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Abstract
When estimating groundwater inflow into lined tunnels in water-rich regions, waterproofing and drainage systems (WDS) 
are usually ignored or not fully considered in existing analytical solutions. In this study, a water drainage seepage model 
considering drainage pipes, waterproof membranes, and geotextiles was developed. An analytical solution was then derived 
to predict groundwater inflow into composite-lined tunnels. The proposed analytical solution can be reduced to Goodman’s 
solution for an unlined tunnel. When only the initial lining was considered, the difference between the proposed analytical 
solution and Wang’s solution (Tunn Undergr Sp Tech 23(5):552–560, 2008) was less than 0.5%. Subsequently, the proposed 
analytical solution was further verified using a numerical model and good agreement between both models was observed. 
Finally, the relationships between groundwater inflow and the parameters of composite linings were investigated. The results 
of this study suggest the following: (1) groundwater inflow significantly decreases with an increase in the distance between 
two circular drainage pipes; (2) the higher the rock permeability, the more significant the WDS effect on groundwater inflow; 
and (3) when the rock permeability exceeds 1 × 10−6 m/s, WDS effects should be considered in the design of WDS. The results 
of this study are helpful for the optimal design of WDS for tunnels, such as the estimation of the initial lining permeability 
and thickness, distance between circular drainage pipes, and geotextile hydraulic conductivity. Additionally, the application of 
the proposed solution could provide a basis for analyzing potential adverse environmental impacts caused by tunnel drainage.
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Notations
r0	� Inner radius of the secondary lining (m)
r1	� Outer radius of the secondary lining (m)
r2	� The outer radius of the initial lining (m)
r3	� Radius of the affected zone by the drainage
h2	� Water head around the outside of the initial lining (m)

hc	� Water head at the geotextile (m)
H	� Water head outside of the affected drainage zone in 

the surrounding rock (m)
hm	� Water head in the middle of the two adjacent circular 

drainage pipes (m)
q	� Velocity of groundwater flowing into the circular 

drainage pipe from the geotextile
k1	� Permeability coefficients of the initial lining (m)
kr	� Permeability coefficients of surrounding rock (m/s)
L1	� Distance between the two adjacent circular frainage 

pipes (m)
kt	� Permeability coefficients of the geotextile (m/s)
t	� Geotextile thickness (m)
T	� Thickness of initial lining, r2-r1 (m)
D	� Diameter of the circular frainage pipe (m)
μ	� The drain coefficient
Q	� Groundwater inflow into the tunnel (m3/d m)

Highlights   
 • An analytical solution for estimating groundwater inflow into  
    lined tunnel considering waterproofing and drainage system 
    (WDS) is proposed.
 • The components of the waterproofing and drainage systems 

(waterproof membranes, geotextile, and blind pipes) could be 
consider.

 • The proposed analytical solution is applied to analyze the WDS 
effect on the groundwater inflow into the tunnel.
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Introduction

Groundwater inflow into a tunnel may cause large drawdowns 
in the water table (Zhao et al. 2017; Li et al. 2018a; Wei et al. 
2020). The energy-water balance of ecosystems is affected by 
these drawdowns and vegetation sustainability can be seri-
ously compromised due to a lack of water when the draw-
down exceeds the capacity of the ecological groundwater table 
(Sweetenham et al. 2017; Gokdemir et al. 2019, 2021). Limited 
discharge of groundwater was typically employed to reduce the 
drawdown and amount of groundwater inflow (Li et al. 2018b; 
Cheng et al. 2019a; Zhang and Sun 2019). Based on the goal of 
limited discharge, waterproofing and drainage systems (WDS) 
have been designed to control the amount of groundwater 
inflow (Farhadian and Nikvar-Hassani 2018; Li et al. 2021). 
Therefore, the prediction of groundwater inflow into water-
rich mountain tunnels is a critical issue for the design of WDS 
(Ministry of Railways of the People’s Republic of China 2004; 
Ding et al. 2007; Hassani et al. 2018). Various methods for esti-
mating groundwater inflow into tunnels have been developed to 
provide a theoretical basis for the optimal design of WDS for 
tunnels and to minimize their adverse effects on the ecologi-
cal environment. Examples of such methods include analyti-
cal solutions (Huang et al. 2010; Butscher 2012; Sedghi and 
Samani 2015; Tang et al. 2018; Cheng et al. 2019b), empiri-
cal methods (Katibeh and Aalianvari 2009; Zarei et al. 2013; 
Farhadian and Katibeh 2017), and numerical methods (Mikaeil 
and Doulati Ardejani 2009; Zhang et al. 2017; Farhadian 
et al. 2016; Nikvar-Hassani et al. 2016; Park et al. 2020).

