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Abstract
Irregular topography can induce scattering and diffraction of incident seismic waves and cause topographic amplification effects.
In this paper, a theoretical model for the scattering and diffraction of cylindrical SH waves caused by a semi-circular hill is
established for the first time to reveal the influence of source characteristics on the topographic amplification effects. The
analytical solution of the theoretical model is derived via the wave function expansion method and image theory, and its accuracy
is verified by checking the given boundary conditions. Base on the presented solution, the influences of source location, incident
wave frequency, and hill radius on amplitude amplification are systematically investigated. Comparison of amplitude amplifi-
cation around the hill caused by cylindrical waves and plane waves indicates that the effect of source distance on topographic
amplification effects is not negligible unless the source distance exceeds 15 times the hill radius. It suggests that much attention
should be paid to the effects of source location on topographic amplification effects, especially when the source is near the
topography.

Keywords Scattering and diffraction . Topographic amplification effects . Cylindrical SH waves . Semi-circular hill . Wave
function expansionmethod

Introduction

Irregular topography can induce the scattering and diffraction
of incident seismic waves, which markedly alters the travel
law of seismic waves. Field observations and model experi-
ments have shown that in some cases, the vibration amplitudes
of irregular topography are much greater than those of flat
topography, exhibiting significant topographic amplification
effects (Trifunac and Hudson 1971; Hough et al. 2010; Massa
et al. 2014; Li et al. 2019b). Strong vibration can cause dam-
age to buildings and even endanger human life, therefore
studying wave scattering and diffraction induced by irregular
topography has been one of the most important subjects in
earthquake engineering (Geli et al. 1988; Ferraro et al. 2009).

Considering that field observations and model experiments
can only give some qualitative analysis, extensive numerical
and analytical methods have been employed to deepen the
understanding of wave scattering induced by irregular topog-
raphy. The numerical methods mainly include finite element
method (Komatitsch and Vilotte 1998; Cavallaro et al. 2008;
Li et al. 2019a), finite difference method (Boore 1972; Opršal
and Zahradník 1999), and boundary element method (Wong
and Jennings 1975; Panji et al. 2014). The numerical methods
are convenient to address the wave scattering problems with
complex surface geometries and geological conditions, but its
accuracy depends on the quality of meshes which will inevi-
tably introduce numerical errors. In contrast, the analytical
methods are only capable of tackling a few simple wave scat-
tering problems, while they can provide us a profound under-
standing of the mechanism of wave scattering and test the
accuracy of numerical methods, hence obtaining an analytical
solution is very encouraging. The analytical methods mainly
include wave function expansion method, integral equation
method, and perturbation method (Mow and Pao 1971). The
wave function expansionmethod is the most widely employed
due to its high precision and relatively simple mathematical
derivation.
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At present, most theoretical studies on this subject presup-
pose the incident seismic waves as plane waves, and there are
several analytical solutions to the scattering of plane SHwaves
caused by various-shaped concave topographies (Trifunac
1972; Wong and Trifunac 1974; Cao and Lee 1989; Yuan
and Liao 1994; Tsaur and Chang 2008, 2010; Zhang et al.
2012a, 2012b; Gao et al. 2012; Le et al. 2017) and convex
topographies (Yuan and Men 1992; Yuan and Liao 1996; Lee
et al. 2006; Hayir et al. 2001; Qiu and Liu 2005; Lin et al.
2010; Amornwongpaibun and Lee 2013; Lee and
Amornwongpaibun 2013). Besides, a few analytical solutions
to the scattering of plane P, SV and Rayleigh waves caused by
irregular topography have been presented (Lee and Cao 1989;
Cao and Lee 1990; Todorovska and Lee 1991; Liang et al.
2005a, 2005b, 2006).

