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Abstract
Displacement back analysis is often performed to estimate rock parameters in tunnel construction. However, most researchers use
the final values of monitoring displacement without considering the loss involved and the space effect, causing substantial errors.
In this study, a displacement-based back analysis method is developed for estimating rock parameters, and both the displacement
loss and space effect are considered when selecting and processing the output data of the algorithm. The method involves the
following steps: First, reasonable training samples are set through numerical simulation, sensitivity analysis, and orthogonal
design. Next, an extreme learning machine (ELM) optimized using particle swarm optimization (PSO) is trained to replace the
time-consuming numerical analysis. Finally, the PSO algorithm is again utilized to determine the optimal parameters, and the
displacement loss is calculated. The results of a simulation case indicate that the proposed method is highly precise and can be
generalized adequately. The prediction accuracy can be improved by selecting rock parameters with high sensitivities and the
typical monitoring data. An engineering application in the Jigongshan Tunnel in Shenzhen, China, demonstrates that this method
can offer a reliable reference in terms of rock parameters to fulfill practical engineering demands, and provide an alternative
approach for ground stress estimation during tunneling.

Keywords Displacement back analysis . Displacement loss . Space effect . Extreme learning machine . Particle swarm
optimization

Introduction

During tunnel design and construction, it is crucial to deter-
mine the initial state of stress and underground material

properties, for both understanding the structural behavior
and modeling the construction area numerically (Sakurai and
Takeuchi 1983). However, owing to the nonhomogeneous
characteristics of the ground and uncertainties in exploration,
these rock or soil parameters can only be identified within
limited scope, and the values obtained from field or laboratory
tests cannot be used directly for further analysis. Accidents
have occurred occasionally because of the use of inappropriate
parameters in tunnel design (Hoek and Diederichs 2006; Cai
2011; Zhang et al. 2020b).

The reliability of tunnel design parameters can be verified
through field monitoring (Liu and Liu 2019). Further, the
displacement, as the most commonmonitoring index in tunnel
construction, can be a good base for the back analysis of rock
or soil parameters. Ever since the first paper on displacement-
based back analysis was published (Kavanagh and Clough
1971), this method has been used to estimate the following:

& Basic mechanical rock or soil parameters (Feng et al.
2000; Fakhimi et al. 2004; Yazdani et al. 2012;
Shreedharan and Kulatilake 2015; Kang et al. 2017)
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& Rheological parameters (Sharifzadeh et al. 2013; Qi and
Fourie 2018; Zhang et al. 2020b)

& Seepage parameters (Wu et al. 2019)
& Parameters of rock or soil constitutive model (Rechea

et al. 2008; Gao et al. 2020)
& In situ stress (Kaiser et al. 1990; Gao and Ge 2016;

Bertuzzi 2017; Xu and Ni 2019)

Generally, back analysis techniques based on displacement
can be classified into three categories (Qi and Fourie 2018):
(1) analytical or semi-analytical methods (Bertuzzi 2017;
Zhang et al. 2017); (2) numerical modeling (Zhang et al.
2006; Hisatake and Hieda 2008; Luo et al. 2018), and (3)
statistical learning (Huang et al. 2011; Song et al. 2015; Gao
and Ge 2016; Liu and Liu 2019; Zhang et al. 2020b). In
analytical or semi-analytical methods, assumptions and sim-
plifications are often made to obtain feasible solutions,
resulting in the restricted applicability of such methods in
practical engineering cases. Numerical methods are widely
utilized to calculate the displacement, and the input parame-
ters for numerical models can be estimated through trial-and-
error or other optimization algorithms (Hisatake and Hieda
2008; Manzanal et al. 2016). However, many numerical
models have to be created and solved in the process of back
analysis each time. Finally, the statistical learning method,
with an artificial intelligent algorithm as the kernel, can well
address this issue and improve the computational efficiency.
With the rapid development of big data science in recent
years, intelligent algorithms, including the artificial neural net-
work (ANN), support vector machine (SVM), Gaussian pro-
cess (GP), and extreme learning machine (ELM), have been
successfully applied in geotechnical engineering (Zhou et al.
2016; Xue and Xiao 2017; Xue et al. 2020; Zhang et al. 2020a,
b). These intelligent data-driven models can map any nonlin-
ear relationship without prior assumptions relating to the data
(Feng et al. 2004) and may become a substitute for numerical
analysis through sample training. Thus, the problem of numer-
ical back analysis can be transformed into an optimization
problem without the excessive computational burden.

In earlier studies, when performing displacement-based
back analysis, researchers often neglected two main points:

& The first is displacement loss. In a rock tunnel, the dis-
placement monitors are generally assembled after the
completion of the first lining as the excavation work con-
tinues. Therefore, there would always be a distance d be-
tween the monitoring section and the tunnel face, as
depicted in Fig. 1a. The rock displacement that occurs
before the installation of instruments is not recorded.
The monitoring curve is only a part of the total displace-
ment curve (shown with a solid line in Fig. 1b), and the
rest of the curve is termed the displacement loss
(represented with the dashed line in Fig. 1b), which can

be subdivided into three parts: the displacement occurs
before the excavation of the tunnel face, the displacement
occurs after the excavation and before the construction of
first lining, and the displacement occurs after the first lin-
ing construction and before the installation of monitors.
However, in numerical simulations, displacement can be
recorded as soon as the rock excavation. In the process of
displacement-based back analysis, if simulation displace-
ment is calculated to approach the monitoring displace-
ment without subtracting the displacement loss, a large
negative effect would be caused on the precision of pre-
diction. For several years, displacement loss has been con-
sidered based on the load release coefficient (Yang et al.
1983; Lu et al. 2014; Gao and Ge 2016), which is uncer-
tain because it is determined by engineering experience.
Recently, some researchers have noticed this issue (Zhang
et al. 2020b), and more effective methods are in need to be
proposed to consider displacement loss.