Analytical solutions are useful because they can rapidly 
provide desirable approximations without requiring advanced 
computations (Maleki, 2018; Hassani et al. 2018). Further-
more, based on the simplification and practical theories of 
analytical solutions, these solutions have been widely uti-
lized to calculate groundwater inflow into tunnels (Goodman 
et al. 1965; Bobet 2016; Su et al. 2017; Cheng et al. 2019a). 
For example, Goodman et al. (1965) and Heuer (2005) imple-
mented the mirror image method developed by Harr (1962) 
to derive analytical solutions for groundwater inflow. El-Tani 
(2003), Kolymbas and Wagner (2007), Park et al. (2008), and 
Huang et al. (2010) applied the conformal mapping theory to 
derive analytical solutions for predicting groundwater inflow 
into drained tunnels under various tunnel boundary conditions. 
However, these analytical solutions were developed without 
the consideration of the tunnel lining. For the lined tunnel, dis-
crepancies may exist between these solutions and actual values 
because groundwater inflow is sensitive to lining properties 
such as thickness and permeability (Tan et al. 2018).

In recent years, researchers have derived analytical solu-
tions by assuming that composite lining is a single-layer lin-
ing and that groundwater uniformly penetrates the tunnel 
along the lining perimeter. For example, Wang (2003), Zhang 

(2006), Wang et al. (2008), and Tan et al. (2018) developed 
analytical solutions for estimating groundwater inflow into 
deeply buried lined tunnels. Yang et al. (2014) and Cheng 
et al. (2019b) derived analytical solutions for predicting 
groundwater inflow into lined tunnels considering grouting 
zone. However, composite tunnel linings contain an initial 
lining, secondary lining, and drainage system (Zhang and 
Sun 2019). Although some researchers have simplified com-
posite lining as two-layer linings and assumed that ground-
water uniformly penetrates the initial and secondary lining 
(Du et al. 2011; He et al. 2015; Xie et al. 2019), the effects of 
some WDS components (i.e., waterproof membranes, geo-
textiles, and blind pipes) on groundwater inflow are ignored 
in these analytical solutions. In practice, groundwater inflow 
is drained through blind pipes, rather than flowing uniformly 
along the lining perimeter, which is why there is always a gap 
between the predictions of existing analytical solutions and 
actual groundwater inflow data (He et al. 2015). Therefore, 
it is necessary to investigate the effects of an entire WDS on 
groundwater inflow into tunnels.

To the best of our knowledge, no analytical studies on the 
effects of WDS on groundwater inflow in tunnels have been 
reported in the existing literature. In this study, a water drainage 
seepage (WDSee) model was first established based on Darcy’s 
law. An analytical solution for estimating groundwater inflow 
into a composite-lined tunnel was then derived considering 
the effects of all components of a WDS (i.e., lining, grouting 
zone, waterproof membranes, geotextile, and blind pipes). The 
proposed analytical solution was compared to existing analyti-
cal solutions and validated using a numerical model. Finally, a 
parametric study was conducted to investigate the relationships 
between groundwater inflow and geometric/physical parame-
ters. The findings of this study can provide a basis for analyzing 
the potential adverse environmental impacts caused by tunnel 
drainage and the optimal design of WDS for tunnels.

Theoretical model and analytical solution

In this section, a theoretical model that fully considers WDS 
is proposed firstly. The seepage path of the model is con-
sistent with the actual tunnel condition. Then, an analytical 
solution for estimating groundwater inflow into a lined tun-
nel is derived according to the proposed model.

Proposed WDSee

Theoretical configuration of the model

The WDSee model is illustrated in Fig. 1. This model con-
sists of the surrounding rock, initial lining, geotextile, drain-
age system, waterproof membranes, and secondary lining.

6828



Analytical solution for estimating groundwater inflow into lined tunnels considering…

1 3

Groundwater flows from the surrounding rock into the 
initial lining, followed by the geotextile, and eventually 
reaches the circular drainage pipes. The seepage process 
of groundwater flow obeys Darcy’s law (Ying et al. 2018). 
After the groundwater flows into the circular drainage 
pipes, it is discharged through the longitudinal and lateral 
drainage pipes. Because water discharge is not a seepage 
process, it was excluded from our analytical model. Unlike 
existing models, geotextile, waterproof membranes, and 
circular drainage pipes, which are the main components of 
WDS, are considered in our model.