It is acceptable to treat the incident seismic waves as plane
waves when the earthquake source is far away from the irreg-
ular topography. However, when the earthquake source is
located in the vicinity of irregular topography, the wavefront
curvature of incident seismic waves is considerable, resulting
in the propagation path of incident seismic waves and plane
waves significantly different. In such case, the effects of
source location onwave scattering induced by irregular topog-
raphy should be taken into account. To theoretically study the
effects of source location on wave scattering, the incident
seismic waves can be assumed as spherical waves or cylindri-
cal waves, and several analytical solutions have been pro-
posed for the scattering of cylindrical SH waves caused by
concave topographies (Gao and Zhang 2013; Zhang et al.
2015). However, as far as we know, analytical solutions for
cylindrical SH wave scattering caused by convex topogra-
phies are rare. Herein, we present an analytical solution on
the scattering of cylindrical SH waves caused by a semi-
circular hill, aiming to reveal the effects of earthquake source
on wave scattering by convex topographies. The specific pro-
cess of this paper is given as follows. Firstly, the model of a
semi-circular hill on an elastic half-space subject to a buried
anti-plane line source is established, and the corresponding
series solution is derived through the wave function expansion
method and image theory. Secondly, the relationship between
the accuracy of the series solution and its truncation orders is
discussed by checking the residuals of boundary conditions.
Lastly, based on the series solution, the effects of source lo-
cation, incident wave frequency, and hill radius on vibration
amplitudes of the surface and interior of the hill are systemat-
ically discussed.

Theoretical formula

The 2D theoretical model in this study is depicted in Fig. 1.
This figure illustrates a semi-circular hill with radius a sitting
on an elastic, isotropic, and homogeneous half-space, with

buried anti-plane line source below the hill. Thematerial prop-
erties of the model are given by the shear modulus μ and shear
wave velocity c.

To simplify the issue, we divide the theoretical model into
an exterior region S and an interior region Ω by a semi-
circular auxiliary boundary as shown in Fig. 1 (Yuan and
Men 1992). In these two regions, two Cartesian and two
polar coordinate systems are defined. Both origins of the
Cartesian coordinate system (x, y) and polar coordinate sys-
tem (r, θ) are set at the center of hill bottom. The origins of
the Cartesian coordinate system (x1, y1) and polar coordinate
system (r1, θ1) are placed at the line source. The horizontal y-
axis (or y1-axis) is set as positive to the right direction, and
the angles θ (or θ1) are measured from the vertical direction
x-axis (or x1-axis) clockwise towards to the y-axis (or y1-
axis). The location of the line source is denoted by (r0, θ0)
in the polar coordinate system (r, θ) and (-x0, -y0) in the
Cartesian coordinate system (x, y). For the issue studied here-
in, we set a virtual line source for the reflected wave gener-
ated by the half-space. The origins of the Cartesian coordi-
nate system (x2, y2) and polar coordinate system (r2, θ2) are
placed at the virtual line source, and the angle θ2 is measured
from the vertical direction x2-axis anticlockwise towards to
the horizontal direction y2-axis.

The displacement field W within the entire model must
satisfy the elastic-wave equation:

∂2W
∂r2

þ 1

r
∂W
∂r

þ 1

r2
∂2W
∂θ2

þ k2W ¼ δ r−r0ð Þδ θ−θ0ð Þ
r

ð1Þ

where δ(·) is the Dirac delta function, k = ω/c is the wavenum-
ber, and ω is the circular frequency. The time factor exp(-iωt)
has been omitted for the steady waves.

Besides, the displacement fields should satisfy the traction-
free boundary condition on the horizontal ground surface and
hill surface:

τθz ¼ μ∂W
r∂θ

¼ 0; θ ¼ �π=2; r > a ð2Þ

Auxiliary boundary

Fig. 1 Schematic diagram of the theoretical model of a semi-circular hill
subjected to a buried anti-plane line source
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τ rz ¼ μ∂W
∂r

¼ 0; −π=2 < θ < π=2; r ¼ a ð3Þ

Considering that the exterior region S and interior regionΩ
are welded together, the continuities of displacement and
stress at the auxiliary boundary are also required:

W Ωð Þ a; θð Þ ¼ W Sð Þ a; θð Þ
τ Ωð Þ
rz a; θð Þ ¼ τ Sð Þ

rz a; θð Þ
�

;−π≤θ≤−
π

2
∪
π

2
≤θ≤π ð4Þ

The incident waveW(i) is emitted by the line source, and its
mathematical form in polar coordinate system (r1, θ1) is as
follows:

W ið Þ ¼ i
4μ

H 1ð Þ
0 kr1ð Þ ð5Þ

where H 1ð Þ
0 ∙ð Þ represents the Hankel function of the first kind

with order 0.
Based on the image theory, the reflected waveW(r) induced

by the half-space can be written in polar coordinate system (r2,
θ2) as follows:

W rð Þ ¼ i
4μ

H 1ð Þ
0 kr2ð Þ ð6Þ

According to coordinate relations:

x2 ¼ 2x0−x1; y2 ¼ y1 ð7Þ

x1 ¼ xþ x0; y1 ¼ yþ y0 ð8Þ

The incident wave W(i) and the reflected wave W(r) can be
rewritten in the Cartesian coordinate system (x, y) as follows:

W ið Þ ¼ i
4μ

H 1ð Þ
0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ 2x0xþ 2y0yþ x20 þ y20

q� �

ð9Þ

W rð Þ ¼ i
4μ

H 1ð Þ
0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2−2x0xþ 2y0yþ x20 þ y20

q� �
ð10Þ

We can define W(ff) = W(i) + W(r) as a free-field displace-
ment which represents the displacement of half-space at the
absence of the hill, and its mathematical form in polar coordi-
nate system (r, θ) is as follows:

W ffð Þ ¼ i
4μ

H 1ð Þ
0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2x0rcosθþ 2y0rsinθþ x20 þ y20

q� �
þ H 1ð Þ

0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2x0rcosθþ 2y0rsinθþ x20 þ y20

q� �� �
ð11Þ

And, relevant stress components are derived as follows:

τ ffð Þ
θz ¼ μ∂W ffð Þ

r∂θ
¼ ik

4r
H 0 1ð Þ

0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2x0rcosθþ 2y0rsinθþ x20 þ y20

q� �
−x0rsinθþ y0rcosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 2x0rcosθþ 2y0rsinθþ x20 þ y20
p

(

þH
0 1ð Þ
0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2x0rcosθþ 2y0rsinθþ x20 þ y20

q� �
x0rsinθþ y0rcosθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−2x0rcosθþ 2y0rsinθþ x20 þ y20
p

) ð12Þ

τ ffð Þ
rz ¼ μ∂W ffð Þ

∂r
¼ ik

4
H 0 1ð Þ

0 k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ 2x0rcosθþ 2y0rsinθþ x20 þ y20

q� �
r þ x0cosθþ y0sinθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 þ 2x0rcosθþ 2y0rsinθþ x20 þ y20
p

(

þH 0 1ð Þ
0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2−2x0rcosθþ 2y0rsinθþ x20 þ y20

q� �
r−x0cosθþ y0sinθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−2x0rcosθþ 2y0rsinθþ x20 þ y20
p

) ð13Þ
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where H 0 1ð Þ
0 ∙ð Þ is the first derivative of H 1ð Þ

0 ∙ð Þ.
Substituting θ = ± π/2 into Eq. (12) deduces τ ffð Þ

θz ¼ 0

which means the free-field displacement W(ff) satisfy the
traction-free boundary condition Eq. (2).

Since the expressions of W(ff) and τ ffð Þ
rz are quite complex,

further derivation via the separation variable method in this

study is cumbersome. We expand W(ff) and τ ffð Þ
rz into Fourier

series over the interval [-π,π] as follows:

W ffð Þ ¼ ∑
þ∞

m¼0
Mmcosmθþ Nmsinmθ ð14Þ

τ ffð Þ
rz ¼ μk ∑

þ∞

m¼0
M

0
mcosmθþ N

0
msinmθ ð15Þ

where

Mm ¼ 1

Δmπ
∫π−πW

ffð Þcosmθdθ;

Nm ¼ 1

π
∫π−πW

ffð Þsinmθdθ;

M
0
m ¼ 1

Δmπ
∫π−π

1

μk
τ ffð Þ
rz cosmθdθ;

N
0
m ¼ 1

π
∫π−π

1

μk
τ ffð Þ
rz sinmθdθ:

8>>>>>>>>><
>>>>>>>>>:

ð16Þ

Δm ¼ 2;m ¼ 0
1;m≠0

�
ð17Þ

Because of the presence of the hill and auxiliary boundary,
two extra waves are generated. The first wave is the outgoing
wavesW(d) in the exterior region S, while the second one is the
standing waves W(Ω) inside the interior region Ω. Both the
outgoing waves and standing waves can be expressed as a
series form of Bessel functions.