& The second is the space effect. When a tunnel is excavat-
ed, the displacement of the rock varies with the excavation
process. This space effect is sufficiently reflected in the
displacement curve. However, in many back analysis
studies (Song et al. 2015; Wu et al. 2019; Xu and Ni
2019), researchers often have neglected the process of
displacement variation and have used the final value of
displacement, which would affect the accuracy and appli-
cability of back analysis method. Reasons are that the
vault settlement or horizontal convergence may be the
same for two tunnel excavation cases, whereas the dis-
placement curves cannot be identical because of different
rock categories, initial stress states, and construction
methods. Therefore, it is necessary to consider the space
effect when performing displacement-based back
analysis.

This paper proposes a displacement-based back analysis
approach that considers the displacement loss and space ef-
fect, to predict the parameters of surrounding rocks during
tunnel excavation. The core algorithm is referred to as PSO-
ELM-PSO, in which the ELM model optimized by the PSO
algorithm works as a substitution for the numerical analysis,
and the PSO algorithm is utilized again to search for the opti-
mal rock parameters. The process and detailed considerations
of the proposed method are introduced in the “Methodology”
section. A case study for validating the method and investi-
gating the impact of the monitoring parameters on the accu-
racy of the algorithm is presented in the “Case study” section.
In the “Engineering application” section, the application of the
method to the excavation of a tunnel in Shenzhen, China, is
described. Thereafter, the PSO-ELM-PSO and PSO-ELM al-
gorithms are compared, and the limitations and prospects of
the proposed method are discussed in the “Discussion”
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section. Finally, the principal conclusions of this study are
summarized in the “Conclusions” section. The primary nov-
elty of this study has two aspects. (1) An integrated algorithm
named PSO-ELM-PSO is applied to back analyze rock pa-
rameters in the tunnel construction, in which the displacement
loss and space effect are both considered. (2) The variation
law of prediction error is revealed on the selection of the rock
parameters and the change of the monitoring parameters.
Measures are also provided to improve the quality of training
samples and the precision of the algorithm.

Methodology

The proposed displacement-based back analysis method com-
prises three key parts:

& The selection of the output parameters, in which the dis-
placement loss and space effect are considered, is

described in the “Consideration of displacement loss”
and “Consideration of space effect” sections.

& The selection of the input parameters, which is supported
by the sensitivity analysis, is presented in the
“Establishment of training set” section.

& The development of the back analysis algorithm, which
combines PSO and an ELM, is introduced in the “Process
of back analysis algorithm” section.

Consideration of displacement loss

As discussed above, displacement loss cannot be avoided in
field monitoring, and it is relevant to the initial monitoring
time or distance. In numerical simulations, the displacement
values are generally considered functions of the computation
time, and the resultant curve is the time–displacement curve.
Because the actual construction time is different from the
computation time and the initial monitoring time is difficult

Fig. 1 a Positions of initial
monitoring section and tunnel
face in practical excavation. b
Profiles of monitoring
displacement and displacement
loss
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to determine from the time–displacement curve, it is hard to
correlate the monitoring curve with the simulation curve and
perform displacement-based back analysis. Nevertheless, the
distance between the monitoring section and the tunnel face
can easily be measured, and the initial monitoring distance
remains stable (usually equal to the length of one construction
footage) for a specific tunnel section.

In this study, both the simulation and monitoring displace-
ments were recorded according to the monitoring distance. The
steps of a simple procedure used to predict the rock parameters
and displacement loss are listed as follows: (1) conduct numerical
analyses with different rock parameters, (2) select parts of the
total distance–displacement curves as the simulation monitoring
curves, (3) map the simulation monitoring curves to the rock
parameters, (4) predict the actual rock parameters based on the
actual monitoring curve, (5) compute the total displacement
curve using the predicted rock parameters, and (6) predict the
actual displacement loss. It should be noted that the displacement
loss is considered the summation. The three parts of displacement
loss are not studied in detail in this research.

Consideration of space effect

As mentioned in the “Introduction,” most previous studies
have performed back analysis based on the final value of the
monitoring displacement, regardless of the variation process.
In the present study, the space effect is considered by intro-
ducing parameters representing the rock deformation process,
together with the final values of displacement, as the output
parameters of the algorithm. That is, the monitoring

displacement curve is fitted with an empirical equation, and
the fitting parameters are considered the process-representing
parameters of rock deformation. This study employs the equa-
tion in the natural logarithmic form (Zhang et al. 2009):

U ¼ aþ b� log 1þ dð Þ ð1Þ
where U is the rock displacement, a and b are the fitting
parameters, and d is the monitoring distance.

In addition, the displacement curves for different monitor-
ing positions in the tunnel cross-section are different, resulting
in many sets of fitting parameters. To reduce the number of
calculations, displacement values, normalized using Eq. (2), at
one typical position (e.g., the tunnel vault) are chosen to cal-
culate the process-representing parameters (a and b in Eq. (1)).
The final values of vault settlement, horizontal convergence,
and so on are the result-representing parameters. These two
types of parameters constitute the output parameters of the
algorithm.

ui ¼ uij j− uj jmin

� �
= uj jmax− uj jmin

� � ð2Þ

where ui is a series of displacement values, ui is the normal-
ized displacement values, i is the series number, and |u|max and
|u|min are the maximum and minimum of the absolute dis-
placement values.