As shown in Fig. 1, the parameters r0 and r1 represent the 
inner and outer radii of the secondary lining, respectively; 
r2 is the outer radius of the initial lining; and r3 is the radius 
of the affected zone by the drainage. For the water head 
parameters, h2 is the water head outside the initial lining, 
hc is the water head at the geotextile, and H is the water 
head outside the affected drainage zone in the surrounding 
rock. For the permeability coefficients, k1 and kr are the 
permeability coefficients of the initial lining and surround-
ing rock, respectively. The distance between two adjacent 
circular drainage pipes is defined as L1. The thickness and 
permeability coefficient of the geotextile are denoted by t 
and kt, respectively.

Basic assumptions

The groundwater flowing into the initial lining from the sur-
rounding rock is eventually discharged through the drainage 
pipes, regardless of leakage from cracks (Wang 2006; Wu 
and Xue 2006). The water pressure was assumed uniformly 
acted on the tunnel for the deeply buried tunnel (Wang 
et al. 2008; Zhang 2006), as shown in Fig. 2. The assump-
tions of the WDSee model are as follows.

(1)	 The seepage of groundwater obeys the law of conserva-
tion of mass (Hassani et al. 2018; Wu and Xue 2006), 
indicating that the amount of groundwater flowing into 
the surrounding rock, initial lining, and geotextile are 
equal. The cross-section of the tunnel is circular. All 
groundwater is eventually discharged through circular 
drainage pipes (Wang 2006).

(2)	 The surrounding rock and the initial lining are 
porous, homogeneous, and isotropic (Kolymbas and 
Wagner 2007; Su et al. 2017), and the water table is 
high, steady, and horizontal (Park et al. 2008; Tan 
et  al.  2018). The seepage in the surrounding rock, 
initial lining, and geotextile obeys Darcy’s law (Ying 
et al. 2018; Murillo et al. 2014; Farhadian et al. 2017).

(3)	 Groundwater flows along the radial direction in the 
surrounding rock and initial lining (Wang et al. 2008; 
Zhang 2006; Yang et al. 2014; Li et al. 2018b) (Fig. 1). 
Groundwater penetrates uniformly into the circular 

Fig. 1   WDSee model

Fig. 2   Sketch of the assumption regarding water pressure loading on 
the tunnel
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drainage pipes from the geotextile at a constant rate 
(Wang et al. 2004). Within the geotextile, groundwa-
ter flows along the tunnel axis (Wang 2006; Murillo 
et al. 2014; Liu 2017) (Fig. 3).

Governing equation

According to assumptions (1) and (2), the governing equa-
tion for steady-state groundwater flow in isotropic media is 
expressed in a Laplacian form as follows (Yang et al. 2014; 
Wu and Xue 2006; Xiao et al. 2009; Liu 2017):

where r is the radius, θ is the angle, z is the variable in the Z 
axis, and h is the water head.

Boundary conditions

According to the model configuration, four boundary 
conditions (BCs) can be defined: the BC at the radius of 
the affected zone by the drainage (BC1), BC at the outer 
radius of the initial lining (BC2), BC at the outer radius 
of the secondary lining (BC3), and BC at the inner radius 
of the secondary lining (i.e., the tunnel circumference) 
(BC4).

The water head at the inner radius of the secondary 
lining is zero and the circular drainage pipe is connected 
to the tunnel boundary (BC4). Therefore, the water head 
in a circular drainage pipe is also zero (Wang 2006).
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Derivation of an analytical solution

Seepage in surrounding rock

The seepage path in the surrounding rock is presented in 
Fig. 1. Based on assumptions (2) and (3), the groundwater 
flows along the radial direction in the surrounding rock. 
Therefore, the water head is constant along the Z axis as 
�2h

�z2
= 0 (Arjnoi et al. 2009; Su et al. 2017). Therefore, gov-

erning Eq. (1) can be simplified to the following equation 
(Huang et al. 2010):

According to the results reported by Bear (1972) and 
Zhang (2006), �

2h

��2
= 0 . Therefore, the groundwater seep-

age in the surrounding rock obeys the continuity equation 
based on the symmetry of seepage flow (Yang et al. 2014; 
Li et al. 2018b).