The mathematical form of W(d) is given as follows:

W dð Þ ¼ ∑
þ∞

m¼0
H 1ð Þ

m krð Þ Amδ
1ð Þ
m cosmθþ Bmδ

2ð Þ
m sinmθ

� 	
ð18Þ

where δ 1ð Þ
m ¼ 1þ −1ð Þ m and δ 2ð Þ

m ¼ 1− −1ð Þ m and Am and Bm
are the unknown coefficients.

Relevant stress components are derived as follows:

τ dð Þ
θz ¼ μ∂W dð Þ

r∂θ
¼ μ

r
∑
þ∞

m¼0
H 1ð Þ

m krð Þ −Amδ
1ð Þ
m msinmθþ Bmδ

2ð Þ
m mcosmθ

� 	
ð19Þ

τ dð Þ
rz ¼ μ∂W dð Þ

∂r
¼ μk ∑

þ∞

m¼0
H 0 1ð Þ

m krð Þ Amδ
1ð Þ
m cosmθþ Bmδ

2ð Þ
m sinmθ

� 	
ð20Þ

Substituting θ = ± π/2 into Eq. (19) deduces τ dð Þ
θz ¼ 0 which

indicates the outgoing wave field W(d) satisfies the traction-
free boundary condition (Eq. (2)).

The total wave fields W(S) and τ Sð Þ
rz of the exterior region

are the superposition of free wave fields and outgoing wave
fields, as follows:

W Sð Þ ¼ W dð Þ þW ffð Þ ð21Þ
τ Sð Þ
rz ¼ τ dð Þ

rz þ τ ffð Þ
rz ð22Þ

The mathematical form of W(Ω) is given as follows:

W Ωð Þ ¼ ∑
þ∞

m¼0
Jm krð Þ Cmcosmθþ Dmsinmθð Þ ð23Þ

where Jm(·) represents the Bessel function with order m, Cm,
and Dm are the unknown coefficients.

Relevant stress components are expressed as follows:

τ Ωð Þ
θz ¼ μ∂W Ωð Þ

r∂θ
¼ μ

r
∑
þ∞

m¼0
Jm krð Þ −Cmmsinmθþ Dmmcosmθð Þ ð24Þ

τ Ωð Þ
rz ¼ μ∂W Ωð Þ

∂r

¼ μk ∑
þ∞

m¼0
J

0
m krð Þ Cmcosmθþ Dmsinmθð Þ ð25Þ

Now, defining two functions Φ(θ) and Ψ(θ) as follows:

Φ θð Þ ¼ 0;−π=2þ 2lπ≤θ≤π=2þ 2lπ
W Ωð Þ a; θð Þ−W Sð Þ a; θð Þ; other ; l ¼ 0;�1;�2;…

�

ð26Þ

Ψ θð Þ ¼ τ Ωð Þ
rz a; θð Þ; −π=2þ 2lπ≤θ≤π=2þ 2lπ

τ Ωð Þ
rz a; θð Þ−τ Sð Þ

rz a; θð Þ; other ; l ¼ 0;�1;�2;…

(

ð27Þ

According to Eqs. (3) and (4), the values of Φ(θ) and Ψ(θ)
are equal to zero. ExpandingΦ(θ) andΨ(θ) into Fourier series
over interval [-π,π] and making the coefficients of the series
equal to zero can lead to the following equations:

∑
þ∞

m¼0
H 1ð Þ

m kað ÞAmδ
1ð Þ
m −CmJm kað Þ þMm

h i
λmn ¼ 0 ð28Þ

∑
þ∞

m¼0
H 1ð Þ

m kað ÞBmδ
2ð Þ
m −DmJm kað Þ þ Nm

h i
μmn ¼ 0 ð29Þ

Cn J
0
n kað Þ− ∑

þ∞

m¼0
H

0 1ð Þ
m kað ÞAmδ

1ð Þ
m þM

0
m

h i
λmn ¼ 0 ð30Þ

Dn J
0
n kað Þ− ∑

þ∞

m¼0
H

0 1ð Þ
m kað ÞBmδ

2ð Þ
m þ N

0
m

h i
μmn ¼ 0 ð31Þ

where

λmn ¼
1

2
; m ¼ n

εn
2π

−2mcos
nπ
2
sin

mπ
2

þ 2ncos
mπ
2

sin
nπ
2

m2−n2
;m≠n

8>><
>>:

ð32Þ
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μmn ¼

0; m ¼ n ¼ 0
1

2
; m ¼ n≠0

εn
2π

−2ncos
nπ
2
sin

mπ
2

þ 2mcos
mπ
2

sin
nπ
2

m2−n2
;m≠n

8>>>><
>>>>:

ð33Þ

εn ¼ 1; n ¼ 0
2; n≠0

�
ð34Þ

Then, substituting Eqs. (30) and (31) into Eqs. (28) and
(29) derives the following equations:

∑
þ∞

m¼0
δ 1ð Þ
m H 1ð Þ

m kað Þλmn−H 0 1ð Þ
m kað ÞPmn

h i
Am

¼ ∑
þ∞

m¼0
−Mmλmn þM

0
mPmn ð35Þ

∑
þ∞

m¼0
δ 2ð Þ
m H 1ð Þ

m kað Þμmn−H
0 1ð Þ
m kað ÞQmn

h i
Bm

¼ ∑
þ∞

m¼0
−Nmμmn þ N

0
mQmn ð36Þ

where

Pmn ¼ ∑
þ∞

l¼0

J l kað Þ
J

0
l kað Þ λmlλln ð37Þ

Qmn ¼ ∑
þ∞

l¼0

J l kað Þ
J

0
l kað Þ μmlμln ð38Þ

and m, n = 0,1,2,…
The unknown coefficients Am and Bm can be solved numer-

ically by truncating Eqs. (35) and (36) into finite terms.
Specifically, the indexes m and n are truncated to M and N
terms, whereM is the number of truncation of series solutions
andN is the number of equations. Besides,N should be greater
thanM; thus the truncated equations become over-determined
and should be solved by the least-squares method.

After solving Eqs. (35)–(36) and obtaining the value of
coefficients Am and Bm, the unknown coefficients Cn and Dn

can be deduced from Eqs. (30) and (31) as follows:

Cn ¼ 1

J 0n kað Þ ∑
þ∞

m¼0
H 0 1ð Þ

m kað ÞAmδ
1ð Þ
m þM

0
m

h i
λmn ¼ 0 ð39Þ

Dn ¼ 1

J
0
n kað Þ ∑

þ∞

m¼0
H

0 1ð Þ
m kað ÞBmδ

2ð Þ
m þ N

0
m

h i
μmn

¼ 0 ð40Þ

Finally, we can calculate the wave field at any point within
the theoretical model by Eqs. (21) and (23).

Validation of theoretical solution

The accuracy of the series solution can be verified by checking
the correctness of the displacement and stress continuous con-
ditions at the auxiliary boundary. Because the value of the
incident waves W(i) is frequency-dependent, and obviously
not equal to 1, we take the normalized displacement residuals
ΔW and stress residuals Δτrz at the auxiliary boundary as
follows:

ΔW ¼ W Ωð Þ−W Sð Þ

 

=W0 ð41Þ

Δτ rz ¼ τ Ωð Þ
rz −τ Sð Þ

rz



 

=τ0 ð42Þ

where W0 ¼ 2 W ið Þ 0; 0ð Þ

 

 ¼ i=2μH 1ð Þ
0 kr0ð Þ




 


 is the value of
the free field displacement W(ff) at the origin of the Cartesian
coordinate system (x, y) and τ0 = μkW0.

To reduce the number of variables, the dimensionless fre-
quency is defined as follows:

η ¼ 2a
λ

¼ ka
π

ð43Þ

where λ = 2π/k is the wavelength of the incident waves.
Figures 2, 3, 4 illustrate the variations of the displacement

residualsΔW and stress residualsΔτrz at the auxiliary bound-
ary with increasing truncation order M when line source is
located at r0 = 2a, θ0= −180o and the values of dimensionless
frequencies are η = 1.0, 2.0 and 3.0, respectively. The abscissa
in the figures is the angle variable θ ranging from 90o to 270o.

As seen in Figs. 2, 3, 4, as the truncation orderM increases,
the displacement residuals ΔW and the stress residuals Δτrz
gradually decrease to a small number, which means the error
of series solution is negligible provided M is large enough.
Note that the values ofΔW andΔτrz at the rims of the hill (θ =
90o or 270o) are significantly higher than the rest of the aux-
iliary boundary. This is because the included angles of the
rims are greater than π and it can cause stress singularity.
Fortunately, the influence of stress singularity on the accuracy
of the displacement solutions is comparatively small because
the displacements at the rims are finite. Therefore, the dis-
placement solution can relatively quickly converge to the true
solution (Yuan and Liao 1996).

