the FR model (Fig. 9a), 
1% of the total area, is classified as very low landslide 
susceptibility. Low, moderate, high, and very high sus-
ceptibility areas represent 7%, 36%, 34%, and 21% of the 
total area, respectively (Fig. 10). The LSM produced using 
the SI model (Fig. 9b) shows that the very high and high 
susceptibility zones represent a great percentage with 34%, 
and 20%, respectively, but the percentages of moderate, 
very low, and low susceptibility classes are 32%, 12%, and 
1%, respectively (Fig. 10). The LSM generated with WoE 
model (Fig. 9c), which included 1% of the total area, is 
determined to be of very low landslide susceptibility class. 
The low and moderate susceptibility classes respectively 
take 11%, and 42% of the total area. The high and very 
high zones values are close to 29% and 16%, respectively 
(Fig. 10). The LSM generated with LR model (Fig. 9d) 
contains 4% and 6% of the total area, respectively, very 
low and low susceptibility. The moderate, high, and very 
high susceptibility classes respectively, 43%, 25%, and 
20% of the total area (Fig. 10).

Validation and comparison of the landslide 
susceptibility maps

For the validation of the used models in this study, the 
landslide area was subdivided into two categories: 30% of 
the landslide for model validation and 70% of the landslide 
for training, taking into account their spatial location using 
the random distribution technique. Then, we validated the 
used models using ROC curves. The ROC curves have 
been obtained by comparing the landslide validation data 
set, with the four LSMs and the area under curves was cal-
culated for the four landslide models. These results indi-
cate that the FR model has the highest accurate prediction 
(78.40%) than the SI (78.10%), the WoE (73.50%), and the 
LR (72.10%) models (Fig. 11). From there, it is concluded 
that all the used models in this study showed practically 
good accuracy in predicting the landslide susceptibility 
in the study area.

The obtained LSMs were also tested and validated using 
the two statistical rules for spatial effective LSMs (Bai et al. 
2010; Pradhan and Lee 2010). The percentages of land-
slides within the five susceptibility classes have been deter-
mined and presented in Fig. 12. It is deduced that the higher 

amount of landslides was scattered in the high and very 
high susceptibility classes, and the smaller amount of land-
slides was distributed in the low and very low susceptibility 
classes of the LSMs. Figure 12 shows that the high and very 
high susceptibility classes of all LSMs contain 75 to 93% of 
the active landslide zones. While the moderate zone gives 
13 to 20% of the active landslide zones and around 3% of 
the active landslide zones coincide with the low suscep-
tibility class. The very low susceptibility area shows less 
than 1% of the active landslide zones in all obtained LSMs. 
The results of Fig. 12 show clearly that the percentages of 
landslides increase effectively from very low to very high 
susceptibility, and the high susceptibility class covers only 
small areas.

Discussion and conclusion

The severe and progressive landslides affecting the city of 
Azazga, northern Algeria, constitute not only a serious threat 
for both the local populations and the environment but also 
a persistent constraint to urban planning and development. 
Therefore, predicting and delineating landslides areas are 
crucial tasks to reduce the landslides hazard and their asso-
ciated damages. In this study, we investigate the potential 
application of statistical models and the GIS as relatively 
new approach for landslide susceptibility mapping in the city 
of Azazga. Firstly, a landslide inventory map was prepared 
using aerial photographs and satellite images interpretation 
supported by field surveys. The identified mass movements 
include falls, slides, and flows that cover a surface of about 
281.6 ha which corresponds to 31% of the total urban surface 
of Azazga agglomeration. Then, ten landslide predisposing 
factors including the slope, aspect, altitude, land use, lithol-
ogy, precipitation, distance to drainage, distance to faults, dis-
tance to lineaments, and distance to roads have been derived 
from high-resolution Alsat 2A satellite images, aerial pho-
tographs, geological map, DEM, and rainfall database. The 
LSMs were produced using four methods and classified into 
five susceptibility classes: low, very low, moderate, high, and 
very high.

For validation, the obtained LSMs have been compared 
with known landslide locations using the ROC technique. 
According to the obtained AUC, the FR model has higher 
prediction performance (78.40%) compared to the SI 
(78.10%), the WoE (73.50%), and the LR (72.10%) mod-
els. The results revealed also that all the used models pro-
vided good accuracy in landslide susceptibility mapping 
in the city of Azazga. In addition, the results of the accu-
racy procedure by using statistics rules showed that the 
density of the landslides increased from low to very high 
susceptibility zone. On the other hand, a high percentage 
of landslides has occurred in very high susceptibility area.
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Compared to cases studies throughout the world, such 
results have been observed in some models such as FR, SI, 
WI, LR, and AHP (Lee and Min 2001; Ayalew and Yamagishi   
2005; Thiery et al. 2007; Pradhan and Youssef 2010; Pradhan  
and Lee 2010; ; Pradhan and Youssef 2010; Yalcin et al. 
2011; Tien Bui et al. 2011; Kevin et al. 2011; Kevin et al. 
2011;Tien Bui et al. 2011;Shahabi et al. 2012; Ozdemir 
and Altural 2012; Ozdemir and Altural 2012; Demir et al. 
2015; Bourenane et al. 2016; Hadji et al. 2017; Karim et al. 
2019; Demir 2018). The obtained LSMs in this study can 

be considered as a useful guide for future development and 
planning in the urban area of Azazga. Such susceptibility 
maps provide information on the spatial prediction prob-
ability of landslide occurrence in the area. They are a helpful 
and valuable tool for risk reduction. As our results are given 
at large-scale mapping, the exact extent of the slope insta-
bility areas and the details of the high susceptibility areas 
are well determined; this will be useful for further detailed 
site-specific studies. The development of urbanization in 
landslide-prone areas can be avoided if the LSM is available.
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Fig. 11   Receiver operating characteristics (ROC) curves representing the quality of the four used models (FR, SI, WoE, and LR)
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Based on the obtained LSMs, a range of mitigation tech-
niques has been recommended in order to reduce the impact 
of the existing landslides which include the following: (i) 
restricting the development planning in landslide-prone 
areas by using the obtained LSMs; (ii) controlling by means 
of codes and urban rules the human activity in the landslide-
prone areas (i.e., excavation, construction, grading, cutting 
slopes, landscaping, irrigation activities, vegetation clear-
ance…); (iii) protecting the existing developments by mean 
of physical mitigation measures (such as drainage, down 
counterfort berms that serve as buttresses, and protective 
barriers); and finally (iv) developing and implementing of 
monitoring and warning systems.
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