The following expression is obtained by integrating 
Eq. (3):

where C is a constant.
Based on assumptions (1) and (2), the amount of ground-

water inflow per meter Q can be expressed as follows (Wang 
et al. 2008; Yang et al. 2014):

Therefore, the integral constants in Eq.  (5) can be 
obtained as C =

Q

2�k
 . The amount of groundwater flowing 

per meter into the initial lining, Q1, can be expressed as:
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��2
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dr
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(5)r
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= C,

(6)Q = A ⋅ k ⋅ i = 2�rk
dh

dr
.

Fig. 3   Seepage path of ground-
water
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The boundary conditions for the surrounding rock are set 
to r2 < r < r3, h2 < h < H . The following equation can be 
obtained by integrating the variables:

Seepage in the initial lining

Consider an element of the initial lining in which the lon-
gitudinal length of the initial lining is dz and the circumfer-
ential length is r1dθ. Let QLi be the amount of groundwater 
flowing into the geotextile of the element. Based on Darcy’s 
law and the boundary conditions of the initial lining (BC2, 
BC3), QLi can be determined using the following equation:

Then, the amount of groundwater flowing per meter from 
the initial lining into the geotextile, Q2, can be obtained as:

Seepage in the geotextile

The seepage in the geotextile also obeys governing Eq. (1). 
According to assumption (3) and the results reported by 
Murillo et  al. (2014) and Liu (2017), �h

�r
= 0and

�2h

��2
= 0 . 

Therefore, governing Eq. (1) can be simplified to the fol-
lowing equation:

Consider an element of the geotextile in which the longi-
tudinal length of the initial lining is L1/2. The maximum 
water head hm is assumed to be located in the middle of two 
adjacent circular drainage pipes. The circular drainage pipes 

(7)Q1 = 2�rkr
dh

dr

(8)Q1 =
2�kr(H − h2)

ln
r3

r2

.

(9)QLi = k ⋅ i ⋅ A =
k1(h2 − hc)

r2 − r1
r1d�dz.

(10)Q2 =
2 ∫ L1

2

0
∫ 2�

0
QLi

L1
=2�

L1

2

0
�

2�

0

k1(h2 − hc)

(r2 − r1)L1
r1d�dz.

(11)�2h

�z2
= 0.

are subjected to atmospheric pressure and the water head in 
the pipes is assumed to be zero (Wang 2006; He et al. 2015). 
Therefore, the boundary conditions for the geotextile are set 
to h||

|
(z=0) = 0,h

|
|
|
(z=L1∕2)

= hm , as shown in Fig. 4.
Therefore, the water head distribution in the geotextile, 

hc, (BC3) can be obtained by integrating Eq. (11) as follows:

where L1 is the distance between two adjacent circular drain-
age pipes and 0 < z <

L1

2
.

The velocity of the groundwater flowing into the circular 
drainage pipe q from the geotextile can be determined using 
the following expression according to Eq. (12):

where i is the hydraulic gradient.
Based on assumption (3), q is a constant rate, and the 

amount of groundwater flowing per meter into the circular 
drainage pipe, Q3, can be expressed as follows:

Furthermore, the amount of groundwater flowing per 
meter from the initial lining into the geotextile Q2 can be 
obtained by combining Eqs. (10) and (12) as follows:
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1
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)
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2
)

r2 − r1
.

Fig. 4   Water head distribution in the geotextile
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Analytical solution

According to assumption (1), Q1 = Q2 = Q3. Equa-
tions (8), (14), and (15) are combined and the analyti-
cal solution for groundwater inflow into a tunnel can be 
obtained as follows:

where � is the drainage coefficient.

Verification

In the first part of this chapter, the analytical solution is 
reduced to solutions for unlined tunnels and various cir-
cular drainage pipe distances. Subsequently, the reduced 
solutions are compared to existing analytical solutions. In 
the second part of this chapter, a numerical model consid-
ering WDS is established and the results are used to verify 
the proposed analytical solution.

Comparisons to the existing analytical models

Analytical solution for an unlined tunnel

When the inner radius of the secondary lining, r0 
approaches the outer radius of the initial lining, r2, the 
proposed analytical solutions can be reduced to the solu-
tion for an unlined tunnel. Equation (16) can be simpli-
fied as:

According to Oshima (1983) and Zhang (2006), the 
radius of the drainage-affected zone r3 can be assumed as 
2H. Therefore, Eq. (18) can be rewritten as follows:

It can be seen that Eq. (19) is identical to Goodman’s 
solution.