Establishment of training set

Before initiating the primary algorithm, the training samples
should be set as the objects for machine learning; the

Fig. 2 Flowchart of proposed
back analysis method: processes
of (a) setting train samples, (b)
PSO algorithm, and (c) PSO-
ELM-PSO algorithm
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procedure is presented in Fig. 2(a). To ensure the quality of
training samples and the accuracy of the algorithm, a relative-
ly strong correlation is required between the input and output
parameters. Sensitivity analysis (Sharifzadeh et al. 2013) can
be performed to identify the input parameters most relevant to
output parameters.

In this study, the outputs of the system are the displacement
parameters (vault settlement, horizontal convergence, fitting
parameters of displacement curve, and so on), which are af-
fected by numerous factors (geostatic stress, rock mechanical
parameters, and so on). These n factors, which can also be
seen as potential inputs, are written as {α1,α2,α3,…,αn},
and the relevant output parameters are defined as
f{α1,α2,α3,…,αn}. During the sensitivity analysis, the pa-
rameter αi varies within a specific range (±Δαi) whereas all
the other parameters remain constant. The sensitivity of αi can
be calculated using the sensitivity function, as follows:

S αið Þ ¼ ∑
k

j¼1
S j ¼ ∑

k

j¼1

f αi þΔαið Þ− f αi−Δαið Þ
f αið Þ

����
����= 2Δαi

αi

� �
ð3Þ

where S(αi) is the sensitivity of αi and k is the number of
output parameters.

After the sensitivity analysis, parameters with large sensi-
tivities would be selected as the inputs. Thereafter, numerical
models with different sets of selected input parameters can be
built and calculated. Subsequently, the computational defor-
mation data would be recorded and processed as the outputs.
By integrating the values of the input and output parameters,
the training set could finally be established. Detailed proce-
dures of setting the training samples for a specific case could
be seen in the “Model settings and operation” section.

Process of back analysis algorithm

Particle swarm optimization

Inspired by the behavior of bird foraging, Eberhart and
Kennedy (1995) proposed an innovative global optimization
algorithm named particle swarm optimization. The PSO algo-
rithm is initialized with a “swarm” of random particles. Each
particle indicates a potential solution to the problem, and has
three characteristic indices: position, velocity, and fitness val-
ue. During optimization, particles tend to move toward their
individual best positions (Pbest) and the global best position
(Gbest), based on the velocity and distance from the best posi-
tions (Jahed Armaghani et al. 2020). The values of Pbest and
Gbest are determined using the particle fitness value, which is
calculated using the predefined fitness function. In this study,
the fitness function of PSO can be expressed as

fitness ¼ ∑
n

i¼1
∑
m

j¼1
Tij−T 0

ij
� �2

=mn ð4Þ

where m and n are the numbers of samples and output param-
eters, respectively, and T and T′ denote the actual and simula-
tion values, respectively. The process of PSO can be seen in
Fig. 2(b). In every iteration, the particle velocity and position
are updated using the following equations:

Xmþ1
i ¼ Vmþ1

i þ Xm
i

Vmþ1
i ¼ ωm � Vmþ1

i þ c1 � r1 � Pm
best−X

m
i

� �þ c2 � r2 � Gm
best−X

m
i

� �
�

ð5Þ
where m is the current iteration number; Vi and Xi are the

Fig. 3 Structure of ELM algorithm

Table 1 Comparison of the results obtained with different machine learning methods

Method Key parameters Mean square error Computing time (s)

Back-propagation (BP) Two hidden layers with 5 nodes of each 1.3990 1.6244

Radial basis function (RBF) Spread = 0.8 0.3060 0.7160

Support vector machine (SVM) Default in the Matlab Toolbox LIBSVM 0.0141 12.7372

ELM The input weights and hidden biases are random. 1.2882 0.1702

PSO-ELM The input weights and hidden biases are optimized by PSO.
Number of iteration = 100
Size of population = 50

0.0022 1.8968
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velocity and position vectors, respectively, of particle i; c1 and
c2 represent the acceleration constants and are set as 1.2 in this
study; r1 and r2 are two random numbers uniformly distribut-
ed in [0 1]; and ω is the inertia weight factor with a linear
decreasing form and can be calculated as follows:

ωm ¼ ωstart− ωstart−ωendð Þ � m=mmax ð6Þ
wheremmax is the maximum of the iteration number; ωstart and
ωend correspond to the initial and final inertia weights and are
usually set as 0.4 and 0.9, respectively (Xue and Xiao 2017;
Zhang et al. 2020a, b).

Extreme learning machine

The extreme learning machine, proposed by Huang et al.
(2004), is a modification of the feedforward neural network
with a single hidden layer. It features a high learning speed
and exhibits remarkable generalization performance, and has
been widely applied in recent years (Song et al. 2015; Xue
et al. 2020).