Results and discussion

In this section, the displacement distribution on surface and
interior of the hill are systematically discussed for different
dimensionless frequencies and source locations. Consistent
with the above section, the displacement amplitude |W| is nor-
malized by W0.
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The comparison of surface displacement induced by
cylindrical waves and plane waves

Figure 5 demonstrates the normalized amplitudes of surface
displacement of half-space (−3 ≤ y/a ≤ −3) induced by the
plane waves (Yuan and Men 1992) and cylindrical waves.
The solid lines represent the case of the plane waves and short
dashed and dashed lines correspond to the case of the cylin-
drical waves with source distance r0 = 2a, 15a.

As seen in Fig. 5, the surface displacement distribution for
near-source (r0 = 2a) cylindrical waves is quite different from
that of plane waves. The displacement amplitudes on hill sur-
face excited by the near-source cylindrical waves are generally
smaller than those excited by the plane waves when the inci-
dent direction is vertical to half-space. However, when the
incident direction is oblique or horizontal to half-space, the
displacement amplitudes on hill surface caused by the near-
source cylindrical waves are larger than those caused by the
plane waves. For example, the displacement amplitudes at the
hilltop (y/a = 0) are 1.96 for plane waves (solid line) and 1.74
for near-source cylindrical waves (short dashed line) in Fig.
5(d). But those values in Figs. 5(e) and (f) are 0.66 versus 0.86
and 0.40 versus 0.58, respectively. Moreover, when the di-
mensionless frequency is high, the topographic effect at

certain locations for the plane waves and near-source cylindri-
cal wave is contrary. For instance, as shown in Fig. 5(g), when
the dimensionless frequency η = 2.0, the displacement ampli-
tudes at the hilltop are 1.32 for plane waves and 0.53 for near-
source cylindrical waves. In addition, those values are 0.13
versus 1.38 in Fig. 5(j). The above results indicate that we
cannot simply view the cylindrical waves as plane waves,
and the influence of source distance on amplitudes should be
handled.

Then, we compare the results for far-source (r0 = 15a)
cylindrical waves (dashed line) and plane waves (solid lines).
The surface displacements between them are in good accord,
except a little difference on the horizontal ground due to the
geometric attenuation effect of the cylindrical waves. The av-
erage differences in the surface displacements (−3 ≤ y/a ≤ −3)
between far-source cylindrical waves and plane waves are
only 1.94, 3.48, and 4.01% in Figs. 5(a)–(c), and those values
in (d)–(f) are 2.32, 7.10, and 4.39%, in Figs. 5(g)-(i) are 5.87,
4.87, and 6.33% and in Figs. 5(j)–(l) are 5.67, 4.70, and
4.38%. Since these values are small, e.g., most of them are
less than 5% and the maximum is only 7.10%, one can con-
clude that the cylindrical waves can be regarded as the plane
waves when the source distance is greater than 15 times the
hill radius.

Fig. 2 The normalized
displacement residuals and stress
residuals at the auxiliary
boundary when η = 1.0

Fig. 3 The normalized
displacement residuals and stress
residuals at the auxiliary
boundary when η = 2.0
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The relationship between the surface displacement
and dimensionless frequency

The main influencing factors on the responses of the semi-
circular hill are incident wave frequency, radius of the hill
and source location. In previous subsection, the effects of
source location on displacement amplitudes have been inves-
tigated. This subsection focuses on the effects of incident
wave frequency and radius of the hill, and they are expressed
by the dimensionless frequency.

Fig. 6 shows the normalized amplitudes of surface dis-
placement of half-space (-3 ≤ y/a ≤ -3) for different dimen-
sionless frequencies when source distance r0 = 5a and source
angles θ0 = -180o, -135o, -90o, respectively.