(16)Q =
2�krH

ln
r3

r2
+ �

,

(17)�=
L2
1
kr

8r1tkt
+

(r2 − r1)kr

r1k1
,

(18)Qc =
2�krH

ln
r3

r0

.

(19)Qc =
2�krH

ln
2H

r0

.

Analytical solutions for different distances between circular 
drainage pipes

1.	 Infinitesimal distance between two circular drainage 
pipes

	   When the distance between two adjacent circular drain-
age pipes approaches an infinitely small value, the hydrau-
lic behavior of the tunnel lining mimics that of a structure 
without a geotextile, waterproof membranes, or secondary 
lining. Under this condition, Eq. (16) can be simplified as.

	   An existing analytical solution for the case of a tunnel 
structure without a geotextile, waterproof membranes, 
or circular drainage pipes has already been derived by 
Wang et al. (2008). This solution is expressed as follows:

	   The error between Eqs. (20) and (21) was defined as 
� using a set of parameters (Table 1) for verification, as 
shown in Eq. (5).

(20)

QCurrent = lim
L1→0

Q

= lim
L1→0

2�krH

ln
r3

r2
+

L2
1
kr

8r1tkt
+

(r2−r1)kr

r1k1

=
2�krH

ln
r3

r2
+

(r2−r1)kr

r1k1

.

(21)QWang =
2�krH

ln
r3

r2
+

kr

k1
ln

r2

r1

.

(22)

� =
QWang − QCurrent

QWang

× 100%

= (1 −
ln

r3

r2
+

kr

k1
ln

r2

r1

ln
r3

r2
+

kr(r2−r1)

k1r1

) × 100%

Table 1   Notation for variables and values of parameters used in this 
study

Properties Value

Water head, H 150 m
Radius of the affected zone by the drainage, r3 300 m
Permeability coefficient of surrounding rock, kr 2.0 × 10−7 m/s
Outer radius of initial lining, r2 6.1 m
Permeability coefficient of initial lining, k1 5.0 × 10–8 m/s
Outer radius of secondary lining, r1 5.6 m
Inner radius of secondary lining, r0 5.0 m
Thickness of geotextile, t 0.003 m
Permeability coefficient of geotextile, kt 3.3 × 10−4 m/s
Distance between two adjacent circular drainage 

pipes, L1

10 m

Diameter of the circular drainage pipe, D 0.1 m
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	   The error of the groundwater inflow between the 
two analytical solutions is less than 0.5% (Fig. 5). The 
larger the water head, the smaller this difference will 
be. Therefore, it can be concluded that the results of the 
reduced analytical solution and Wang’s solution (Wang 
et al. 2008) are nearly identical.

2.	 Infinite distance between two circular drainage pipes
	   When the distance between two circular drainage 

pipes approaches infinity, the proposed analytical solu-
tion can be simplified as follows:

	   Equation (23) indicates that the groundwater flow-
ing into the tunnel is equal to zero when the distance 
between two adjacent circular drainage pipes approaches 
infinity, implying that the composite lining serves as 
an impermeable lining. This result is consistent with 
the waterproofing mechanism in a real tunnel, where 
groundwater cannot penetrate the waterproof lining and 
secondary lining, and can only flow through the drainage 
pipes (Wang 2006).

	   Figure 6 presents the relationship between groundwa-
ter inflow and the distance between two adjacent circu-
lar drainage pipes (0–350 m) derived by the proposed 
analytical method. When the distance is less than 30 m, 
the groundwater inflow into the tunnel rapidly decreases 
with an increasing distance. When the distance between 
two circular drainage pipes exceeds 100 m, the curve 
tends to flatten out and gradually approaches zero, 
implying that the lining is impermeable.

(23)lim
L1→∞

Q = lim
L1→∞

2�krH

ln
r3

r2
+

L2
1
kr

8r1tkt
+

(r2−r1)kr

r1k1

=0.

	   Based on the analysis above, the proposed analyti-
cal solution can generally be reduced to Goodman’s 
solution for an unlined tunnel. The difference between 
the proposed solution and Wang’s solution is less than 
0.5% when the distance between two circular drainage 
pipes approaches infinitely small values. Therefore, both 
Goodman’s and Wang’s solutions can be considered spe-
cific cases of the proposed analytical solution.