The typical structure of the ELM model, composed of the
input layer (with m nodes), output layer (with n nodes), and

hidden layer (with l nodes), can be seen in Fig. 3. We assume
that there are Q different training samples (Xi, Yi) (i = 1, 2,…,
Q) for the ELM model; Xi = [x1, x2,…, xm]

T and Yi = [y1, y2,
…, yn]

T are the input and output parameters. αl ×m and βn × l
are the connection weights from the input layer to the hidden
layer and the hidden layer to the output layer, respectively, and
B = [b1, b2,…, bl]

T is the bias of the hidden layer. Employing
the active function g(x), the goal of the ELM training can be
expressed as

∑
Q

i¼1
Y i−βn�lg αl�mX i þ Bl�1ð Þk k→0 ð7Þ

The input connection weight αl ×m and hidden layer bias B
are assigned randomly, and the output connection weight βn × l
can be calculated using the least squares method (Huang et al.
2006).

Generally, in modeling data using ELM, the standard train-
ing algorithm includes three steps (Song et al. 2015): (1) de-
termine the node number of the hidden layer and set the input
connection weight αl ×m and hidden layer bias B, (2) select an
infinite differentiable function as the activation function and

Table 2 Parameter settings of
rock and lining for the deep
buried circular tunnel

Rock Lining

γ (kN/m3) E (GPa) μ c (MPa) φ (°) λx λy γ (kN/m3) E (GPa) μ

25 1–5 0.3–0.35 0.3–0.5 25–35 1.1–1.5 0.7–0.9 23 26 0.2

γ is the unit weight; E is the elastic modulus; μ is the Poisson's ratio; c is the cohesive force; φ is the internal
friction angle; λx is the lateral pressure coefficient in x-direction, which is perpendicular to tunnel axis; λy is the
lateral pressure coefficient in y-direction, which is parallel to tunnel axis

Fig. 4 Numerical model of deep buried circular tunnel
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calculate the output array of the hidden layer, and (3) calculate
the output connection weight βn × l. However, recent literature
has revealed that the solution models of basic ELM might get
trapped in local minima owing to the stochastic initialization
of the input weights and hidden biases (Cao et al. 2012).
Optimization algorithms, e.g., the cuckoo search algorithm
(Mohapatra et al. 2015) and firefly algorithm (Satapathy
et al. 2017), can be used to improve the generalization capac-
ity of the ELM.

PSO-ELM-PSO

Table 1 shows the results obtained with several typical ma-
chine learning methods to fit the nonlinear functiony = x +
x2 + 2 sin(πx), x ∈ [−5, 5]. Two hundred data samples uni-
formly distributed in the domain are selected as the learning
set, and 10 data samples are randomly chosen as the testing
set. The performance of the methods are evaluated by the
mean square error of the testing data and the computing time.
It can be seen that the PSO-ELM method features high preci-
sion and relatively short computing time.

In this study, the process of the integrated use of PSO and
ELM is presented in Fig. 2(c). First, PSO is employed to opti-
mize the input weights and hidden biases of the ELM.
Subsequently, the PSO-ELM model is trained to substitute for
the numerical analysis of tunnel excavation. After the preparation
of the testing samples, PSO is again used to determine the best
rock parameters, based on which the displacement variation

closest to themonitoring curve can be calculated. Finally, numer-
ical models are solved using the optimal rock parameters, and the
displacement loss of the surrounding rock can be predicted.

In addition, a slight fluctuation has been observed in the
results of PSO-ELM-PSO owing to different sets of weights
and thresholds in every searching process. To avoid the acci-
dental error, the principal program is run 20 times, and the
average value is taken as the final result. This has been proven
to be a feasible way to improve the precision of the algorithm
(Zhang et al. 2020a, b).

Case study

To verify the performance of the proposed back analysis
method, simulations were conducted for the excavation of a
deep buried tunnel.

& The details of the numerical models and settings for the
algorithm are presented in the “Model settings and opera-
tion” section.

& The results of the prediction, along with the error analysis,
are presented in the “Results of prediction” section.

& Further details regarding the impact of the rock parameters
and monitoring parameters are discussed in the “Analysis
of rock parameters” and “Analysis of monitoring param-
eters” sections.

Model settings and operation

A three-dimensional model (Fig. 4) was established using the
finite element software ABAQUS 6.13 for predicting the pa-
rameters of rock mass in a tunnel under construction. This
circular tunnel, with a diameter of 12 m, was buried 80–120
m beneath the ground and fully excavated. The area of the
surrounding rock in the xz plane was 50 m × 50 m. The total
excavation length was 36 m in the model and the excavation
footage was 3 m. The horizontal displacement was
constrained at the left, right, front, and back boundaries, and
the vertical displacement was constrained at the bottom
boundary of the model. Pressure was applied on the top
boundary to simulate vertical load of rock. The widely used
Mohr–Coulombmodel was adopted as the constitutivemodel,
while the elastic model was adopted for the tunnel lining,
which was composed of C25 shotcrete. The values of the rock
parameters that varied within certain ranges are listed in
Table 2.

According to the procedures descr ibed in the
“Methodology” section and presented in Fig. 2, the following
steps were adopted to execute the back analysis algorithm.