As depicted in Fig. 6, when the dimensionless frequency is
not greater than 1.0, the displacement amplitudes variation
along surface is relatively slow and only one single peak value
is observed on hill surface. For example, when the dimension-
less frequency η = 0.2, the surface displacement peaks for θ0=
−180o, −135o, and −90o are 1.49, 1.45, and 1.40, and all of
them appear near at the hilltop (y/a = 0), and the average
differences in displacement amplitudes between hilltop and
other points of hill surface are only 6.17, 6.45, and 6.73%,
respectively. Besides, the source angles have significant im-
pact on the location and corresponding frequency of the max-
imum displacements. For instance, the maximum displace-
ment in Figs. 6(a) and (b) is 1.891 located at y/a = 0 and η =
1.0, in Figs. 6(c) and (d) is 1.796 located at y/a = 0.77 and η =
0.7, and in Figs. 6(e) and (f) is 1.803 located at y/a =0.88 and η
= 0.7. The above results indicate that the topographic ampli-
fication effects widely exist for different source angles when
the dimensionless frequency is not greater than 1.0.

Then, we can see that when the dimensionless frequency is
greater than 1.0, there are multiple displacement peaks on hill
surface, and the number of the peaks increase as the dimen-
sionless frequency increases. Furthermore, the displacement
peaks for θ0= −180o are large, and significant topographic
amplification effects are observed, while the displacement
peaks for θ0= −90o are small and mostly show the topographic

reduction effects. It makes sense because the wave energy is
primarily concentrated in the incident direction, and the ener-
gy of the diffraction wave will decrease as the incident wave
frequency increases. Therefore, the displacement amplitudes
for θ0= −180o is generally greater than that for θ0= −90o,
especially when the dimensionless frequency is large.

The relationship between the internal displacement
and dimensionless frequency

Due to the difference of wave propagation path, the displace-
ment distributions of the interior and surface of the hill are
different. Figure 7 illustrates the normalized amplitudes of
internal displacement along vertical direction (θ = 0o) of the
semi-circular hill for different dimensionless frequencies
when r0 = 5a and θ0 = −180o, −135o, and −90o, respectively.

As shown in Fig. 7, when the dimensionless frequency η ≤
0.5, the displacement will increase monotonously with in-
creasing elevation, and the maximum displacement appears
at the hill surface (x/a = 1.0). But this monotonicity will be
altered with the increased dimensionless frequency, and the
internal displacement is possibly greater than the surface dis-
placement. For example, when η ≥ 0.5, as the elevation in-
creases, the displacement for θ0 = −90o first decreases then
increases, and the maximum displacement appears at the hill
bottom (x/a = 0.0) rather than the hill surface. Moreover, the
characteristics of displacement distribution vary with source
angles. For instance, when η ≥ 2.0, the displacements for θ0 =
−180o are large in the middle and small at both ends, and the
maximum displacements appear near x/a = 0.5, showing sig-
nificant amplitude amplification effects, while the surface dis-
placements exhibit amplitude reduction effects. On the con-
trary, the displacements for θ0 = −135o and −90o are small in
the middle and large at both ends, and the maximum displace-
ments appear at the hill surface or hill bottom. Above results
indicate that the surface displacements are possibly smaller
than the internal displacements when the dimensionless fre-
quency is large. Especially when the source is located directly

Fig. 4 The normalized
displacement residuals and stress
residuals at the auxiliary
boundary when η = 3.0
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below the hill, the surface displacements are reduced but the
internal displacements could be amplified.

The displacements induced by transient waves

In above subsections, we have analyzed the effects of steady
waves on the distribution of surface and internal displace-
ments of semi-circular hill. However, the actual seismic waves

are transient waves, and the results of single frequency are
unable to fully embody the features of transient motions. In
this subsection, the transient responses for semi-circular hill
are given through the inverse fast Fourier Transform.

The incident wave is assumed as Ricker wavelet:

R tð Þ ¼ 2π2 f 2c t
2−1

� �
exp −π2 f 2c t

2
� � ð44Þ

Fig. 5 Comparison of normalized amplitudes of surface displacement for
a semi-circular hill subject to plane SH waves and cylindrical SH waves.
The incident angles α of the plane waves and the source locations (r0, θ0)

of the cylindrical waves are given. The results in (a)–(c) are for dimen-
sionless frequency η = 0.5, and those in (d)–(f), (g)–(i), (j)–(l) correspond
to η = 1.0, 2.0, and 3.0, respectively
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where fc = 1.0Hz represents the predominant frequency.
Because the amplitude spectrum of the wavelet is approx-

imate to zero at 4Hz, we take the calculation frequencies

ranging from 0 4Hz and the interval is 1/24Hz. For compari-
son, both the dimensionless frequencies for transient waves ηc
= 2afc/c and steady waves η = 2af/c are set to 1.0. Figure 8