Comparison to a numerical model

In this section, a three-dimensional numerical model is built 
using the FLAC3D. The numerical model consists of the 
surrounding rock, initial lining, circular drainage pipes, and 
geotextile (Fig. 7). The waterproof membranes and second-
ary lining serve as impermeable boundaries.

The dimensions of the numerical model are 
100 × 100 m in length and width and 20 m in thickness. 

Fig. 5   Relative differences between reduced analytical solution and 
Wang’s solution

0 100 200 300

0.00

1.00

2.00

3.00

4.00

5.00

1( )L m

Fig. 6   Relationship between groundwater inflow and distance 
between two adjacent circular drainage pipes

Fig. 7   Numerical model
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The parameters of the numerical model are presented 
in Table 1. For the boundary conditions, the top of the 
model is permeable with a constant hydrostatic head. 
The bottom, front, and back hydraulic boundaries are 
assumed to be impermeable. The left and right hydraulic 
boundaries are permeable and the corresponding water 
pressure is linear. The ground below the water level is 
fully saturated, whereas the water pressure in the drain-
age pipes is zero. The seepage path of groundwater flows 
from the surrounding rock into the initial lining, followed 
by the geotextile, reaches the circular drainage pipes. The 
groundwater is finally discharged through the drainage 
pipes. The numerical results and errors, as well as the 
results of the proposed analytical method adopting the 
same parameter values, are listed in Table 2.

Table 2 reveals that the groundwater inflows obtained 
using the numerical and proposed analytical solutions are in 
good agreement. The error between the two methods ranges 
from 1.9 to 7.3%.

Prediction of groundwater inflow using 
the WDSee model

The permeability coefficient of the rock (kr) surrounding 
a tunnel is a critical parameter for estimating groundwa-
ter inflow (Farhadian and Katibeh 2015). Therefore, kr 
was adopted as a reference index to analyze the effect of 
WDS on groundwater inflow. Figure 8 presents the results 
of groundwater inflow from Goodman’s solution (for an 
unlined tunnel), Wang’s solution (for a lined tunnel with-
out considering the waterproof membranes, geotextiles, 
and circular drainage pipes of WDS), and the proposed 
analytical solution (for a lined tunnel considering all com-
ponents of WDS).

When kr is less than 1 × 10−8  m/s, the difference 
between the groundwater inflow obtained by Goodman’s 
solution and the other two solutions is less than 1%. This 
difference indicates that the tunnel lining has a small effect 
on groundwater inflow under this condition. Additionally, 

the maximum difference between Wang’s solution and the 
proposed analytical solution is only 0.6%. Therefore, the 
effects of WDS on groundwater inflow can be ignored. 
When kr ranges from 1 × 10−8 to 1 × 10−7 m/s, the differ-
ences among the three solutions remain insignificant. The 
difference between Wang’s solution and the proposed ana-
lytical solution increases to 5.7% at a permeability coef-
ficient of 1 × 10−7 m/s, suggesting that the WDS effect 
on groundwater inflow can still be ignored. When kr is 
within the range of 1 × 10−7 to 1 × 10−6 m/s, the difference 
between Goodman’s solution and the other two solutions 
begins to increase and exceeds 43.9% at a permeability 
coefficient of 1 × 10−6 m/s, demonstrating that the effect 
of the lining on groundwater inflow is significant. The dif-
ference between Wang’s solution and the proposed analyti-
cal solution increases from 5.7 to 41.2%, demonstrating 
that the effects of WDS on groundwater inflow become 

Table 2   Groundwater inflow results for numerical versus analytical 
solutions

Case Water 
head H
(m)

Numeri-
cal value 
(m3/d/m)

Ana-
lytical value 
(m3/d/m)

Numerical vs 
analytical (%)

Case 1 100 2.45 2.53  − 3.2
Case 2 150 3.53 3.46 1.9
Case 3 200 4.61 4.35 5.6
Case 4 250 5.42 5.21 3.9
Case 5 300 6.51 6.04 7.3

Fig. 8   Comparison of groundwater inflows between three analytical 
solutions
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more significant and cannot be ignored. Therefore, when kr 
exceeds 1 × 10−6 m/s, the WDS will significantly influence 
the amount of groundwater inflow and the effects of the 
WDS on groundwater inflow must be considered.

The percentage difference of the groundwater inflow 
between Wang’s solution and the proposed analytical 
solution (ξ=(Q − QWang) / Q×100%) was further analyzed 
to examine the effects of the WDS on groundwater inflow. 
Nine cases with varying permeability coefficients for the 
initial lining (k1) and outer radii of the initial lining (r2) 
were considered.