Table 3 The sensitivity of rock parameters

E μ c φ H λx λy

Sensitivity value 1.09 0.59 0.18 0.55 1.82 2.27 0.32

γ is the unit weight; E is the elastic modulus. μ is the Poisson's ratio; c is
the cohesive force;φ is the internal friction angle;H is the burial depth; λx
is the lateral pressure coefficient in x-direction, which is perpendicular to
tunnel axis; λy is the lateral pressure coefficient in y-direction, which is
parallel to tunnel axis

Table 4 Orthogonal design levels of the rock parameters

Parameter Level

1 2 3 4 5

E (GPa) 1.0 2.0 3.0 4.0 5.0

μ 0.31 0.32 0.33 0.34 0.35

H (102 m) 0.8 0.9 1 1.1 1.2

λx 1.1 1.2 1.3 1.4 1.5

E is the elastic modulus;μ is the Poisson's ratio;H is the burial depth; λx is
the lateral pressure coefficient in x-direction, which is perpendicular to
tunnel axis
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STEP 1: The final values of vault settlement (UA) and hori-
zontal convergence (UBB’), along with the fitting
parameters (a, b) calculated using Eqs. (1) and
(2), were selected as the output parameters of the
algorithm. The monitoring positions are marked as
A, B, and B′ in Fig. 4.

STEP 2: The sensitivity analysis was conducted using Eq.
(3); the sensitivity of the rock parameters can be
determined from Table 3. Four parameters with
relatively large sensitivities (elasticity modulus,
Poisson's ratio, burial depth, and lateral pressure
coefficient in the x-direction) were chosen as the
input parameters. The other parameters were set
constant in the numerical models.

STEP 3: Based on the ranges of the rock parameters present-
ed in Table 2, each selected input parameter was
divided into five levels, as listed in Table 4. By
employing the orthogonal table of six factors and
five levels, 25 numerical models were built and
calculated. The inputs were obtained by the orthog-
onal design table, and the outputs were acquired
from the computational displacement data of the
25 numerical models. By integrating all the values
of the input and output parameters, the training set
was established.

STEP 4: Six numerical models with the predefined rock pa-
rameters within their ranges were calculated and
regarded as the actual situations. Referring to com-
mon engineering practice, the rock displacements
began to be recorded after the construction of the
first lining. The values of input and output param-
eters were combined as the testing set.

STEP 5: Based on the training samples, the PSO-ELM-PSO
algorithm, programmed inMATLABR2013a, was
applied, and the rock parameters of the three
models were predicted.

STEP 6: Numerical models were solved using the predicted
rock parameters, and the total displacement curves
and the displacement loss were finally computed.

Results of prediction

Table 5 presents the results of the prediction and the relative
errors for three of the testing samples in details. The relative
errors of all the parameters are acceptable, of which the max-
imum is below 5%. Relatively speaking, the errors of the
parameters with large sensitivities are small. For example,
the sensitivity of the lateral pressure coefficient in the x-direc-
tion (λx) is 2.27, which is the peak, and the error can be as low
as 0.48%, which is the lowest among all the results.
Nevertheless, the Poisson's ratio (μ) seems to be the excep-
tion. Although the sensitivity of the Poisson's ratio (μ) is only
0.59, the relative error is slight. This is because the variation
range of μ is small, resulting in a relatively accurate predic-
tion. The comparisons between the simulated and monitoring
displacement curves are presented in Fig. 5. It can be seen that
all the simulation curves agree well with the monitoring
curves. The displacement loss occurring before the construc-
tion of the lining accounts for 20–30% of the total displace-
ment, which is in line with engineering experiences and the
results of previous studies (Zhang et al. 2009). This analysis of
the results of the predictions indicates that the proposed back

Table 5 Prediction results and relative errors obtained using PSO-ELM-PSO method for different testing samples.

Testing sample E (GPa) μ λx H (102 m)

Sample 1 Predefined value 2.60 0.32 1.24 1.05

Back analysis value 2.677 0.326 1.246 1.076

Relative error 2.96% 1.88% 0.48% 2.48%

Average 1.95%

Sample 2 Predefined value 3.40 0.33 1.32 0.95

Back analysis value 3.275 0.326 1.339 0.933

Relative error 3.68% 1.21% 1.44% 1.79%

Average 2.03%

Sample 3 Predefined value 4.50 0.34 1.46 1.08

Back analysis value 4.605 0.335 1.451 1.109

Relative error 2.33% 1.47% 0.62% 2.69%

Average 1.78%

E is the elastic modulus; μ is the Poisson's ratio;H is the burial depth; λx is the lateral pressure coefficient in x-direction, which is perpendicular to tunnel
axis
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analysis method can provide reliable results and is feasible for
engineering applications.

The prediction results with and without considering dis-
placement loss and space effect can be seen in Table 6. To
avoid the influence caused by the difference of testing sam-
ples, the relative errors of all the testing samples for the four
rock parameters are averaged out, and the average error of the

four rock parameters is also calculated. When the displace-
ment loss and space effect are both considered in back analy-
sis, the relative errors of the four rock parameters are low, and
the average error is 2.76%. In the case without considering the
space effect, the relative error in elastic modulus increases
threefold, and the average error rises to 6.59%. When dis-
placement loss is not considered, the errors of all the

Fig. 5 Comparisons of
monitoring and simulating
displacement curves for a sample
1, b sample 2, and c sample 3
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parameters increase significantly, and the average error is 4.6
times of that in the original case. Therefore, it is important and
necessary to consider the displacement loss and space effect in
back analysis of rock parameters.

Analysis of rock parameters

In previous literature on displacement-based back analysis,
some researchers selected elasticity modulus and Poisson's
ratio as the target parameters, while others selected three or
more rock parameters based on different considerations. In
this study, four rock parameters with relatively large sensitiv-
ities were chosen as the inputs. To study the effects of rock
parameter selection, the simulations were performed as
follows:

& Case 1: Two rock parameters (elasticity modulus and
Poisson's ratio) were selected as the input parameters.