Fig. 6 The normalized amplitudes of surface displacement for a semi-circular hill with different dimensionless frequencies. The results in (a)–(b) are for
source location (r0 = 5a, θ0 = −180o) and those in (c)–(d) and (e)–(f) correspond to (r0 =5a, θ0 = −135o) and (r0 = 5a, θ0 = −90o), respectively
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shows normalized amplitudes of displacement around the hill
caused by transient waves and steady waves when r0 = 5a and
θ0 = −180o, −135o, and −90o, respectively.

As illustrated in Fig. 8, the overall distribution of dis-
placement amplitudes of transient responses and steady
responses is consistent, but there are some differences.

Fig. 7 The normalized amplitudes of internal displacement along vertical
direction (θ = 0o) of the semi-circular hill with different dimensionless
frequencies. The results in (a)-(b) are for source location (r0 = 5a, θ0 =

−180o), and those in (c)-(d) and (e)-(f) correspond to (r0 =5a, θ0 = −135o)
and (r0 = 5a, θ0 = −90o), respectively
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Firstly, the amplitude fluctuations of the transient waves
are lower than those of steady waves. For example, in
Fig. 8(a), the maximum differences in displacement am-
plitudes on hill surface are equal to 1.77 and 0.82 for
steady waves and transient waves, respectively.
Secondly, the maximum responses of transient waves
are less than that of steady waves for θ0= −180o, but it
is contrary for θ0= −135o and −90o. For example, the
maximum displacements for transient waves and steady
waves in Fig. 8(a) are 1.44 and 1.89, in Fig. 8(b) are
1.34 and 1.24, and in Fig. 8(c) are 1.23 and 1.11. That is
because for steady waves with η = 1.0, the maximum
displacement for θ0 = −180o is at a peak along η-axis
(as seen in Fig. 6(a)). Therefore, transient waves which
contain other frequencies have a lower amplitude than
steady waves. While the maximum displacement for
θ0= −135o and −90o are located in the middle of two
peaks along η-axis (as seen in Figs. 6(c) and (e)), thus
transient waves have a larger amplitude than steady
waves. Thirdly, the displacement amplitudes at the hill
bottom (x/a = 0.0) for transient waves are less than those
for steady waves. It could be due to the transient waves
are finite wave trains, while the steady waves are infinite
wave trains, therefore the intensity of wave superposition
at the hill bottom of the transient waves is lower than
that of steady waves.

Conclusions

In this paper, a novel series solution for the dynamic response
of semi-circular hill subject to the cylindrical SH wave is de-
rived by wave expansion method. The influence of source
location and dimensionless frequency on displacement distri-
butions around the hill is systematically analyzed. The main
conclusions are drawn as follows:

(1) When the source distance is small, the displacements of
the hill surface caused by cylindrical waves are generally
smaller than those caused by plane waves for the case of
vertical incidence, but it is contrary to the cases of
oblique incidence and horizontal incidence. As source
distance increases, the difference between them de-
creases. When the source distance is larger than 15 times
of the radius of the hill, this difference is negligible.

(2) When the dimensionless frequency is not greater than
1.0, the topographic amplification effects widely exist
in different source angles. But when the dimensionless
frequency is greater than 1.0, the topographic amplifica-
tion effects mainly occur in the case of vertical incidence,
and the case of horizontal incidence mainly exhibits to-
pographic reduction effects.

(3) The displacements of hill surface are larger than the dis-
placements inside the hill when the dimensionless

Fig. 8 Comparison of transient waves and steady waves on displacement distributions of the semi-circular hill when the dimensionless frequency η =
1.0. The results in (a)-(c) are surface displacements, and those in (d)-(f) correspond to internal displacements along vertical direction (θ = 0o)
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frequency is not larger than 1.0, and when the dimen-
sionless frequency is larger than 1.0, the displacements
of hill surface are possibly smaller than that inside the
hill.

(4) When the predominant frequency of transient waves is
the same with the frequency of steady waves, the dis-
placement amplitude distributions of the hill caused by
transient and steady waves are consistent on the whole,
but there are some differences, such as the amplitude
fluctuations of the former is lower than that of the latter.
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