According to the results in Fig. 9, with an increase in 
kr, the difference in each case gradually increases to 10%. 
Furthermore, as k1 increases, the difference ξ becomes 
more significant and the maximum value exceeds 75%. 
This trend indicates that the effects of WDS on ground-
water inflow are closely related to kr. Therefore, the influ-
ence of WDS is significant and cannot be ignored when kr 
exceeds 1 × 10−6 m/s.

Parametric analysis

In this chapter, the relationships between groundwater inflow 
and each model parameter are analyzed. The parameters of 
the WDSee model include the water head, distance between 
two adjacent circular drainage pipes, thickness and perme-
ability of the initial lining, and geotextile thickness and 
permeability, which are listed in Table 1. The results are 
presented in Figs. 10 and 11.

Water head and rock permeability

As shown in Fig. 10a, the groundwater inflow increases with 
an increase in the water head and rock permeability, indicating 
that H and kr have a significant effect on groundwater inflow. 
For example, when kr is 8 × 10−8 m/s, the groundwater inflow 
increases nine times as h increases from 50 to 500 m. When 
H is 100 m, the groundwater inflow increases from 1.19 to 
4.56 m3/d/m when kr increases from 8 × 10−8 to 5 × 10−7 m/s.

Distance between two adjacent circular drainage 
pipes

The relationship between the groundwater inflow and L1 
is presented in Fig. 10b, indicating that the groundwater 
inflow gradually decreases with an increase in L1. When 
kr is greater than 3 × 10−7 m/s, the groundwater inflow 
decreases by approximately 50% as L1 increases from 4 to 
20 m. When kr is less than 1 × 10−7 m/s, the groundwater 
inflow decreases by approximately 25% as L1 increases 
from 4 to 20 m. This trend indicates that L1 significantly 
influences groundwater inflow. Additionally, the higher 
the rock permeability, the more sensitive the groundwater 
inflow is to L1.

Thickness of the initial lining

The relationship between the groundwater inflow and thick-
ness of the initial lining (T = r2 − r1) is presented in Fig. 10c, 
where the parameter r1 remains the same and the outer radius 
of the initial lining r2 increases from 5.7 to 6.05 m. It can be 
seen that the thickness of the initial lining has a weak effect 
on groundwater inflow. When kr is less than 1 × 10−7 m/s, 
the groundwater inflow remains approximately constant. 
When kr is greater than 3 × 10−7 m/s, the groundwater inflow 
decreases by approximately 14.5% as T increases from 0.1 
to 0.45 m.

Geotextile hydraulic conductivity

The geotextile hydraulic conductivity (ktt) is the product of 
the geotextile permeability coefficient and geotextile thick-
ness. The relationship between the geotextile hydraulic con-
ductivity and groundwater inflow is presented in Fig. 10d. 
When ktt increases from 1 × 10−7 to 1 × 10−6 m2/s, the 
groundwater inflow increases by more than 45%. When ktt 
is greater than 1 × 10−6 m2/s, each curve in the figure tends to 
be flat. This trend indicates that ktt has a significant effect on 
groundwater inflow when it is within the range of 1 × 10−7 
to 1 × 10−6 m2/s.

Fig. 9   The change on the percentage difference of groundwater 
inflow (ξ of Wang’s solution and the proposed analytical solution as a 
function of permeability coefficient of the surrounding rock

6835



	 J. Liu, X. Li 

1 3

Permeability coefficient of the initial lining

The relationship between the permeability coefficient of 
the initial lining and groundwater inflow is presented in 
Fig. 11. When k1 increases from 1 × 10−9 to 1 × 10–8 m/s, 
the groundwater inflow gradually increases. Figure 11 
reveals that k1 has an apparent effect on groundwa-
ter inflow under this condition. When k1 is greater than 
1 × 10−8 m/s, each curve tends to be flat and the ground-
water inflow increases by approximately 5%, indicating 
that k1 has a weak effect on groundwater inflow under this 
condition.