& Case 2: Four parameters (elasticity modulus, Poisson's
ratio, burial depth, and lateral pressure coefficient in the
x-direction) were selected as the input parameters.

& Case 3: Six parameters (elasticity modulus, Poisson's ra-
tio, burial depth, lateral pressure coefficient in the x-direc-
tion, cohesive force, and internal friction angle) were se-
lected as the output parameters.

The results of the prediction are provided in Fig. 6. The
errors of parameters in the case of 2 inputs are close to those in
the case of 4 inputs. However, when input number increases to
6, a large growth is witnessed in errors of all the parameters.
The average error rises to 7.74%, nearly three times of that in
the case of 4 inputs. It can be explained that the sensitivity
value is relatively low for cohesive force and internal friction
angle (Table 3). Introducing these two parameters to the inputs
would reduce the quality of training samples, causing the de-
crease of prediction accuracy. Therefore, when establishing
the training set, it is suggested to choose parameters with high
correlations as the inputs and outputs.

Analysis of monitoring parameters

During tunnel construction, some monitoring parameters,
such as monitoring lines, initial monitoring distance, and
monitoring frequency, may change because of different rock
grades, construction programming, or some other factors. To
test the adaptability of the proposed method to variations in
the monitoring parameters, researches on monitoring parame-
ters were performed as in Fig. 7.

Effect of monitoring lines

When studying the effects of monitoring lines, the simulations
were performed as follows:

& Case 1: Lines A and BB′were monitored. Two parameters
(UA, UBB′) and four parameters (UA, UBB′, a, b) were
selected as the output parameters.

& Case 2: Lines A, BB′, and AB (equal to line AB′) were
monitored. Five parameters (UA, UBB′, UAB, a, b) were
selected as the output parameters.

& Case 3: Lines A, BB′, AB (equal to line AB′), and CC′
were monitored. Six parameters (UA, UBB′, UAB, UCC′, a,
b) were selected as the output parameters.

The results of the prediction are provided in Fig. 8a. In the
different cases of monitoring lines, the errors in λx remain low,

Table 6 Prediction errors
obtained using PSO-ELM-PSO
method with and without consid-
ering displacement loss and space
effect

Considering factors E (GPa) μ λx H (102 m)

Displacement loss and space effect Relative error 4.96% 2.16% 1.13% 2.79%

Average 2.76%

Displacement loss Relative error 16.21% 2.39% 1.24% 6.53%

Average 6.59%

Space effect Relative error 28.16% 4.39% 5.59% 12.7%

Average 12.71%

E is the elastic modulus; μ is the Poisson's ratio; H is the burial depth; λx is the lateral pressure coefficient in x-
direction, which is perpendicular to tunnel axis

Fig. 6 Error variations in rock parameters for different inputs
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whereas those in E fluctuate sharply. This may be attributed to
the relatively low sensitivity and a wide range of variation in
E. With the increase of monitoring lines, the average error also
grows. It is because the increase of monitoring lines does not
mean the improvement of the quality of the training samples.
In fact, adding displacement data with low correlation with
rock parameters to the training set would reduce the prediction
accuracy. As a consequence, it is preferred to use displace-
ment data at typical positions (vault settlement and horizontal
convergence) when performing displacement-based back
analysis.

Effect of initial monitoring distance

In studying the effects of the initial monitoring distance, the
simulations were arranged as follows:

& Case 1: The distance between the initial monitoring sec-
tion and tunnel face was 3 m.

& Case 2: The distance between the initial monitoring sec-
tion and tunnel face was 15 m.

& Case 3: The distance between the initial monitoring sec-
tion and tunnel face was 27 m.

The results of the prediction are provided in Fig. 8b.
The relative errors vary a little with the changes in the
initial monitoring distance. It can be inferred that the

changes in the initial monitoring distance result in mi-
nor fluctuations in the results of the prediction, and that
a certain delay in monitoring would not affect the ac-
curacy of the algorithm. It should be noted that with the
increase of the initial monitoring distance, the error in
λx increases and that in H decreases. In the case that
the initial monitoring distance is 27 m, the error in λx is
close to that in E, and the error in H becomes the
lowest. Possible reasons are given that the sensitivity
value of rock parameter may change for different parts
of displacement curve. The displacement variations are
not so sensitive to the changes of E when the rock
deformation becomes gradually stable, causing the rela-
tively larger prediction error in E.

Effect of monitoring frequency

In studying the effects of monitoring frequency, the simula-
tions were performed as follows:

& Case 1: Monitoring data were recorded every 3 m of ex-
cavation length.

& Case 2: Monitoring data were recorded every 6 m of ex-
cavation length.

& Case 3: Monitoring data were recorded every 9 m of ex-
cavation length.

Case 1 Case 1 Case 1

Monitoring 

line

Case 1 Case 2 Case 3

Initial 

monitoring 

distance

Case 1 Case 2 Case 3

Monitoring 

frequency

Fig. 7 Simulation arrangement
for analysis of monitoring
parameters
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The results of the prediction are listed in Fig. 8c. For dif-
ferent monitoring frequencies, the order sorted by relative er-
ror of the rock parameter is unchanged. Although no apparent
rule is found in the error variations of the rock parameters, the
average error declines with the decrease in the monitoring
frequency. It can be inferred that a low monitoring frequency,

or generally, selecting typical monitoring values to set the
training samples, would assist in the improvement of the ac-
curacy of the algorithm.