Suggestions on the WDS design

For a deeply buried tunnel subjected to a high water table (e.g., 
H > 150 m), the limitation of tunnel discharge rate less than 
5.0 m3/d-m (Zhang et al. 2007; Zhang and Sun 2019) has been 
suggested to protect the ecological environment of the tun-
nel area. The WDS layout should be optimized to limit the 
discharge for an environmentally acceptable rate. Based on 
the parametric analysis, the groundwater inflow would exceed 
the discharge limitation when the permeability coefficient of 
surrounding rock kr is greater than 3 × 10–7 m/s, independent 
from the WDS layout parameters. Thus, in this condition, 

Fig. 10   Relationships between groundwater inflow and model parameters; (a) water head, (b) distance between two adjacent circular drainage 
pipes, (c) thickness of initial lining, (d) geotextile hydraulic conductivity
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engineering techniques such as grouting might be needed to 
limit groundwater discharge. Conversely, discharge limitation 
can be met with proper WDS layout design when kr is less than 
3 × 10–7 m/s. For example, limited discharge can be provided 
when the permeability coefficient of initial lining is less than 
3 × 10–7 m/s, the distance between two adjacent circular drain-
age pipes is set to 10 m, and the geotextile hydraulic conduc-
tivity is less than 1 × 10–6 m2/s.

Discussion

The proposed analytical solution was motivated by consider-
ing the effects of WDS on the groundwater inflow for a deeply 
buried tunnel subjected to a high water table. The proposed 
analytical solution was derived based on the assumption 
(assumption (1)) that the tunnel cross-section is circular. While 
it is often not true in practical engineering, an equivalent cir-
cle shape may be used. In addition, the surrounding rock is 
assumed (assumption (2)) to be a continuous porous medium. 
In practice, the fractured rock mass is often considered as 
continuous media when the tunnel size is larger than the rep-
resentative elementary volume (Li 2018). For example, rock 
mass can be assumed to be the continuous porous medium 
when small fissures are densely distributed (Wang et al. 2008). 
Therefore, the proposed analytical solution can also be applied 
to tunnels in fractured rock with densely distributed fractures. 
However, when the tunnel is shallow buried, or the rock mass 
cannot be considered as continuous media, the proposed ana-
lytical solution may not be suitable. Finally, the seepage path 
of groundwater is assumed (assumption (3)) to flow from the 
surrounding rock to the circular drainage pipes, which can be 

achieved when the lining type is the composite lining. There-
fore, the proposed analytical solution is suitable for the com-
posite lining with WDS.

Conclusions

In this study, the WDSee model was developed to consider 
all components of WDS. A corresponding analytical solution 
for groundwater inflow into a composite lining tunnel was 
derived. WDS components were fully considered when deriv-
ing the proposed analytical solution, which was then validated 
using a numerical model. A parametric study was conducted 
to investigate the relationships between groundwater inflow, 
and geometric and physical parameters. The following conclu-
sions can be drawn.

1.	 The proposed analytical solution is useful for estimat-
ing groundwater inflow into a tunnel with a compos-
ite lining. Such analytical solutions can be applied to 
deeply buried rock tunnels that are subjected to a high 
water table. The proposed analytical solutions can be 
reduced to Goodman’s solution for unlined tunnels. The 
difference between the proposed analytical solution and 
an existing solution (e.g., Wang’s solution) is less than 
0.5% for an infinitesimal distance between two adjacent 
circular drainage pipes.

2.	 The effects of WDS on groundwater inflow are influ-
enced by rock permeability. The higher the rock perme-
ability coefficient, the more significant the effect. When 
the rock permeability coefficient of the surrounding 
rock exceeds 1 × 10−6 m/s, the effects of WDS cannot 
be ignored.

3.	 The groundwater inflow into a tunnel is closely related 
to the geometric and physical parameters of the tunnel. 
Geometric parameters include the initial lining thick-
ness, radius of the affected zone by the drainage, dis-
tance between adjacent circular drainage pipes, and 
geotextile thickness. Physical parameters include the 
water head and permeability coefficients of the initial 
lining, surrounding rock, and geotextile. The ground-
water inflow significantly decreases with an increase in 
the distance between adjacent circular drainage pipes. 
Furthermore, the higher the rock permeability coeffi-
cient, the more significant the effect of the geometric 
and physical parameters of the tunnel.

4.	 When the permeability coefficient of the surrounding 
rock kr is greater than 3 × 10−7 m/s, engineering tech-
niques such as grouting might be needed to limit ground-
water discharge under high water table (e.g., H > 150 m) 
to meet environment protection needs. Conversely, dis-
charge limitation can be met with proper WDS layout 
design when kr is less than 3 × 10–7 m/s.

Fig. 11   Relationship between groundwater inflow and the permeabil-
ity coefficient of the initial lining
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