Engineering application

The Jigongshan Mountain Tunnel, part of the Banyin
Expressway connecting the Luohu District and the
Longgang District in Shenzhen, China, is designed to pass
underneath the Xiaping Municipal Solid Waste (MSW)
Landfill (Feng et al. 2020). Figure 9a depicts the position
and route of the tunnel. It is a separated tunnel with a length
of 4.6 km and a six-lane expressway in both directions. The
particular form of the three-center circle was adopted for the
inner contour of the tunnel owing to its good mechanical per-
formance and the tunnel net width was approximately 15m. A
new Austrian method and the benching tunneling method
were employed for tunnel construction, and the vault settle-
ment and horizontal convergence were monitored during tun-
nel excavation (Fig. 9b). In the preliminary geological inves-
tigation, the geostress was measured in the geological bore-
hole SD-X24 using the hydro fracturing method. The position
of the borehole is marked in Fig. 9a, and the results are pre-
sented in Table 7. Considering the orientation of the tunnel
axis near SD-X24, the lateral pressure coefficient in the direc-
tion of the tunnel cross-section was calculated to be approxi-
mately 1.8.

The proposed back analysis method was applied to the
LK2+820 tunnel section, which is near the borehole SD-
X24, to estimate the surrounding rock parameters and dis-
placement loss. The numerical model is depicted in Fig. 10,
and the parameter ranges are listed in Table 8. Because the
burial depth of LK2+820 was ascertained to be 200 m via the
preliminary geological investigation, three other parameters
(elasticity modulus, Poisson's ratio, and lateral pressure coef-
ficient in the x-direction) were chosen as the input parameters,
based on the sensitivity analysis. All the training samples were
set following orthogonal design and learned by the proposed
algorithm.

The total displacement curve and rock parameters were
predicted based on the monitoring data recorded during the
construction process. Themonitoring and simulation displace-
ment curves are exhibited in Fig. 11. Although the construc-
tion footage varies within 2–4 m in the practical excavation
process, the simulation curves could still match the monitor-
ing data well. Further, the displacement loss occurring before
the construction of the lining accounts for 30% of the total
displacement. The values of the elasticity modulus, Poisson's
ratio, and lateral pressure coefficient were estimated to be 9.38
GPa, 0.266, and 1.83, respectively. The predicted lateral pres-
sure coefficient is in accordance with the results of the
geostress measurement, indicating that the proposed method

Fig. 8 Error variations in rock parameters for a monitoring line, b initial
monitoring distance, and c monitoring frequency
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Table 7 Results of the geostress
measurement using hydro
fracturing method for borehole
SD-X24

Testing section Depth (m) σH (MPa) σh (MPa) σV (MPa) λH Orientation of σH

1 97.7 2.0 1.9 2.6 0.8 /

2 121.6 2.4 2.1 3.3 0.7 /

3 147.6 3.6 3.1 4.0 0.9 /

4 159.8 8.8 5.4 4.3 2.1 NE86°

5 174.2 10.2 6.6 4.7 2.2 /

6 183.7 10.0 6.4 5.0 2.0 /

7 191.0 9.5 5.8 5.2 1.8 /

8 198.1 10.3 6.4 5.3 1.9 /

9 201.1 10.7 6.8 5.4 2.0 /

10 203.9 10.6 6.9 5.5 1.9 NE61°

σH is the horizontal major principal stress; σh is the horizontal minor principal stress; σV is the vertical principal
stress; λH is the lateral pressure coefficient in the direction of the horizontal major principal stress, which is
calculated as σH/σV

Fig. 9 a Location and route of
tunnel in case study. b Tunnel
cross-section of LK2+820 and
monitoring lines
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provides a suitable alternative approach for estimating ground
stress and, thus, can be studied further.

Discussion

Comparison with PSO-ELM method

In the PSO-ELM-PSO method, the PSO-ELM algorithm was
employed as a substitution for the numerical analysis, and the
PSO algorithm was used to search for the best solution.
Subsequently, in the PSO-ELM model proposed herein, the
parameters to be predicted were set as the input parameters,
and the known parameters were set as the outputs. However,
several researchers have considered the opposite case (Song
et al. 2015; Gao and Ge 2016; Zhang et al. 2017). Thus, the
target parameters can be predicted as long as the monitoring
data are inputted. In this section, we present a comparison
between the two abovementioned methods based on the data
provided in the case study.

The prediction results of PSO-ELM are presented in
Table 9. The relative errors for some parameters are small,
whereas others are significantly higher compared to those
for PSO-ELM-PSO, as presented in Table 5. Figure 12 pre-
sents the convergence of PSO-ELM-PSO and PSO-ELM in
the sample-learning procedure. It can be seen that the fitness
value of PSO-ELM-PSO is much lower, and the convergence
rate of PSO-ELM-PSO is significantly faster than that of PSO-
ELM. This is because when the training samples of PSO-
ELM-PSO are arranged, the input rock parameters can be set
based on the orthogonal design. Moreover, the input parame-
ters of PSO-ELM are displacement values, which are calcu-
lated using numerical models and are difficult to arrange.
Therefore, the quality of the PSO-ELM training samples is
worse, resulting in a higher fitness value and higher errors in
prediction.

Limitations and prospects

Based on the comparison presented in the “Comparison
with PSO-ELM method” section, it can be inferred that

Table 8 Parameter settings of
rock and support system for the
tunnel section of LK2+820

Rock

γ (kN/m3) E (GPa) μ c (MPa) φ (°) λx λy
25 8-12 0.26–0.30 0.3–0.5 25–35 1.6–2.0 1.1–1.3

Lining Rock bolt

γ (kN/m3) E (GPa) μ γ (kN/m3) E (GPa) μ Length (m)

23 26 0.2 78 200 0.25 1.5

γ is the unit weight; E is the elastic modulus; μ is the Poisson's ratio; c is the cohesive force; φ is the internal
friction angle; λx is the lateral pressure coefficient in x-direction, which is perpendicular to tunnel axis; λy is the
lateral pressure coefficient in y-direction, which is parallel to tunnel axis

Fig. 10 a Numerical model of LK2+820 tunnel section. b Support system. c Mesh of model
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the quality of the training set, which is determined by the
arrangement and number of samples, plays a vital role in
the accuracy of the algorithm. In many studies, the high
precision of the method is supported by a large number of
training samples—up to hundreds or even thousands (Xue
and Xiao 2017; Qi and Fourie 2018). One of the advan-
tages of the proposed method is that although trained
using relatively few samples (25 samples in this study),
the error in prediction is still acceptable within the range
of the parameters. However, the error can be large if some
of the parameters required for the prediction lie outside
the predefined range. Extending the parameter range may
improve the compatibility. However, more samples have
to be set to ensure precision, necessitating further simula-
tion and prolonging the calculations. In addition, the sta-
bility of the proposed method must be improved because

obtaining a stable average through multiple calculations is
also time-consuming.

For predicting rock parameters using the intelligent algo-
rithm for the excavation of tunnels, further studies will be
required to focus on the following:

& Improving the prediction accuracy using few training
samples—with the rapid development of the intelligent
algorithm, new machine learning and optimization
methods can be introduced in this field.

& Improving the stability of the algorithm—improved opti-
mization algorithm could be employed to restrain the fluc-
tuations in the results of the prediction.

& Verifying the applicability of the method in other cases of
tunnel excavation—the excavation methods, the support
system, and some other factors could also affect the

Fig. 11 Comparison of
monitoring and simulation
displacement curves for LK2+
820 tunnel section

Table 9 Prediction results and
relative errors obtained using
PSO-ELM method for different
testing samples

Testing sample E (GPa) μ λx H (102m)

Sample 1 Predefined value 2.60 0.32 1.24 1.05

Back analysis value 2.668 0.332 1.251 1.073

Relative error 2.62% 3.75% 0.89% 2.19%

Average 2.36%

Sample 2 Predefined value 3.40 0.33 1.32 0.95

Back analysis value 4.323 0.333 1.329 1.124

Relative error 27.15% 0.91% 0.68% 18.32%

Average 11.76%

Sample 3 Predefined value 4.50 0.34 1.46 1.08

Back analysis value 4.389 0.325 1.426 1.111

Relative error 2.47% 4.41% 2.33% 2.87%

Average 3.02%

E is the elastic modulus; μ is the Poisson's ratio; H is the burial depth; λx is the lateral pressure coefficient in x-
direction, which is perpendicular to tunnel axis
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displacement curve, leading to further discussions on pa-
rameter selection and data processing.

Conclusions

A displacement-based back analysis method characterized by
the PSO-ELM-PSO algorithm is presented herein for estimat-
ing the rock parameters during tunneling. The considerations
of displacement loss and space effect are reflected in the pro-
cess of setting the input and output parameters. The case study
and engineering application presented prove that this method
can be well generalized, offer high precision, and be applied to
other underground parameter estimations. The other primary
conclusions drawn from this study are as follows:

(1) Owing to convenience in measurement, the monitoring
distance is proven to be a suitable substitute for the mon-
itoring time when recording the displacement data, both
in simulation and practice. The loss in monitoring dis-
placement is then correlated with the initial monitoring
distance. Further, the space effect, which is usually
reflected in the variations in displacement of the sur-
rounding rock, is described by the key parameters of
the curve-fitting function. Therefore, by selecting and
processing the output parameters of the proposed algo-
rithm, the displacement loss and space effect could be
considered.

(2) The case study illustrates that the errors in the prediction
of the rock parameters are all below 5% for the different
testing samples, and that the simulation displacement
curves match the real curves well. The displacement loss
occurring before the construction of the lining accounts
for 20–30% of the total displacement. The relative errors

in the rock parameters with relatively larger sensitivities
usually remain small and stable with the changes in the
monitoring parameters. Further, to improve the predic-
tion accuracy, it is suggested to select the rock parame-
ters with large sensitivities as the inputs and typical mon-
itoring values as the outputs when setting the training
samples for displacement-based back analysis.

(3) The prediction results for the LK2+820 section in the
Jigongshan Tunnel indicate that the proposed back anal-
ysis method, along with the PSO-ELM-PSO algorithm,
could be suitably applied to engineering applications to
predict the rock parameters and displacement loss.
Moreover, as verified by the results of the field measure-
ment, this method could offer an alternative approach for
the estimation of ground stress.

(4) Comparisons between the PSO-ELM-PSO and PSO-
ELM algorithms demonstrate that the quality of training
samples is significant for the accuracy of the algorithm.
Conducting orthogonal design when arranging the train-
ing set could help improve the quality of the learning
samples and the precision of the algorithm. Further re-
search is required to improve the stability and applicabil-
ity of the method using few training samples.
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